首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A team of senior scientists has highlighted the need to consider the threat from overfishing within the wider context of whole marine ecosystems but their conclusions provide little comfort: substantial marine reserves are urgently required in the North East Atlantic if marine communities are to survive. Nigel Williams reports.  相似文献   

2.
Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1-3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.  相似文献   

3.
本文系统地总结了近10年中国研究人员在遗传、物种、生态系统3个层次上对海洋生物多样性研究的重要进展, 并使用VOSviewer软件对近10年中国近海生物多样性的研究成果进行文献计量分析。近年来, 中国研究人员借助新的研究方法和手段, 比如分子生物学和流式细胞术等, 可以在物种多样性水平进行更准确和快速的分类鉴定, 借此在中国近海发现了较多新的物种; 通过多学科交叉融合, 更多的是在生态系统水平探讨海洋生物多样性, 也为今后海洋生态系统的修复提供了科学依据。目前中国的海洋生物多样性研究紧跟国际科技前沿和步伐, 在深海、海山和极端环境生物类群等新兴领域有了长足发展, 新物种的发现不断更新了原有认识, 对典型海洋生态系统的监测和部分入侵物种的整治有了长足的进步。中国近海生物多样性高, 监测数据全, 通过整合空间数据资料和时间序列变化, 进行更广更深的宏观生态模式分析研究十分必要。通过探究生物多样性的多重胁迫因子及其交互作用, 可为优化海洋生物多样性的保护和管理提供帮助。  相似文献   

4.
Managing Critical Transition Zones   总被引:2,自引:0,他引:2  
Ecosystems that function as critical transition zones (CTZs) among terrestrial, freshwater, and marine habitats are closely connected to the ecosystems adjacent to them and are characterized by a rapid flux of materials and organisms. CTZs play various roles, including mediating water flows, accumulating sediments and organic matter, processing nutrients, and providing opportunities for recreation. They are particularly difficult to manage because they tend to be small, albeit important, components of large watersheds, and managers may not have control over the entire landscape. Moreover, they are often the focus of intensive human activity. Consequently, CTZs are critically important zones, and their preservation and protection are likely to require unique collaboration among scientists, managers, and stakeholders. Scientists can learn a great deal from the study of these ecosystems, taking advantage of small size and the importance of fluxes, but a good understanding of adaptive management strategies is needed to establish a dialogue with managers and stakeholders on technical and management issues. An understanding of risk analysis is also important to help set meaningful goals and establish logical strategies that include all of the interested parties. Successful restoration of a CTZ is the best test of the quality of knowledge about its structure and function. Much has already been learned about coastal CTZs through restoration projects, and the large number of such projects involving riparian CTZs in particular suggests that there is considerable opportunity for fruitful collaborations between scientists and managers. Received 25 February 2000; accepted 6 February 2001.  相似文献   

5.
Anthropogenically induced global climate change is likely to have a major impact on marine ecosystems, affecting both biodiversity and productivity. These changes will, in turn, have a large impact on humankind's interactions with the sea. By examining the effects of past climate changes on the ocean, as well as by determining how shifts in physical parameters of the ocean may affect physiology, biochemistry and community interactions, scientists are beginning to explore the possible effects of global climate change on marine biota.  相似文献   

6.
Highly protected marine reserves are areas of the sea in which human disturbances are minimised so that the full natural biological diversity is maintained or, more often, allowed to recover to a more natural state. Europe has very few marine reserves; they are very small and almost all are in the Mediterranean. There are at present no official plans to create effective systems of marine reserves. Europe has many so-called Marine Protected Areas (MPAs). These are marine areas with some extra regulations or planning procedures. MPAs aim to make human activities more efficient and more sustainable. MPAs are user-orientated, knowledge-based, locality-dependent, problem-solving extensions of standard marine planning and management. Marine reserves are quite different. All extractive and potentially disturbing human activities are prohibited. The burden of proof is reversed; no evidence of damage or danger to particular species or habitats is required; all marine life is protected on principle. The concept of marine reserves is simple and practical, but because it is new, different and additional to existing marine management, the idea is seen by many as revolutionary. Basic biological principles and practical experience in many countries make it clear that marine reserves are important to science and education, essential for conservation and useful in resource management. These features apply in all regions and ecosystems. They are independent of climate, biogeography, current human activities and the present management. Representative and viable systems of marine reserves are needed in all regions. Fishing and other human disturbances have been widespread and intensive for so long that it is very difficult to predict the stages of recovery that occur in marine reserves. Furthermore, while some features change rapidly (e.g. numbers of previously targeted species), recovery continues for a long time (e.g. fourth- and fifth-order trophic and structural changes after >25 years). None of this alters the fact that, in scientific terms, marine reserves are controls not manipulations. Such controls are required if scientists are to understand the intrinsic processes and obtain data that are not confounded by human activities (e.g. separating natural variation from fishing effects). No significant progress will be made to establish marine reserves in Europe until scientists speak out strongly and clearly on the issue. We consider it is part of our professional duty as marine biologists to state publicly and frequently the need for a representative, replicated, networked and sustainable system of highly protected marine reserves. We doubt if our grandchildren will accept any excuses if we fail. Guest editors: J. Davenport, G. Burnell, T. Cross, M. Emmerson, R. McAllen, R. Ramsay & E. Rogan Challenges to Marine Ecosystems  相似文献   

7.
We discuss the mechanisms leading to nutrient limitation in tropical marine systems, with particular emphasis on nitrogen cycling in Caribbean ecosystems. We then explore how accelerated nutrient cycling from human activities is affecting these systems.Both nitrogen and phosphorus exert substantial influence on biological productivity and structure of tropical marine ecosystems. Offshore planktonic communities are largely nitrogen limited while nearshore ecosystems are largely phosphorus limited. For phosphorus, the ability of sediment to adsorb and store phosphorus is probably greater for tropical carbonate sediments than for most nearshore sediments in temperate coastal systems. However, the ability of tropical carbonate sediments to take up phosphorus can become saturated as phosphorus loading from human sources increases. The nature of the sediment, the mixing rate between nutrient-laden runoff waters and nutrient-poor oceanic waters and the degree of interaction of these water masses with the sediment will probably control the dynamics of this transition.Nearshore tropical marine ecosystems function differently from their temperate counterparts where coupled nitrification/denitrification serves as an important mechanism for nitrogen depuration. In contrast, nearshore tropical ecosystems are more susceptible to nitrogen loading as depurative capacity of the microbial communities is limited by the fragility of the nitrification link. At the same time, accumulation of organic matter in nearshore carbonate sediments appears to impair their capacity for phosphorus immobilization. In the absence of depurative mechanisms for either phosphorus or nitrogen, limitation for both these nutrients is alleviated and continued nutrient loading fuels the proliferation of nuisance algae.  相似文献   

8.
Chua Thia-Eng 《Hydrobiologia》1997,352(1-3):159-166
Coastal environmental management requires timely and appropriate policy, management and technological interventions to address a host of interrelated environmental problems arising from unplanned and unregulated coastal developments. These interventions can only be effective if they are based on sound scientific (including socioeconomic) information. Thus, science plays a significant role in the environmental management of coastal and marine areas. This paper highlights the essential components of environmental coastal management that require scientific interventions, particularly in providing the scientific basis for policy interventions, and preventive and/or mitigating measures. The integration and packaging of scientific information for management actions require an interdisciplinary effort to address identified management problems. Scientific research should respond to management needs and make contributions to the better understanding of ecosystems and their responses to human interventions. Scientific information urgently required for management includes an understanding of interactions in coastal resource systems, identification, evaluation and prioritization of management issues, management strategies and actions, and development of methodologies and tools for environmental management. Obstacles to management-oriented research have also been identified to include defective perception among scientists, defective communication between scientists and decision makers, intellectual and cultural arrogance, and inadequate technical and management capability at the local level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Management of marine ecosystems requires spatial information on current impacts. In several marine regions, including the Mediterranean and Black Sea, legal mandates and agreements to implement ecosystem-based management and spatial plans provide new opportunities to balance uses and protection of marine ecosystems. Analyses of the intensity and distribution of cumulative impacts of human activities directly connected to the ecological goals of these policy efforts are critically needed. Quantification and mapping of the cumulative impact of 22 drivers to 17 marine ecosystems reveals that 20% of the entire basin and 60–99% of the territorial waters of EU member states are heavily impacted, with high human impact occurring in all ecoregions and territorial waters. Less than 1% of these regions are relatively unaffected. This high impact results from multiple drivers, rather than one individual use or stressor, with climatic drivers (increasing temperature and UV, and acidification), demersal fishing, ship traffic, and, in coastal areas, pollution from land accounting for a majority of cumulative impacts. These results show that coordinated management of key areas and activities could significantly improve the condition of these marine ecosystems.  相似文献   

10.
Wildlife are now recognised as an important source of emerging human pathogens, including parasites. This paper discusses the linkages between wildlife, people, zoonotic parasites and the ecosystems in which they co-exist, revisits definitions for 'emerging' and 're-emerging', and lists zoonotic parasites that can be acquired from wildlife including, for some, estimates of the associated global human health burdens. The paper also introduces the concepts of 'parasite webs' and 'parasite flow', provides a context for parasites, relative to other infectious agents, as causes of emerging human disease, and discusses drivers of disease emergence and re-emergence, especially changes in biodiversity and climate. Angiostrongylus cantonensis in the Caribbean and the southern United States, Baylisascaris procyonis in California and Georgia, Plasmodium knowlesi in Sarawak, Malaysia, Human African Trypanosomiasis, Sarcoptes scabiei in carnivores, and Cryptosporidium, Giardia and Toxoplasma in marine ecosystems are presented as examples of wildlife-derived zoonotic parasites of particular recent interest. An ecological approach to disease is promoted, as is a need for an increased profile for this approach in undergraduate and graduate education in the health sciences. Synergy among scientists and disciplines is identified as critical for the study of parasites and parasitic disease in wildlife populations. Recent advances in techniques for the investigation of parasite fauna of wildlife are presented and monitoring and surveillance systems for wildlife disease are discussed. Some of the limitations inherent in predictions for the emergence and re-emergence of infection and disease associated with zoonotic parasites of wildlife are identified. The importance of public awareness and public education in the prevention and control of emerging and re-emerging zoonotic infection and disease are emphasised. Finally, some thoughts for the future are presented.  相似文献   

11.
At the end of May, 17 scientists involved in an EU COST Action on Conservation Physiology of Marine Fishes met in Oristano, Sardinia, to discuss how physiology can be better used in modelling tools to aid in management of marine ecosystems. Current modelling approaches incorporate physiology to different extents, ranging from no explicit consideration to detailed physiological mechanisms, and across scales from a single fish to global fishery resources. Biologists from different sub-disciplines are collaborating to rise to the challenge of projecting future changes in distribution and productivity, assessing risks for local populations, or predicting and mitigating the spread of invasive species.  相似文献   

12.
Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand marine phenology.  相似文献   

13.
Large ecosystem processes often take place beyond the observation time of a researcher. Yet, through retrospective research scientists can approach and understand ecosystem changes. This contributes to the fundamental understanding of both human-induced and natural dynamics in ecosystems world-wide. This also holds for fast changing coastal areas with mangrove ecosystems, which are important for biodiversity, for coastal protection, and for the daily livelihood of millions of people in tropical coastal developing countries. In addition, retrospective research generates a basis for predictions that can be used early on to protect an ecosystem. In attempting to protect ecosystems from adverse human-induced change and destruction, and to manage them for sustainability, scientists are only beginning to investigate and understand natural ecosystem dynamics. It is important and advisable to gather, combine and analyse all possible data that allow a researcher to look back in time. This paper reviews the available retrospective methods, and highlights the transdisciplinary way (i.e. combination between basic and applied sciences on one hand, and social and human sciences on the other) in which retrospective research on a scale between months and centuries can be carried out, but it also includes methods on larger scales that may be marginally relevant. The paper particularly emphasizes the lack of transdisciplinary (not interdisciplinary) integration between sciences in retrospective research on mangrove forests in the past.  相似文献   

14.
Maritime Spatial Planning (MSP) needs to incorporate spatial information on human impacts. As human activities and uses increase in marine and coastal waters around the world, pressures in ecosystems are also increasing, leading to multiple adverse effects on different species and habitats. The European Directive on MSP aims to achieve an integrated approach to marine governance, whilst securing and maintaining the healthy status of marine and coastal waters, in accordance with the Marine Strategy Framework Directive. The latter requires Member States to develop assessments not only on pressures and impacts, but also on the state of the marine environment and then take measures towards reaching a Good Environmental Status by 2020.The Portuguese Maritime Spatial Plan – Plano de Ordenamento do Espaço Marítimo (POEM) was developed between 2009 and 2012. In 2014 a law establishing the Basis for the Spatial Planning and Management of the National Maritime Space was enacted and in 2015 the framework for the elaboration of a new national Maritime Spatial Plan, named Situation Plan, was established. Portugal will face, in the next five years, the challenge of planning and managing its marine space, whilst promoting its sustainable use and protection.This study adapted a cumulative effects assessment model to understand how the impacts from multiple threats affect the marine and coastal ecosystems and, how this information can be used to improve the management process. Information was gathered on intensity and distribution of activities and uses for the Portuguese continental subdivision marine area, quantified and mapped their cumulative impacts in marine ecosystems, and overlapped with the POEM. Results show that impacts are spreading from the coast up to the Contiguous Zone. Higher scores appear in Transitional and Coastal Waters in the north (Viana do Castelo/Figueira da Foz), centre (Peniche/Setúbal) and south (Lagos/Faro). In some areas with higher ranks, statutes of nature conservation are already in place, but potential activities may still occur on top of existing ones. This study shows that the adapted model is a helpful tool to clarify ocean planning, identify areas of potential conflicts among users and support the decision making process.  相似文献   

15.
陆源人类活动对近海生态系统的影响   总被引:7,自引:0,他引:7  
随着海岸带快速城市化和经济发展,人类活动对近海生态系统的影响日益增加。通过对国内外大量相关文献的分析和与国际专家的研讨,分别从海洋资源开发、海岸带城市化和环境变化等几个方面概述了陆源人类活动对近海生态系统的影响。目前陆源人类活动导致近海生态系统出现的主要问题有:海洋生物资源过度捕捞、海岸带富营养化、海洋酸化、珊瑚礁退化、海洋垃圾、以及海岸带矿产开采等高强度开发活动引发的重金属和持久性有机污染物污染等。这些问题会直接导致海洋生物群落结构变化、影响水质、降低海洋生物多样性,最终影响海洋生态系统服务功能,威胁海洋生态系统健康。这些问题的根源多来自陆地,必须将海洋和陆地作为一个有机整体,整合海陆系统相互作用的科学计划,推进海洋资源和近海生态系统的可持续管理。  相似文献   

16.
TAAF ensures since 2007 the management of 5 small tropical islands lying in the southwestern Indian Ocean: the Iles Eparses. These islands share an exceptional natural heritage including many marine and terrestrial endemic species. At a regional scale the Iles Eparses are some of the most pristine ecosystems, largely preserved from anthropogenic impacts due to their geographical isolation and a historically very limited human occupation. In this context, TAAF wished that Iles Eparses become unique natural laboratories for earth scientists and environmental process observation – like climate change impacts - but also sustainable biodiversity sanctuaries for which the scientific community should provide baseline ecological data to inform on appropriate conservation tools. An inter-agency research consortium emerged in 2009 to meet this commitment for the Iles Eparses. This program was intended to set a science framework in accordance with France' objectives for Research and Conservation. It enabled between 2009 and 2014 the implementation of 18 cross-disciplinary research projects ranging from geology to ecology and represented by the variety of the proposed articles in this special issue. Altogether research projects have dramatically increased knowledge on the Iles Eparses' ecosystems and have provided the first overview of their diversity, their functions and their dynamics and its determinants. In particular applied research efforts have supplied a significant amount of ecological evidence that is now available to develop optimal conservation strategy to ensure the Iles Eparses' long-term biodiversity value. These findings point out that the continuation of research activity in the Iles Eparses should be considered a priority.  相似文献   

17.
Tropical ecosystems support a diversity of species and ecological processes that are unparalleled anywhere else on Earth. Despite their tremendous social and scientific importance, tropical ecosystems are rapidly disappearing. To usher tropical ecosystems and the human communities dependent upon them through the environmental transformations of the 21st century, tropical biologists must provide critical knowledge in three areas: 1) the structure and function of tropical ecosystems; 2) the nature and magnitude of anthropogenic effects on tropical ecosystems; and 3) the socio‐economic drivers of these anthropogenic effects. To develop effective strategies for conservation, restoration, and sustainable management of tropical ecosystems, scientific perspectives must be integrated with social necessities. A new set of principles built on a framework for pursuing relevant tropical biological research will facilitate interdisciplinary approaches, integrate biological knowledge with the social sciences, and link science with policy. We propose four broad recommendations for immediate action in tropical biology and conservation that are fundamental to all biological and social disciplines in the tropics: 1) assemble and disseminate information on life's diversity in the tropics; 2) enhance tropical field stations and build a worldwide network to link them with tropical field biologists at their field sites; 3) bring the field of tropical biology to the tropics by strengthening institutions in tropical countries through novel partnerships between tropical and temperate zone institutions and scientists; and 4) create concrete mechanisms to increase interactions between tropical biologists, social scientists, and policy makers.  相似文献   

18.
Freshwater environments are currently experiencing an alarming decline in biodiversity. As a result, scientists and managers must look for alternative management techniques to protect these aquatic systems. One such option that has potential to protect freshwater environments from numerous threats is the use of freshwater protected areas (FPAs). FPAs are portions of the freshwater environment partitioned to minimize disturbances and allow natural processes to govern populations and ecosystems. While similar conservation practices are well established in the terrestrial and marine environments, the use of FPAs for conservation of freshwater environments has been relatively slow. Despite this, numerous examples exist in which FPAs have been incorporated into successful management approaches for freshwater environments. In this paper, we outline some of the past success stories where FPAs have been used to protect freshwater environments, discuss some of the reasons that this technique has not proliferated to the same degree as marine protected areas, and present some of the challenges that managers and scientists must overcome if they wish to implement FPAs. We recommend that the term Freshwater Protected Area be adopted to such conservation efforts, thereby standardizing terminology and facilitating literature searches and dissemination of research findings. Furthermore, we encourage freshwater scientists, conservationists and managers to develop and implement FPAs in innovative and creative situations thereby permitting the growth of the research base for this valuable conservation technique.  相似文献   

19.
Extreme heat wave events are now causing ecosystem degradation across marine ecosystems. The consequences of this heat‐induced damage range from the rapid loss of habitat‐forming organisms, through to a reduction in the services that ecosystems support, and ultimately to impacts on human health and society. How we tackle the sudden emergence of ecosystem‐wide degradation has not yet been addressed in the context of marine heat waves. An examination of recent marine heat waves from around Australia points to the potential important role that respite or refuge from environmental extremes can play in enabling organismal survival. However, most ecological interventions are being devised with a target of mid to late‐century implementation, at which time many of the ecosystems, that the interventions are targeted towards, will have already undergone repeated and widespread heat wave induced degradation. Here, our assessment of the merits of proposed ecological interventions, across a spectrum of approaches, to counter marine environmental extremes, reveals a lack preparedness to counter the effects of extreme conditions on marine ecosystems. The ecological influence of these extremes are projected to continue to impact marine ecosystems in the coming years, long before these interventions can be developed. Our assessment reveals that approaches which are technologically ready and likely to be socially acceptable are locally deployable only, whereas those which are scalable—for example to features as large as major reef systems—are not close to being testable, and are unlikely to obtain social licence for deployment. Knowledge of the environmental timescales for survival of extremes, via respite or refuge, inferred from field observations will help test such intervention tools. The growing frequency of extreme events such as marine heat waves increases the urgency to consider mitigation and intervention tools that support organismal and ecosystem survival in the immediate future, while global climate mitigation and/or intervention are formulated.  相似文献   

20.
Rapid climate changes are currently driving substantial reorganizations of marine ecosystems around the world. A key question is how these changes will alter the provision of ecosystem services from the ocean, particularly from fisheries. To answer this question, we need to understand not only the ecological dynamics of marine systems, but also human adaptation and feedbacks between humans and the rest of the natural world. In this review, we outline what we have learned from research primarily in continental shelf ecosystems and fishing communities of North America. Key findings are that marine animals are highly sensitive to warming and are responding quickly to changes in water temperature, and that such changes are often happening faster than similar processes on land. Changes in species distributions and productivity are having substantial impacts on fisheries, including through changing catch compositions and longer distances traveled for fishing trips. Conflicts over access to fisheries have also emerged as species distributions are no longer aligned with regulations or catch allocations. These changes in the coupled natural-human system have reduced the value of ecosystem services from some fisheries and risk doing so even more in the future. Going forward, substantial opportunities for more effective fisheries management and operations, marine conservation, and marine spatial planning are likely possible through greater consideration of climate information over time-scales from years to decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号