首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Activated factor X (FXa) exerts coagulation-independent actions such as proliferation of vascular smooth muscle cells (SMCs) through the protease-activated receptors PAR-1 and PAR-2. Both receptors are upregulated upon vascular injury but the underlying mechanisms have not been defined. We examined if FXa regulates PAR-1 and PAR-2 in human vascular SMCs. FXa increased PAR-2 mRNA, protein, and cell-surface expression and augmented PAR-2-mediated mitogenesis. PAR-1 was not influenced. The regulatory action of FXa on PAR-2 was concentration-dependent and mimicked by a PAR-2-selective activating peptide. PAR-2 regulation was not influenced by the thrombin inhibitor argatroban or PAR-1 siRNA. FXa increased dichlorofluorescein diacetate fluorescence and 8-isoprostane formation and induced expression of the NADPH oxidase subunit NOX-1. NOX-1 siRNA prevented FXa-stimulated PAR-2 regulation, as did ebselen and cell-permeative and impermeative forms of catalase. Exogenous H2O2 increased PAR-2 expression and mitogenic activity. FXa promoted nuclear translocation and PAR-2/DNA binding of nuclear factor κB (NF-κB); NF-κB inhibition prevented PAR-2 regulation by FXa. FXa also promoted PAR-2 mRNA stabilization through increased human antigen R (HuR)/PAR-2 mRNA binding and cytoplasmic shuttling. HuR siRNA abolished FXa-stimulated PAR-2 expression. Thus FXa induces functional expression of PAR-2 but not of PAR-1 in human SMCs, independent of thrombin formation, via a mechanism involving NOX-1-containing NADPH oxidase, H2O2, NF-κB, and HuR.  相似文献   

7.
8.
Copper (Cu) is an essential element whose localization within cells must be carefully controlled to avoid Cu-dependent redox cycling. Metallothioneins (MTs) are cysteine-rich metal-binding proteins that exert cytoprotective effects during metal exposure and oxidative stress. The specific role of MTs, however, in modulating Cu-dependent redox cycling remains unresolved. Our studies utilized a chemically defined model system to study MT modulation of Cu-dependent redox cycling under reducing (Cu/ascorbate) and mild oxidizing (Cu/ascorbate + H2O2) conditions. In the presence of Cu and ascorbate, MT blocked Cu-dependent lipid oxidation and ascorbyl radical formation with a stoichiometry corresponding to Cu/MT ratios 相似文献   

9.
Heo J  Raines KW  Mocanu V  Campbell SL 《Biochemistry》2006,45(48):14481-14489
We have previously shown that redox agents including superoxide anion radical and nitrogen dioxide can react with GXXXXGK(S/T)C motif-containing GTPases (i.e., Rac1, Cdc42, and RhoA) to stimulate guanine nucleotide release. We now show that the reaction of RhoA with redox agents leads to different functional consequences from that of Rac1 and Cdc42 due to the presence of an additional cysteine (GXXXCGK(S/T)C) in the RhoA redox-active motif. While reaction of redox agents with RhoA stimulates guanine nucleotide dissociation, RhoA is subsequently inactivated through formation of an intramolecular disulfide that prevents guanine nucleotide binding thereby causing RhoA inactivation. Thus, redox agents may function to downregulate RhoA activity under conditions that stimulate Rac1 and Cdc42 activity. The opposing functions of these GTPases may be due in part to their differential redox regulation. In addition, the results presented herein suggest that the platinated-chemotherapeutic agent, cisplatin, which is known for targeting nucleic acids, reacts with RhoA to produce a RhoA thiol-cisplatin-thiol adduct, leading to inactivation of RhoA. Similarly, certain arsenic complexes (i.e., arsenate and arsenic trioxide) may inactivate RhoA by bridging the cysteine residues in the GXXXCGK(S/T)C motif. Thus, in addition to redox agents, platinated-chemotherapeutic agents and arsenic complexes may modulate the activity of GTPases containing the GXXXCGK(S/T)C motif (i.e., RhoA and RhoB).  相似文献   

10.
11.
12.
13.
Regulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX–FTR–TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX–FTR–TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast.

Thiol-dependent redox regulatory and antioxidant systems act concertedly to modulate chloroplast metabolism and signaling function.

Advances
  • Plant chloroplasts harbor a complex redox network composed of the FDX–FTR–TRXs pathway, linking redox regulation to light, and NTRC, an NADPH-dependent system required for the activity of TRXs. Both systems adjust chloroplast performance to environmental cues.
  • A relevant function of NTRC is redox control of 2-Cys PRXs, which maintains the reductive activity of chloroplast TRXs in the light. The NTRC–2-Cys PRXs redox system helps fine-tune the redox state of chloroplast enzymes thereby adjusting photosynthetic performance to changes in light.
  • 2-Cys PRXs participate in the rapid oxidative inactivation of chloroplast enzymes in the dark, mediating the transfer of reducing equivalents from reduced enzymes, via TRXs, to hydrogen peroxide.
  • Involvement of redox regulation in chloroplast retrograde signaling modulates early stages of plant development and response to environmental stress.
  相似文献   

14.
Ran, a small Ras-like GTP-binding nuclear protein, plays a key role in modulation of various cellular signaling events including the cell cycle. This study shows that a cellular redox agent (nitrogen dioxide) facilitates Ran guanine nucleotide dissociation, and identifies a unique Ran redox architecture involved in that process. Sequence analysis suggests that Dexras1 and Rhes GTPases also possess the Ran redox architecture. As Ran releases an intact nucleotide, the redox regulation mechanism of Ran is likely to differ from the radical-based guanine nucleotide modification mechanism suggested for Ras and Rho GTPases. These results provide a mechanistic reason for the previously observed oxidative stress-induced perturbation of the Ran-mediated nuclear import, and suggest that oxidative stress could be a factor in the regulation of cell signal transduction pathways associated with Ran.  相似文献   

15.
The protein-tyrosine phosphatases (PTPs) form a large family of signaling proteins with essential functions in embryonic development and adult physiology. The PTPs are characterized by an absolutely conserved catalytic site cysteine with a low pKa due to its microenvironment, making it vulnerable to oxidation. PTPs are differentially oxidized and inactivated in vitro and in living cells. Many cellular stimuli induce a shift in the cellular redox state towards oxidation and evidence is accumulating that at least part of the cellular responses to these stimuli are due to specific, transient inactivation of PTPs, indicating that PTPs are important sensors of the cellular redox state.  相似文献   

16.
17.
Redox regulation of TNF signaling   总被引:2,自引:0,他引:2  
TNF is produced during inflammation and induces, among other activities, cell death in sensitive tumour cells. We previously reported an increased generation of ROS in TNF-treated L929 fibrosarcoma cells prior to cell death. These ROS are of mitochondrial origin and participate in the cell death process. Presently, we focus on the identification of parameters that control ROS production and subsequent cytotoxicity. From the cytotoxic properties and susceptibility to scavenging of TNF-induced ROS as compared to pro-oxidant-induced ROS we conclude that TNF-mediated ROS generation and their lethal action are confined to the inner mitochondrial membrane. Oxidative substrates, electron-transport inhibitors, glutathione and thiol-reactive agents but also caspase inhibitors modulate TNF-induced ROS production and imply the existence of a negative regulator of ROS production. Inactivation of this regulator by a TNF-induced reduction of NAD(P)H levels and/or formation of intraprotein disulfides would be responsible for ROS generation.  相似文献   

18.
Plant cells communicate with each other via plasmodesmata (PDs) in order to orchestrate specific responses to environmental and developmental cues. At the same time, environmental signals regulate this communication by promoting changes in PD structure that modify symplastic permeability and, in extreme cases, isolate damaged cells. Reactive oxygen species (ROS) are key messengers in plant responses to a range of biotic and abiotic stresses. They are also generated during normal metabolism, and mediate signaling pathways that modulate plant growth and developmental transitions. Recent research has suggested the participation of ROS in the regulation of PD transport. The study of several developmental and stress-induced processes revealed a co-regulation of ROS and callose (a cell wall polymer that regulates molecular flux through PDs). The identification of Arabidopsis mutants simultaneously affected in cell redox homeostasis and PD transport, and the histological detection of hydrogen peroxide and peroxidases in the PDs of the tomato vascular cambium provide new information in support of this novel regulatory mechanism. Here, we describe the evidence that supports a role for ROS in the regulation of callose deposition and/or in the formation of secondary PD, and discuss the potential importance of this mechanism during plant growth or defense against environmental stresses.  相似文献   

19.
20.
Compelling evidence exists that reactive oxygen species can deliver intracellular signals in mammalian cells, and elicit a broad array of physiological responses according to the cell type, the oxidative burden and the cellular compartment where radicals are generated. When applied to immune cells, these concepts gain a particular relevance, in relation to the plasticity of immune functions and the biological complexity of lymphocyte response to antigens. Here we review some recent and somehow conflicting observations on the involvement of oxygen radicals and redox balance in lymphocyte activation, and propose models for how radical species could contribute to normal and pathological immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号