首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well known that ammonium ion excretion is increased during metabolic acidosis in mammals. The purpose of this study was to determine whether we could isolate from human urine during metabolic acidosis a factor that would stimulate NH4+ and/or H+ excretion in toad urinary bladder. Extracts of urine from six human subjects collected during NH4Cl-induced acidosis were prepared. These extracts were tested for their effect on NH4+ excretion in hemibladders mounted between plastic chambers. The extracts significantly increased NH4+ excretion in the toad urinary bladder. We found no effect on H+ excretion by these extracts. This ammoniuretic activity was not present in the urine when the same individuals were in metabolic alkalosis. We conclude that during metabolic acidosis a humoral factor is present which stimulates the excretion of NH4+. The factor could act as a permease in the bladder cell or as a stimulator of an NH4+ transport system.  相似文献   

2.
It is well known that metabolic acidosis (MA), PGE2, and insulin stimulate H+ excretion in toad urinary bladder. In addition, PGE2 has been shown to increase in the toad bladder during MA. Our present experimental findings indicate that MA, PGE2 and insulin increase [Ca2+]i and this then may be the signal for stimulation of H+ excretion in this tissue. Isolated cells of the toad urinary bladder, obtained from toads in a chronic metabolic acidosis (MA) have a significantly higher intracellular Ca2+ ([Ca2+]i) than similar cells obtained from toads in normal acid-base balance. Protaglandin E2 (PGE2) (10−5M) was found to stimulate [Ca2+]i, in the same normal toad bladder cells, as determined by the fluorescence ratio technique using FURA 2/AM (P < 0.05). Insulin (100 mU/ml) was also found to stimulate [Ca2+]i, in toad bladder cells (P < 0.01). The increase in [Ca2+]i following PGE2 stimulation was not dependent on extracellular Ca2+, whereas the increase seen following insulin stimulation was dependent on extracellular Ca2+.  相似文献   

3.
Summary The urinary bladder ofBufo marinus excretes H+ and NH 4 + , and the H+ excretion is increased after the animal is placed in metabolic acidosis. The present study was done to determine if parathyroid hormone could stimulate the bladder to increase the excretion of H+ and/or NH 4 + . Parathyroid hormone added to the serosal solution in a final concentration of 10 g/ml was found to increase H+ excretion by 50% above the control hemibladders, while there was no effect on NH 4 + excretion. Parathyroid hormone had no effect on H+ excretion when added to the mucosal solution. We also performed experiments utilizing theophylline and dibutyryl cyclic AMP which mimicked those of the parathyroid hormone experiments. A dose-response analysis was performed and the results indicate that 1 g/ml of parathyroid hormone was the minimal effective dose. These results suggest that parathyroid hormone can stimulate H+ excretion in the toad urinary bladder and this effect seems to be mediated by cyclic AMP. In addition, it was found that parathyroid hormone has no effect on NH 4 + excretion.  相似文献   

4.
The purpose of this study was to determine whether phospholipids (PL) play a role in the adaptation to metabolic acidosis by toad urinary bladder epithelium. Toads were placed in an NH4Cl acidosis for 48 hr. Quarter bladders were removed and incubated with [32P]orthophosphate or [3H]arachidonic acid for 1 hr at 25 degrees C. PL were detected by thin layer chromatography, autoradiography, and quantitated by liquid scintillation counting or fractional amounts were determined from phosphate content and expressed as counts per minute per micromolar of total phosphate or as percentage of fraction of total PL. Incorporation of [3H]arachidonic acid into urinary bladder PL was measured in acidotic and normal toads. There was a higher rate of arachidonic acid incorporation into several PL in acidotic animals. Phosphatidic acid and phosphatidylserine fraction in acidosis was 37,705 +/- 6,821 and in normal bladders was 9,254 +/- 2,652 (P less than 0.005); phosphatidylcholine fraction in acidotic toads was 80,462 +/- 16,862 and in normal bladders was 26,892 +/- 5,198 (P less than 0.025); and the phosphatidylethanolamine (PE) fraction in acidotic was 48,665 +/- 10,998 and in normal animals was 17,441 +/- 3,905 (P less than 0.025). 32P labeling revealed a higher rate of incorporation in bladders from acidotic toads compared with normal toads. In the acidotic bladders, the phosphatidic acid and phosphatidylserine fraction was 19,754 +/- 3,597 and in normal bladders was 12,980 +/- 1,394 (P less than 0.05) and for PE acidotic bladders was 9,129 +/- 1,304 and in normal bladders was 3,285 +/- 416 (P less than 0.001). Fractional PL (reported as percentage of fraction of total PL based on total lipid phosphorus) analysis in normal toads revealed phosphatidylinositol = 8.1 +/- 0.6% and PE = 27 +/- 1.2%, whereas for acidotic toads phosphatidylinositol = 11 +/- 0.6% and PE = 32 +/- 1.0% (P less than 0.01 for both). Aldosterone, a known stimulator of acidification, had no effect on 32P incorporation into PL fractions of the bladder. The increase in PL turnover following induction of acidosis is consistent with increased membrane synthesis or turnover during metabolic acidosis and this may reflect an increased transport of vesicular H+-ATPase into the apical membrane or the result of a proliferation of acid-secreting mitochondria-rich cells or both.  相似文献   

5.
The urinary bladder of Bufo marinus has been shown to excrete H+ and NH4+ and this excretion is increased by metabolic acidosis. The involvement of the adrenal gland and its steroid secretions in the adaptation for increased acid and ammonia excretion by the bladder was tested during the course of this study. Groups of toads were adrenalectomized and maintained in chronic NH4Cl-induced acidosis. Three other groups of toads were adrenalectomized and put in acidosis but repleted with 2.5 mg/day of either cortisol (CT), dexamethasone (Dexa), or deoxycorticosterone acetate (DOCA). All control groups were sham-operated. The bladders were excised after 3 days and mounted between 2-ml Lucite chambers. Net H+ and NH4+ fluxes into the mucosal media were measured and reported in units of nanomoles per 100 mg bladder per minute. In control acidotic toads H+ excretion was 20.1 +/- 2.0 and the adrenalectomized nonreplete group H+ excretion was 14.2 +/- 1.87 (P less than 0.04). For the same groups NH4+ excretion was 2.90 +/- 0.26 for the controls and 1.38 +/- 0.19 for the adrenalectomized (P less than 0.001). The H+ excretion in CT-, Dexa-, and DOCA-repleted toads was not significantly different from the control group. NH4+ excretion, however, showed a 55% decrease (P less than 0.001) in the CT group, and a 45% decrease (P less than 0.05) in the Dexa group. The NH4+ excretion in the DOCA repleted group was significantly different from the control group. Therefore, we conclude that the adrenal gland plays a role in the adaptive increase of H+ and NH4+ excretion by the urinary bladder in acidosis through the secretion of steroid hormones. The increase in NH4+ excretion appears to be a mineralocorticoid-stimulated process. We were not able to determine in this study if the steroid hormones had an exacting regulatory role or one of a permissive role over H+ and NH4+ excretion in the toad urinary bladder.  相似文献   

6.
Experiments were performed to determine whether prostaglandins (PG) play a role in H+ and NH4+ excretion in the urinary bladder of Bufo marinus. Ten paired hemibladders from normal toads were mounted in chambers. One was control and the other hemibladder received PGE2 in the serosal medium (10(-5) M). H+ excretion was measured by change in pH in the mucosal fluid and reported in units of nmol (100 mg tissue)-1 (min)-1. NH4+ excretion was measured colorimetrically and reported in the same units. The control group H+ excretion was 8.4 +/- 1.67, while the experimental group was 16.3 +/- 2.64 (P less than 0.01). The NH4+ excretion in the experimental and control group was not significantly different. Bladders from toads in a 48-hr NH4+Cl acidosis (metabolic) did not demonstrate this response to PGE2 (P greater than 0.30). Toads were put in metabolic acidosis by gavaging with 10 ml of 120 mM NH4+Cl 3 x day for 2 days. In another experiment, we measured levels of PG in bladders from control (N) and animals placed in metabolic acidosis (MA). Bladders were removed from the respective toad, homogenized, extracted, and PG separated using high-pressure liquid chromatography and quantified against PG standards. The results are reported in ng (mg tissue)-1. PGE2 fraction in N was 1.09 +/- 0.14 and in MA was 3.21 +/- 0.63 (P less than 0.01). PGF1 alpha, F2 alpha and I2 were not significantly different in N and MA toads. Bladders were also removed from N and MA toads, and incubated in Ringer's solution containing [3H]arachidonic acid (0.2 microCi/ml) at 25 degrees C for 2 hr. Bladders were then extracted for PG and the extracts separated by thin layer chromatography. PG were identified using standards and autoradiography, scraped from plates, and counted in a scintillation detector. The results are reported in cpm/mg tissue x hr +/- SEM. In MA toads, PG6-keto-F1 alpha = 1964 +/- 342, PGF2 alpha = 1016 +/- 228, and PGE2 = 904 +/- 188; in N animals PG6-keto-F1 alpha = 625 +/- 280, PGF2 alpha = 364 +/- 85, and PGE2 = 404 +/- 104; (P less than 0.01, less than 0.025, less than 0.05, respectively). We conclude that PGE2 may be an important mediator of H+ excretion in toad urinary bladder and that endogenous PGE2 levels are increased in response to MA.  相似文献   

7.
Loy W. Frazier 《Life sciences》1980,26(22):1843-1849
Water flow was measured gravimetrically in the presence and absence of vasopressin across the toad urinary bladder. Four groups of toads in different states of acid-base balance were used; a normal group, a group in NH4Cl induced metabolic acidosis, respiratory acidosis, and a group in NaHCO3 induced metabolic alkalosis. Vasopressin induced water flow was significantly reduced during metabolic acidosis and respiratory acidosis. Metabolic alkalosis had no effect on the hydro-osmotic response to vasopressin. Dibutyryl cyclic-AMP-stimulated water flow on the other hand was not affected by either a metabolic or respiratory acidosis. Treatment with indomethacin was able to reverse the observed reduction in the vasopressin-stimulated water flow response in the toad bladder during metabolic and respiratory acidosis. We conclude that the vasopressin stimulated water flow is altered during acidosis and evidence suggests that prostaglandins may be involved in the observed reduction in vasopressin-stimulated water flow.  相似文献   

8.
This study was done to determine if insulin mediates H+ and NH+4 excretion in the urinary bladder of Bufo marinus. Acidosis was induced by gavaging with 10 ml of 120 mM NH4Cl 3X daily for 2 days. Hemibladders were mounted between Lucite chambers. Insulin (porcine) was added to the serosal solution of the experimental bladder (10(2) mU/ml). After a 15-min equilibration the flux was measured for 2 hr. H+ excretion was measured from change in pH of the mucosal fluid and the NH+4 measured colorimetrically. The excretion was normalized for weight of bladder and reported in units of nanomoles (100 mg bladder)-1(min)-1. Plasma insulin was determined by radioimmunoassay and glucose by the glucose oxidase method. In 14 control bladders H+ excretion was 8.75 +/- 1.28 and experimental was 16.35 +/- 2.50 (P less than 0.025), while NH+4 excretion in control bladder was 3.29 +/- 0.95 and experimental was 6.58 +/- 1.89 (P less than 0.01). This response was absent when the insulin was heat inactivated (P greater than 0.2 and P greater than 0.3 respectively). Plasma insulin-like levels in 10 normal toads was 0.57 +/- 0.16 ngm/ml and in acidotic toads 1.25 +/- 0.16 ng/ml (P less than 0.025). Plasma glucose levels in 10 normal toads were 22.0 +/- 3.5 mg/dl and in 12 acidotic toads 17.8 +/- 0.75 mg/dl (P less than 0.025). We conclude that plasma insulin is increased in acidosis and that insulin stimulates excretion of H+ and NH+4 in the toad urinary bladder.  相似文献   

9.
Abstract: Acidosis is a universal response of tissue to ischemia. In the brain, severe acidosis has been linked to worsening of cerebral infarction. However, milder acidosis can have protective effects. As part of our investigations of the therapeutic window in our neuronal tissue culture model of ischemia, we investigated the effects of acidosis during recovery from brief simulated ischemia. Ischemic conditions were simulated in dissociated cortical cultures by metabolic inhibition with potassium cyanide to block oxidative metabolism and 2-deoxyglucose to block glycolysis. Lowering the extracellular pH (pHe) to 6.2 during metabolic inhibition had no effect on injury, as measured by lactate dehydrogenase release from cultures after 24 h of recovery. Lowering the pHe during the first hour of recovery, in contrast, had profound protective effects. When the duration of metabolic inhibition was lengthened to 30 min, most of the protective effects of the NMDA receptor antagonist MK-801 were lost. However, the protective effects of acidosis were unchanged. This suggested that the protective effects of extracellular acidosis could be due to more than blockade of NMDA receptors. Intracellular acidosis might be responsible. To test this, recovery of intracellular pH (pHi) was slowed by incubation with blockers of Na+/H+ exchangers at normal pHe. The two compounds tested, dimethylamiloride and harmaline, had protective effects when present during recovery from metabolic inhibition. Measurements of pHi confirmed that the blockers slowed recovery from intracellular acidosis; more rapid pHi recovery was correlated with injury. The protective effects of acidosis could be reversed by brief incubation with the protonophore monensin, which rapidly normalized pHi. These results are the first demonstration of the protective effects of blocking Na+/H+ exchange in a model of cerebral ischemia. The protective effects of acidosis appear to arise either from suppressing pH-sensitive mechanisms of injury or from blocking sodium entry due to Na+/H+ exchange.  相似文献   

10.
Summary Active H+ transport in the turtle urinary bladder is mediated by an ATPase. Although the source of ATP is usually mitochondrial oxidative phosphorylation, it is possible because of intracellular compartmentalization or cellular heterogeneity that one metabolic pathway exclusively provides ATP to the pump. To examine this we performed several types of experiments. In one, the coupling between the rate of transport and the rate of oxidation of14C-labeled substrates was studied. We found that there was coupling between H+ transport and glucose, butyrate, oleate, and -OH-butyrate oxidation. In another set of experiments we depleted turtle bladders of their endogenous substrates and tested the effect of a number of substrates on the rate of transport. We found that glucose, pyruvate, lactate, actetate, butyrate and -OH butyrate all stimulated H+ transport. In a third set of experiments we found no coupling between H+ transport and lactate production. Finally, we found that reduction of H+ transport by mucosal acidification resulted in an increase in epithelial cell ATP concentrations and a decrease in ADP levels.These results suggest that the H+ pump receives its ATP from carbohydrate and fatty acid oxidation. The changes in ATP and ADP levels provide an initial explanation for the coupling of H+ transport to the rate of cellular oxidative metabolism.  相似文献   

11.
12.
Summary The effect of quinidine on Na and H+ transport by the turtle bladder and water transport by the toad bladder was examined. Quinidine inhibited the short-circuit current and the potential difference in a dose-dependent fashion. The effect of quinidine on the short-circuit was not dependent on extracellular calcium concentration and was not reversible with removal of the drug. Quinidine inhibited H+ secretion in a dose-dependent fashion. The effect of quinidine on H+ secretion also was not dependent on extracellular calcium concentration and was not reversible, either with removal of the drug or with stimulation of H+ secretion with 5% CO2. The effect of quinidine on Na or H+ transport could not be elicited by an equivalent dose of tetracaine, suggesting that the inhibitory effect of quinidine is not dependent on its anesthetic properties. Quinidine also inhibited vasopressin and cyclic AMP stimulated water flow in the toad bladder. Quinidine did not alter calcium uptake by the turtle bladder but increased calcium efflux by the turtle and toad bladders. These observations suggest that a rise in cytosolic calcium is responsible for the inhibitory effect of quinidine on Na, H+, and water transport.  相似文献   

13.
  • 1.1. Water absorption response (WR) behavior and water weight gain were examined in hydrated toads, Bufo woodhousei, treated with angiotensin II (All) or with a control Ringer's solution. The effects of urinary bladder condition (ad lib. bladder urine or empty bladder) were examined concurrently.
  • 2.2. Toads treated with All (100μg/100g body weight), spent more time in WR posture and absorbed more water than Ringer's-injected toads.
  • 3.3. Toads with empty bladders maintained WR posture for longer periods of time and gained more weight than toads whose bladders were not emptied.
  • 4.4. The effects of All and bladder urine on water absorption by B. woodhousei appear to be separate and additive.
  相似文献   

14.
Summary This study was done to determine if steroid compounds will stimulate the urinary bladder of the toad to increase its capacity to acidify the urine and excrete NH 4 + , Aldosterone, 17-estradiol, dexamethasone, pregnenolone, and cholesterol were tested on the bladder. All compounds tested were found to stimulate the rate of acidification by the bladder, above that of a paired control hemibladder. In contrast, only the steroids aldosterone and 17-estradiol were found to stimulate NH 4 + excretion in the bladder. Cycloheximide was found to block the action of aldosterone on the NH 4 + excretion, but did not have a significant effect on the stimulation of acidification by aldosterone. We conclude that steroids stimulate H+ and NH 4 + excretion in the toad urinary bladder. In addition, the NH 4 + excretory system seems to be more specific to this effect than is the H+ excretory system.This work was presented in part at the 62nd annual meeting, Federation of American Societies for Experimental Biology, Atlantic City, N.J., April 1978.  相似文献   

15.
Cyclophosphamide is a commonly used chemotherapeutic drug to treat cancer with side effects that trigger bladder injury and hemorrhagic cystitis. Although previous studies have demonstrated that certain cell subsets and communications are activated to drive the repair and regeneration of bladder, it is not well understood how distinct bladder cell subsets function synergistically in this process. Here, we used droplet-based single-cell RNA sequencing (scRNA-seq) to profile the cell types within the murine bladder mucous layer under normal and injured conditions. Our analysis showed that superficial cells are directly repaired by cycling intermediate cells. We further identified two resident mesenchymal lineages (Acta2+ myofibroblasts and Cd34+ fibroblasts). The delineation of cell-cell communications revealed that Acta2+ myofibroblasts upregulated Fgf7 expression during acute injury, which activated Fgfr signaling in progenitor cells within the basal/intermediate layers to promote urothelial cell growth and repair. Overall, our study contributes to a more comprehensive understanding of the cellular dynamics during cyclophosphamide-induced bladder injury and may help identify important niche factors contributing to the regeneration of injured bladders.Subject terms: Cell biology, Cell proliferation  相似文献   

16.
Qualitative and quantitative aspects of the mechanisms involved in the regulation of cytoplasmic pH during an acid-load have been studied in Acer pseudoplatanus cells. Two main processes, with about the same relative importance, account for the removal of H+ from the cytoplasm, namely a `metabolic consumption' of protons and the excretion of protons or proton-equivalents out of the cells. The metabolic component corresponds to a change in the equilibrium between malate synthesis and degradation leading to a 30% decrease of the malate content of the cells during the period of cytoplasmic pH regulation. Various conditions which severely inhibit the activity of the plasmalemma proton pump ATPase reduce, at most by 50%, the excretion of H+. This suggests that, besides the plasmalemma proton-pump, other systems are involved in the excretion of proton-equivalents. Indirect information on qualitative and quantitative features of these systems is described, which suggests the involvement of Na+ and HCO3 exchanges in the regulation of cytoplasmic pH of acid-loaded cells.  相似文献   

17.
The skin of Rana pipiens excretes H+ and this excretion is increased by metabolic acidosis. The mitochondria-rich (MR) cells of the skin have been found to mediate this H+ transport. The purpose of this study was to determine if there is a change in the MR cells of the skin during metabolic acidosis and if the isolated split epithelia of frog skin maintains its capacity to excrete H+. Metabolic acidosis was induced by injecting 120 mM NH4Cl (0.025 ml/g body wt) into the dorsal lymph sac three times a day for 2 days. The frogs were sacrificed and collagenase-split skins from the abdomen of normal and metabolic acidotic frogs were mounted between 2-ml chambers. H+ fluxes into both the mucosal and serosal media were measured and reported in units of (nmol) (cm2)-1 (min)-1. An increase in H+ flux was seen on both the mucosal and serosal sides of the acidotic split skins. The isolated epithelia were fixed, postosmicated, and dehydrated in the chamber. They were then embedded in Spurr's resin and 1-micron sections were cut and stained with Paragon multiple stain. Coded slides were used to count various cell types. Sections were randomly selected and approximately 40,000 cells were counted. Four basic cell types were noted and confirmed by TEM photomicrographs; basal (B) cells, granular (G) cells, keratinized cells, and MR cells. The ratio of G + B cells:MR cells in the normal skins was 1.0:0.021. The ratio in acidotic skins was 1.0:0.34. The average percentage of cell population of MR cells in the normal skins was 2.08 + 0.18 and in acidotic skins 3.20 + 0.36 (P less than 0.005). We conclude that the split skin maintains the capacity to acidify the mucosal fluid. Additionally, during metabolic acidosis there is an increased number of MR cells in the skin and this increase may be an adaptive mechanism of the skin to excrete excess H+ during acidosis.  相似文献   

18.
1. Mitochondria-rich (MR) cells in the integument of the southern leopard frog, Rana pipiens, berlandieri, were stained with AgNO3 under a variety of environmental and metabolic treatment conditions known to increase H+ excretion rates across the skin. In this tissue AgNO3 proved to be a good stain for discriminating the MR cell populations from the granular cells. 2. High salinity adapted southern frogs showed no change in the MR cell population. The inability of the MR cell number to significantly increase suggested that the increased H+ excretion rates previously seen in these animals were not due to increased MR cell proliferation. 3. The MR cell population was found to increase in the NaNO3 adapted frogs, demonstrating the contribution of altered extracellular Cl- concentrations on the regulation of MR cell density. 4. Animals that were placed in chronic metabolic acidosis or pre-treated with ibuprofen demonstrated an increased MR cell population. The current observations are consistent with previous findings that these treatment regimes increase H+ excretion, suggesting that one of the cellular adaptive mechanisms responsible for increasing H+ excretion involves increasing the MR cell density. 5. The results further suggest that prostaglandins may play a role in regulating H+ excretion in MR cells, and that either changes in intracellular pH or prostaglandin formation regulates cell proliferation.  相似文献   

19.
Metabolic acidosis is associated with alteration in fluid and electrolyte reabsorption in a number of nephron segments. However, the effects of metabolic acidosis on urine osmolality and aquaporin-2 (AQP-2) remain poorly understood. In these studies, we examined the effects of chronic metabolic acidosis on water handling by the kidney. Rats were placed in metabolic cages and subjected to water (control) or 280 mM NH4Cl loading for 120 h to induce metabolic acidosis. The results indicated a significant increase in urine osmolality with no change in urine volume or urinary Na+ excretion in acid-loaded animals. This effect was independent of alteration in fluid intake or salt/Cl- loading. Immunoblotting and Northern hybridization studies indicated that AQP-2 protein abundance and mRNA expression levels increased significantly along the collecting duct system of NH4Cl-but not NaCl-loaded animals. RIA results indicated that metabolic acidosis was associated with a fourfold increase in circulating levels of vasopressin (AVP) and a significant increase in brain AVP mRNA expression levels. In conclusion, metabolic acidosis upregulates the expression levels of AQP-2 and increases urine osmolality, suggesting an adaptive increase in water reabsorption in the collecting duct. A concomitant increase in AVP synthesis and secretion likely plays an essential role in the adaptation of AQP-2 in metabolic acidosis. kidney; acid-base; urine osmolality; sodium excretion rate  相似文献   

20.
Previous reports have indicated that metabolic acidosis stimulates H+ excretion, and this excretion is accompanied by an increased turnover of phospholipids (PL) in toad urinary bladder. The purpose of this experiment was to determine if other known stimulators of H+ excretion [insulin, deoxycorticosterone acetate (DOCA), epinephrine, parathyroid hormone, and CO2] might also stimulate PL turnover in the toad urinary bladder. Quarter bladders from normal toads were removed, weighed, and then incubated with [32P]orthophosphate for 2 hr at 25 degrees C. PL were extracted, separated, and detected using thin layer chromatography and autoradiography, and quantitated by liquid scintillation counting. Results were expressed in cpm (100 mg bladder)-1 (hr)-1. One quarter bladder received insulin (100 milliunits/ml), DOCA (10(-6) M), epinephrine (50 mM), parathyroid hormone (100 micrograms/ml), or 5% CO2 during the incubation, whereas the paired quarter bladder received no treatment. Phosphatidylcholine (PC) and phosphatidylinositol turnover were increased by insulin (P less than 0.025 and less than 0.05, respectively). DOCA had no effect on PL turnover, but stimulated the percentage fraction of PC (P less than 0.05) expressed as percentage fraction of total lipids. Five percent CO2 in the bath resulted in an increased rate of turnover of the PL fractions phosphatidylinositol (P less than 0.05), and the phosphatidic acid plus phosphatidyl-serine (P less than 0.01). Epinephrine and parathyroid hormone were both without effect on PL metabolism. We conclude that insulin, DOCA, and CO2 may stimulated H+ excretion in toad bladder in part by increasing turnover of membrane PL, PC, and phosphatidylinositol, and in the case of CO2, phosphatidic acid plus phosphatidylserine as well, but not PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号