共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Mutations in the major gut esterase of the nematode Caenorhabditis elegans have been induced by ethylmethane sulfonate and detected by isoelectric focusing. The gut esterase locus, denoted ges-1, maps less than 0.3 map units to the right of the unc-60 locus, at the left end of chromosome V. 相似文献
3.
Zhang Y 《Current opinion in microbiology》2008,11(3):257-261
Individuals interact with environment through different neuronal functions, such as olfaction and mechanosensation; experience shapes these physiological functions. It is not well understood how an individual senses and processes multiple cues of natural stimuli in the environment and how experience modulates these physiological mechanisms. Recent molecular genetics and behavioral studies on the interactions of the genetic model organism Caenorhabditis elegans with pathogenic bacteria have provided insights on the molecular and cellular mechanisms underlying these regulatory processes. 相似文献
4.
Fan Zhang Jessica L. Weckhorst Adrien Assié Ciara Hosea Christopher A. Ayoub Anastasia S. Khodakova Mario Loeza Cabrera Daniela Vidal Vilchis Marie-Anne Félix Buck S. Samuel 《Current biology : CB》2021,31(12):2603-2618.e9
- Download : Download high-res image (173KB)
- Download : Download full-size image
5.
秀丽隐杆线虫(Caenorhabditis elegans)以其个体小、易培养、生活周期短等优势成为生物发育、衰老、神经及免疫相关机制研究的模式生物.它在实验室培养时主要靠饲喂大肠杆菌OP50,有报道,细菌及其代谢物对线虫的代谢、行为和寿命有至关重要的影响.因此,作为一个遗传模型,秀丽隐杆线虫可以帮助研究微生物与宿主相... 相似文献
6.
Molecular and functional analysis of apical junction formation in the gut epithelium of Caenorhabditis elegans 总被引:1,自引:0,他引:1
The Caenorhabditis elegans intestine is a simple and accessible model system to analyze the mechanism of junction assembly. In comparison to Drosophila and vertebrates, the C. elegans apical junction is remarkable because a single electron-dense structure is implicated in complex processes such as epithelial tightness, vectorial transport and cell adhesion. Here we present evidence in support of a heterogeneous molecular assembly of junctional proteins found in Drosophila and vertebrate epithelia associated with different junctions or regions of the plasma membrane. In addition, we show that molecularly diverse complexes participate in different aspects of epithelial maturation in the C. elegans intestine. DLG-1 (Discs large) acts synergistically with the catenin-cadherin complex (HMP-1-HMP-2-HMR-1) and the Ezrin-Radixin-Moesin homolog (ERM-1) to ensure tissue integrity of the intestinal tube. The correct localization of DLG-1 itself depends on AJM-1, a coiled-coil protein. Double depletion of HMP-1 (alpha-catenin) and LET-413 (C. elegans homolog of Drosophila Scribble) suggests that the catenin-cadherin complex is epistatic to LET-413, while additional depletion of subapically expressed CRB-1 (Crumbs) emphasizes a role of CRB-1 concerning apical junction formation in the C. elegans intestine. 相似文献
7.
Identification of five laboratory strains (1-5) of putative Caenorhabditis briggsae was undertaken. Examination of the male bursal ray arrangement, mating tests with males of Caenorhabditis elegans, malate dehydrogenase zymograms, and SDS polyacrylamide electrophoresis demonstrated that strain 4 was C. briggsae and the others were C. elegans. 相似文献
8.
Tilleman L Germani F De Henau S Geuens E Hoogewijs D Braeckman BP Vanfleteren JR Moens L Dewilde S 《IUBMB life》2011,63(3):166-174
Extensive in silico search of the genome of Caenorhabditis elegans revealed the presence of 33 genes coding for globins that are all transcribed. These globins are very diverse in gene and protein structure and are localized in a variety of cells, mostly neurons. The large number of C. elegans globin genes is assumed to be the result of multiple evolutionary duplication and radiation events. Processes of subfunctionalization and diversification probably led to their cell-specific expression patterns and fixation into the genome. To date, four globins (GLB-1, GLB-5, GLB-6, and GLB-26) have been partially characterized physicochemically, and the crystallographic structure of two of them (GLB-1 and GLB-6) was solved. In this article, a three-dimensional model was designed for the other two globins (GLB-5 and GLB-26), and overlays of the globins were constructed to highlight the structural diversity among them. It is clear that although they all share the globin fold, small variations in the three-dimensional structure have major implications on their ligand-binding properties and possibly their function. We also review here all the information available so far on the globin family of C. elegans and suggest potential functions. 相似文献
9.
10.
One of the looming mysteries in signal transduction today is the question of how mechanical signals, such as pressure or mechanical
force delivered to a cell, are interpreted to direct biological responses. All living organisms, and probably all cells, have
the ability to sense and respond to mechanical stimuli. At the single-cell level, mechanical signaling underlies cell-volume
control and specialized responses such as the prevention of poly-spermy in fertilization. At the level of the whole organism,
mechanotransduction underlies processes as diverse as stretch-activated reflexes in vascular epithelium and smooth muscle;
gravitaxis and turgor control in plants; tissue development and morphogenesis; and the senses of touch, hearing, and balance.
Intense genetic, molecular, and elecrophysiological studies in organisms ranging from nematodes to mammals have highlighted
members of the recently discovered DEG/ENaC family of ion channels as strong candidates for the elusive metazoan mechanotransducer.
Here, we discuss the evidence that links DEG/ENaC ion channels to mechanotransduction and review the function of Caenorhabiditis elegans members of this family called degenerins and their role in mediating mechanosensitive behaviors in the worm. 相似文献
11.
Loss of the RhoGAP SRGP-1 promotes the clearance of dead and injured cells in Caenorhabditis elegans
Neukomm LJ Frei AP Cabello J Kinchen JM Zaidel-Bar R Ma Z Haney LB Hardin J Ravichandran KS Moreno S Hengartner MO 《Nature cell biology》2011,13(1):79-86
Multicellular animals rapidly clear dying cells from their bodies. Many of the pathways that mediate this cell removal are conserved through evolution. Here, we identify srgp-1 as a negative regulator of cell clearance in both Caenorhabditis elegans and mammalian cells. Loss of srgp-1 function results in improved engulfment of apoptotic cells, whereas srgp-1 overexpression inhibits apoptotic cell corpse removal. We show that SRGP-1 functions in engulfing cells and functions as a GTPase activating protein (GAP) for CED-10 (Rac1). Interestingly, loss of srgp-1 function promotes not only the clearance of already dead cells, but also the removal of cells that have been brought to the verge of death through sublethal apoptotic, necrotic or cytotoxic insults. In contrast, impaired engulfment allows damaged cells to escape clearance, which results in increased long-term survival. We propose that C. elegans uses the engulfment machinery as part of a primitive, but evolutionarily conserved, survey mechanism that identifies and removes unfit cells within a tissue. 相似文献
12.
The bimolecular fluorescence complementation (BiFC) assay is a powerful tool for visualizing and identifying protein interactions in living cells. This assay is based on the principle of protein-fragment complementation, using two nonfluorescent fragments derived from fluorescent proteins. When two fragments are brought together in living cells by tethering each to one of a pair of interacting proteins, fluorescence is restored. Here, we provide a protocol for a Venus-based BiFC assay to visualize protein interactions in the living nematode, Caenorhabditis elegans. We discuss how to design appropriate C. elegans BiFC cloning vectors to enable visualization of protein interactions using either inducible heat shock promoters or native promoters; transform the constructs into worms by microinjection; and analyze and interpret the resulting data. When expression of BiFC fusion proteins is induced by heat shock, the fluorescent signals can be visualized as early as 30 min after induction and last for 24 h in transgenic animals. The entire procedure takes 2-3 weeks to complete. 相似文献
13.
Protein interactions are essential components of signal transduction in cells. With the progress in genome-wide yeast two hybrid screens and proteomics analyses, many protein interaction networks have been generated. These analyses have identified hundreds and thousands of interactions in cells and organisms, creating a challenge for further validation under physiological conditions. The bimolecular fluorescence complementation (BiFC) assay is such an assay that meets this need. The BiFC assay is based on the principle of protein fragment complementation, in which two non-fluorescent fragments derived from a fluorescent protein are fused to a pair of interacting partners. When the two partners interact, the two non-fluorescent fragments are brought into proximity and an intact fluorescent protein is reconstituted. Hence, the reconstituted fluorescent signals reflect the interaction of two proteins under study. Over the past six years, the BiFC assay has been used for visualization of protein interactions in living cells and organisms, including our application of the BiFC assay to the transparent nematode Caenorhabditis elegans. We have demonstrated that BiFC analysis in C. elegans provides a direct means to identify and validate protein interactions in living worms and allows visualization of temporal and spatial interactions. Here, we provide a guideline for the implementation of BiFC analysis in living worms and discuss the factors that are critical for BiFC analysis. 相似文献
14.
RNAi mechanisms in Caenorhabditis elegans 总被引:5,自引:0,他引:5
Grishok A 《FEBS letters》2005,579(26):5932-5939
15.
16.
17.
Role of the Caenorhabditis elegans multidrug resistance gene, mrp-4, in gut granule differentiation
下载免费PDF全文

Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly. mrp-4(+) activity is required for the extracellular mislocalization of birefringent material, body-length retraction, and NaCl sensitivity, phenotypes associated with defective gut granule biogenesis exhibited by embryos lacking the activity of GLO-1/Rab38, a putative GLO-1 guanine nucleotide exchange factor GLO-4, and the AP-3 complex. Multidrug resistance protein (MRP)-4 localizes to the gut granule membrane, consistent with it playing a direct role in the transport of molecules that compose and/or facilitate the formation of birefringent crystals within the gut granule. However, MRP-4 is also present in oocytes and early embryos, and our genetic analyses indicate that its site of action in the formation of birefringent material may not be limited to just the gut granule in embryos. In a search for genes that function similarly to mrp-4(+), we identified WHT-2, another ABC transporter that acts in parallel to MRP-4 for the formation of birefringent material in the gut granule. 相似文献
18.
Oxidative stress and aging in Caenorhabditis elegans 总被引:2,自引:0,他引:2
Ishii N 《Free radical research》2000,33(6):857-864
Much attention has been focused on the hypothesis that oxidative damage plays in cellular and organismal aging. A mev-1 (kn1) mutant of Caenorhabditis elegans, isolated on the basis of its methyl viologen (paraquat) hypersensitivity, is also hypersensitive to elevated oxygen levels. Unlike the wild type, its life span decreases dramatically as oxygen concentrations are increased from 1% to 60%. Strains, which bear this mutation, accumulate fluorescent materials and protein carbonyl groups, markers of aging, at faster rates than the wild type. We have cloned mev-1 gene by transformation rescue and found that it is, in fact, the previously sequenced gene (cyt-1) that encodes succinate dehydrogenase cytochrome b. A missense mutation abolishes complex II activity in the mitochondrial membrane but not succinate dehydrogenase enzyme activity per se. These data suggest that CYT-1 directly participates in electron transport from FADH2 to coenzyme Q. Moreover, mutational inactivation of this process renders animals susceptible to oxidative stress and, as a result, leads to premature aging. 相似文献
19.
Timmons LD 《Journal of bioenergetics and biomembranes》2007,39(5-6):459-463
RNAi is an evolutionarily conserved gene-silencing phenomenon that can be triggered by exogenous delivery of double stranded
RNA to organisms. In Caenorhabditis elegans, the response to dsRNA is remarkably robust, and systemic RNAi responses are often observed. We have taken a genetic approach
using this organism to better understand the mechanisms that facilitate RNAi. By analyzing strains of RNAi-defective mutants,
we have uncovered an unexpected role for ABC transporters in RNAi and related silencing mechanisms. Ten of the sixty ABC transporter
genes encoded in the C. elegans genome are required for robust RNAi. We will present data that highlights common features of these genes relative to their
roles in RNAi, including genetic interactions with other components of the RNAi machinery. We will also describe unique roles
for some transporter genes in endogenous RNAi-related processes. 相似文献