首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The human fungal pathogen Candida parapsilosis possesses at least three genes encoding secreted aspartic proteinases. Whereas the Sapp1p isoenzyme has already been biochemically characterized, the SAPP2 and SAPP3 gene products have not. The Sapp2p precursor, pro-Sapp2p, was therefore expressed in Escherichia coli and purified. Autoactivation of pro-Sapp2p in acidic conditions was inefficient and resulted in a protein extended by eight amino acids at the N-terminus (Sapp2p(+8)). The correct promature junction KR/SSPSS was cleaved by trypsin or by a membrane-bound Kex2-like proteinase from Candida parapsilosis. The mature Sapp2p obtained by the assisted activation was proteolytically active. Its activity was more than twofold higher than that of the self-processed protein species Sapp2p(+8), as measured by the hemoglobin cleavage test. The substrate specificity of Sapp2p differs from that of Sapp1p. Peptides containing aromatic residues in the P1 and P1' positions are cleaved poorly by Sapp2p. A fluorogenic substrate was synthesized to facilitate further studies.  相似文献   

2.
3.
Pathogenic Candida albicans yeasts frequently cause infections in hospitals. Antifungal drugs lose effectiveness due to other Candida species and resistance. New medications are thus required. Secreted aspartic protease of C. parapsilosis (Sapp1p) is a promising target. We have thus solved the crystal structures of Sapp1p complexed to four peptidomimetic inhibitors. Three potent inhibitors (Ki: 0.1, 0.4, 6.6 nM) resembled pepstatin A (Ki: 0.3 nM), a general aspartic protease inhibitor, in terms of their interactions with Sapp1p. However, the weaker inhibitor (Ki: 14.6 nM) formed fewer nonpolar contacts with Sapp1p, similarly to the smaller HIV protease inhibitor ritonavir (Ki: 1.9 µM), which, moreover, formed fewer H-bonds. The analyses have revealed the structural determinants of the subnanomolar inhibition of C. parapsilosis aspartic protease. Because of the high similarity between Saps from different Candida species, these results can further be used for the design of potent and specific Sap inhibitor-based antimycotic drugs.  相似文献   

4.
In terms of infection incidence, the yeast Candida parapsilosis is the second after Candida albicans as causative agent of candidiases in humans. The major virulence factors of C. parapsilosis are secreted aspartic proteases (SAPPs) which help the pathogen to disseminate, acquire nutrients and dysregulate the mechanisms of innate immunity of the host. In the current work we characterized the action of two major extracellular proteases of C. parapsilosis, SAPP1 and SAPP2, on human kininogens, proteinaceous precursors of vasoactive and proinflammatory bradykinin-related peptides, collectively called the kinins. The kininogens, preferably the form with lower molecular mass, were effectively cleaved by SAPPs, with the release of two uncommon kinins, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin. While optimal at acidic pH (4–5), the kinin release yield was only 2–3-fold lower at neutral pH. These peptides were able to interact with cellular kinin receptors of B2 subtype and to stimulate the human endothelial cells HMEC-1 to increased secretion of proinflammatory interleukins (ILs), IL-1β and IL-6. The analysis of the stability of SAPP-generated kinins in plasma suggested that they are biologically equivalent to bradykinin, the best agonist of B2 receptor subtype and can be quickly converted to des-Arg9-bradykinin, the agonist of inflammation-inducible B1 receptors.  相似文献   

5.
Heterologous proteins secreted by yeast and fungal expression hosts are occasionally degraded at basic amino acids. We cloned Pichia pastoris homologs of the Saccharomyces cerevisiae basic residue-specific endoproteases Kex2 and Yps1 to evaluate their involvement in the degradation of a secreted mammalian gelatin. Disruption of the P. pastoris KEX2 gene prevented proteolysis of the foreign protein at specific monoarginylic sites. The S. cerevisiae α-factor preproleader used to direct high-level gelatin secretion was correctly processed at its dibasic site in the absence of the prototypical proprotein convertase Kex2. Disruption of the YPS1 gene had no effect on gelatin degradation or processing of the α-factor propeptide. When both the KEX2 and YPS1 genes were disrupted, correct precursor maturation no longer occurred. The different substrate specificities of both proteases and their mutual redundancy for propeptide processing indicate that P. pastoris kex2 and yps1 single-gene disruptants can be used for the α-factor leader-directed secretion of heterologous proteins otherwise degraded at basic residues.  相似文献   

6.
Carboxypeptidase Y (CPY) is a yeast vacuolar protease with useful applications including C-terminal sequencing of peptides and terminal modification of target proteins. To overexpress CPY with the pro-sequence (proCPY) encoded by the Saccharomyces cerevisiae PRC1 gene in recombinant S. cerevisiae, the proCPY gene was combined with the gene coding for a signal sequence of S. cerevisiae mating factor α (MFα), invertase (SUC2), or Kluyveromyces marxianus inulinase (INU1). Among the three constructs, the MFα signal sequence gave the best specific activity of extracellular CPY. To enhance the CPY expression level, folding accessory proteins of Kar2p, Pdi1p and Ero1p located in the S. cerevisiae endoplasmic reticulum were expressed individually and combinatorially. A single expression of Kar2p led to a 28 % enhancement in extracellular CPY activity, relative to the control strain of S. cerevisiae CEN.PK2-1D/p426Gal1-MFαCPY. Coexpression of Kar2p, Pdi1p and Ero1p gave a synergistic effect on CPY expression, of which activity was 1.7 times higher than that of the control strain. This work showed that engineering of signal sequences and protein-folding proteins would be helpful to overexpress yeast proteins of interest.  相似文献   

7.
Pathogenic yeasts of the genus Candida produce secreted aspartic proteinases, which are known to enhance virulence. We focused on Sapp1p proteinase secreted by Candida parapsilosis and studied the final stage of its passage through the cell wall and release into the extracellular environment. We found that Sapp1p displays enzyme activity prior to secretion, and therefore, it is probably fully folded within the upper layer of the cell wall. The positioning of cell surface-associated Sapp1p was detected by cell wall protein labeling using biotinylation agents, extraction of cell wall proteins by β-mercaptoethanol, immunochemical detection, and mass spectrometry analysis. All lysine residues present in the structure of soluble, purified Sapp1p were labeled with biotin. In contrast, the accessibility of individual lysines in cell wall-associated Sapp1p varied with the exception of four lysine residues that were biotinylated in all experiments performed, suggesting that Sapp1p has a preferred orientation in the cell wall. As the molecular weight of this partially labeled Sapp1p did not differ among the experiments, we can assume that the retaining of Sapp1p in the cell wall is not a totally random process and that pathogenic yeasts might use this cell-associated proteinase activity to enhance degradation of appropriate substrates.  相似文献   

8.
Opportunistic pathogens of the genus Candida produce secreted aspartic proteinases (Saps) that play an important role in virulence. Saps are synthesized as zymogens, but cell-free culture supernatants of Candida spp. contain only mature Saps. To study the zymogen conversion, the gene encoding a precursor of C. parapsilosis proteinase Sapp1p was cloned, expressed in E. coli and the product was purified. When placed in acidic conditions, the precursor was autocatalytically processed, yielding an active proteinase. The self-activation proceeded through an intermediate product and the resulting enzyme was one amino acid shorter than the authentic enzyme. This truncation did not cause changes in proteinase activity or secondary structure compared to the authentic Sapp1p. Accurate cleavage of the pro-mature junction, however, required a processing proteinase. A crude membrane fraction prepared from C. parapsilosis cells contained an enzyme with Kex2-like activity, which processed the Sapp1p precursor at the expected site. The pro-segment appeared to be indispensable for Sapp1p to attain an appropriate structure. When expressed without the pro-segment, the Sapp1p mature domain was not active and had a lower content of alpha-helical conformation, as measured by circular dichroism. A similar effect was observed when a His(6)-tag was linked to the C-terminus of Sapp1p or its precursor.  相似文献   

9.
cDNAs of barley α-amylase andA. niger glucoamylase were cloned in oneE. coli-yeast shuttle plasmid resulting in the construction of expression secretion vector pMAG15. pMAG15 was transformed intoS. cerevisiae GRF18 by protoplast transformation. The barley α-amylase andA. niger glucoamylase were efficiently expressed under the control of promoter and terminator of yeast PGK gene and their own signal sequence. Over 99% of the enzyme activity expressed was secreted to the medium. The recombinant yeast strain, S.cerevisiae GRF18 (pMAG15), hydrolyzes 99% of the starch in YPS medium containing 15% starch in 47 h. The glucose produced can be used for the production of ethanol.  相似文献   

10.
Vacuolar hydrolases have been thoroughly characterized in Saccharomyces cerevisiae, but their homologues in the fungal pathogen Candida albicans have received less attention. The genes APR1 and CPY1 of C. albicans encode putative vacuolar aspartic proteinase and serine carboxypeptidase, respectively. We examined properties of apr1Δ and cpy1Δ mutants, showing that Cpy1p molecular species detected in cell lysates of apr1Δ and its parental strain did not differ in molar mass. Processing of Cpy1p precursor is apparently independent of Apr1p. This is in contrast to S. cerevisiae, where vacuolar aspartic proteinase Pep4p is known to participate in the activation of other vacuolar hydrolases including serine carboxypeptidase. We also found that both apr1Δ and cpy1Δ strains are able to form hyphae in nutrient-rich filamentation media. However, proline as a sole nitrogen source induced filamentation only in cpy1Δ and its parental strain, but not in apr1Δ. This indicates the importance of Apr1p for the morphological transition under nitrogen-limited conditions. Despite that, the ability of apr1Δ to kill murine macrophages was not reduced under the conditions tested.  相似文献   

11.
PCR-based gene targeting with heterologous markers is an efficient method to delete genes, generate gene fusions, and modulate gene expression. For the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, several plasmid collections are available covering a wide range of tags and markers. For several reasons, many of these cassettes cannot be used in the filamentous ascomycete Ashbya gossypii. This article describes the construction of 93 heterologous modules for C- and N-terminal tagging and promoter replacements in A. gossypii. The performance of 12 different fluorescent tags was evaluated by monitoring their brightness, detectability, and photostability when fused to the myosin light-chain protein Mlc2. Furthermore, the thiamine-repressible S. cerevisiae THI13 promoter was established to regulate gene expression in A. gossypii. This collection will help accelerate analysis of gene function in A. gossypii and in other ascomycetes where S. cerevisiae promoter elements are functional.  相似文献   

12.
The cloning of α-amylase gene ofS. occidentalis and the construction of starch digestible strain of yeast,S. cerevisiae AS. 2. 1364 with ethanol-tolerance and without auxotrophic markers used in fermentation industry were studied. The yeast/E.coli shuttle plasmid YCEp1 partial library ofS. occidentalis DNA was constructed and α-amylase gene was screened in S.cerevisiae by amylolytic activity. Several transformants with amylolysis were obtained and one of the fusion plasmids had an about 5.0 kb inserted DNA fragment, containing the upstream and downstream sequences of α-amylase gene fromS. occidentalis. It was further confirmed by PCR and sequence determination that this 5.0 kb DNA fragment contains the whole coding sequence of α-amylase. The amylolytic test showed that when this transformant was incubated on plate of YPDS medium containing 1 % glum and 1 % starch at 30°C for 48 h starch degradation zones could be visualized by staining with iodine vapour. α-amylase activity of the culture filtratate is 740–780 mU/mL and PAGE shows that the yeast harboring fusion plasmids efficiently secreted α-amylase into the medium, and the amount of the recombinant α-amylase is more than 12% of the total proteins in the culture filtrate. These results showed that α-amylase gene can be highly expressed and efficiently secreted inS. cerevisiae AS. 2.1364, and the promotor and the terminator of α-amylase gene fromS. occidentalis work well inS. cercvisiac AS. 2.1364.  相似文献   

13.
Ashbya gossypii carries only a single gene (TEF) coding for the abundant translation elongation factor 1α. Cloning and sequencing of this gene and deletion analysis of the promoter region revealed an extremely high degree of similarity with the well studied TEF genes of the yeast Saccharomyces cerevisiae including promoter upstream activation sequence (UAS) elements. The open reading frames in both species are 458 codons long and show 88.6% identity at the DNA level and 93.7% identity at the protein level. A short DNA segment in the promoter, between nucleotides -268 and -213 upstream of the ATG start codon, is essential for high-level expression of the A. gossypii TEF gene. It carries two sequences, GCCCATACAT and ATCCATACAT, with high homology to the UASrpg sequence of S. cerevisiae, which is an essential promoter element in genes coding for highly expressed components of the translational apparatus. UASrpg sequences are binding sites for the S. cerevisiae protein TUF, also called RAP1 or GRF1. In gel retardation with A. gossypii protein extracts we demonstrated specific protein binding to the short TEF promoter segment carrying the UASrpg homologous sequences.  相似文献   

14.
Karen C. Cole 《FEBS letters》2009,583(20):3339-3262
Targeting of Saccharomyces cerevisiae Cdc24p to polarized growth sites is essential for its function. Localization of GFP-tagged Cdc24 proteins or fragments was assayed in deletion mutants of Cdc24p-interacting proteins. The boi2Δ, ent2Δ, and hua1Δ mutants showed localization defects. The tos2Δ skg6Δ double mutant displayed aberrant pre-anaphase localization to the mother-bud neck region. The same aberrant pattern was seen when potential phosphorylation sites Ser697, Thr704, and Tyr200 were mutated. The S697A mutation also resulted in phosphorylation defects in vivo. These data support roles for Boi2p, Ent2p, Hua1p, Tos2p, and for Cdc24p phosphorylation in targeting Cdc24p to growth sites.  相似文献   

15.
Protein tyrosine nitration (PTN) is a selective post-translational modification often associated with pathophysiological conditions. Although yeast cells lack of mammalian nitric oxide synthase (NOS) orthologues, still it has been shown that they are capable of producing nitric oxide (NO). Our studies showed that NO or reactive nitrogen species (RNS) produced in flavohemoglobin mutant (Δyhb1) strain along with the wild type strain (Y190) of Saccharomyces cerevisiae can be visualized using specific probe 4,5-diaminofluorescein diacetate (DAF-2DA). Δyhb1 strain of S. cerevisiae showed bright fluorescence under confocal microscope that proves NO or RNS accumulation is more in absence of flavohemoglobin. We further investigated PTN profile of both cytosol and mitochondria of Y190 and Δyhb1 cells of S. cerevisiae using two-dimensional (2D) gel electrophoresis followed by western blot analysis. Surprisingly, we observed many immunopositive spots both in cytosol and in mitochondria from Y190 and Δyhb1 using monoclonal anti-3-nitrotyrosine antibody indicating a basal level of NO or nitrite or peroxynitrite is produced in yeast system. To identify proteins nitrated in vivo we analyzed mitochondrial proteins from Y190 strains of S. cerevisiae. Among the eight identified proteins, two target mitochondrial proteins are aconitase and isocitrate dehydrogenase that are involved directly in the citric acid cycle. This investigation is the first comprehensive study to identify mitochondrial proteins nitrated in vivo.  相似文献   

16.
The biological targets of peroxynitrite toxicity include wide array of biomolecules. Although several enzymes are found to be important components of cellular defense against peroxynitrite, the complete scenario is not totally understood. Yeast flavohemoglobin (YHB) and glutathione-dependent formaldehyde dehydrogenase (GS-FDH) confers resistance against nitric oxide and related reactive nitrogen species. In the present study, when subtoxic dose of peroxynitrite was applied to wild type, Δyhb1 and Δsfa1 strains of Saccharomyces cerevisiae, induction of cytosolic catalase was found at activity as well as gene expression level in mutants but not in wild type. Such induction was not due to intracellular reactive oxygen species (ROS) formation. Our in vitro studies confirmed the role of catalase in protection against peroxynitrite-mediated oxidation and nitration and also in peroxynitrite catabolism. This report is first of its kind regarding the novel role of catalase in peroxynitrite detoxification in Δyhb1 and Δsfa1 strains of S. cerevisiae.  相似文献   

17.
18.
The genome of Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family (MCF) and 58 MCF members are coded by the genome of Arabidopsis thaliana, most of which have been functionally characterized. Here two members of this family, Ymc2p from S. cerevisiae and BOU from Arabidopsis, have been thoroughly characterized. These proteins were overproduced in bacteria and reconstituted into liposomes. Their transport properties and kinetic parameters demonstrate that Ymc2p and BOU transport glutamate, and to a much lesser extent L-homocysteinesulfinate, but not other amino acids and many other tested metabolites. Transport catalyzed by both carriers was saturable, inhibited by mercuric chloride and dependent on the proton gradient across the proteoliposomal membrane. The growth phenotype of S. cerevisiae cells lacking the genes ymc2 and agc1, which encodes the only other S. cerevisiae carrier capable to transport glutamate besides aspartate, was fully complemented by expressing Ymc2p, Agc1p or BOU. Mitochondrial extracts derived from ymc2Δagc1Δ cells, reconstituted into liposomes, exhibited no glutamate transport at variance with wild-type, ymc2Δ and agc1Δ cells, showing that S. cerevisiae cells grown in the presence of acetate do not contain additional mitochondrial transporters for glutamate besides Ymc2p and Agc1p. Furthermore, mitochondria isolated from wild-type, ymc2Δ and agc1Δ strains, but not from the double mutant ymc2Δagc1Δ strain, swell in isosmotic ammonium glutamate showing that glutamate is transported by Ymc2p and Agc1p together with a H+. It is proposed that the function of Ymc2p and BOU is to transport glutamate across the mitochondrial inner membrane and thereby play a role in intermediary metabolism, C1 metabolism and mitochondrial protein synthesis.  相似文献   

19.
An investigation of the inheritance of a plasmid in a Saccharomyces cerevisiae ura3 furl double mutant has been performed in chemostat culture. The plasmid, bearing the gene for human α1-antitrypsin and the yeast URA3 gene was observed to be stable over a range of dilution rates (0.1 h−1–0.3 h−1) corresponding to those growth rates most relevant to industrial bioprocesses using S. cerevisiae yeasts. The plasmid copy number remained constant in the respirative and in the oxidoreductive phases of growth. Stability of expression of the eukaryotic gene coding for α1-antitrypsin was maintained at all dilution rates. However, the yield of α1-antitrypsin was highest when the culture's carbon and energy source, glucose, was not completely utilized. The maximum respiratory capacity of the double mutant was observed to be typical for laboratory strains of S. cerevisiae. These data show that S. cerevisiae double mutants can be made to harbour stable plasmids which will stably express a eukaryotic gene. However, to achieve optimal recombinant product formation, careful attention must be paid to these yeasts' complex physiology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号