首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The role of cbiK, a gene found encoded within the Salmonella typhimurium cob operon, has been investigated by studying its in vivo function in Escherichia coli. First, it was found that cbiK is not required for cobalamin biosynthesis in the presence of a genomic cysG gene (encoding siroheme synthase) background. Second, in the absence of a genomic cysG gene, cobalamin biosynthesis in E. coli was found to be dependent upon the presence of cobA(P. denitrificans) (encoding the uroporphyrinogen III methyltransferase from Pseudomonas denitrificans) and cbiK. Third, complementation of the cysteine auxotrophy of the E. coli cysG deletion strain 302delta a could be attained by the combined presence of cobA(P. denitrificans) and the S. typhimurium cbiK gene. Collectively these results suggest that CbiK can function in fashion analogous to that of the N-terminal domain of CysG (CysG(B)), which catalyzes the final two steps in siroheme synthesis, i.e., NAD-dependent dehydrogenation of precorrin-2 to sirohydrochlorin and ferrochelation. Thus, phenotypically CysG(B) and CbiK have very similar properties in vivo, although the two proteins do not have any sequence similarity. In comparison to CysG, CbiK appears to have a greater affinity for Co2+ than for Fe2+, and it is likely that cbiK encodes an enzyme whose primary role is that of a cobalt chelatase in corrin biosynthesis.  相似文献   

2.
The 6.2-kbp DNA fragment encoding the enzymes in the porphyrin synthesis pathway of a cellulolytic anaerobe, Clostridium josui, was cloned into Escherichia coli and sequenced. This fragment contained four hem genes, hemA, hemC, hemD, and hemB, in order, which were homologous to the corresponding genes from E. coli and Bacillus subtilis. A typical promoter sequence was found only upstream of hemA, suggesting that these four genes were under the control of this promoter as an operon. The hemA and hemD genes cloned from C. josui were able to complement the hemA and hemD mutations, respectively, of E. coli. The COOH-terminal region of C. josui HemA and the NH2-terminal region of C. josui HemD were homologous to E. coli CysG (Met-1 to Leu-151) and to E. coli CysG (Asp-213 to Phe-454) and Pseudomonas denitrificans CobA, respectively. Furthermore, the cloned 6.2-kbp DNA fragment complemented E. coli cysG mutants. These results suggested that both C. josui hemA and hemD encode bifunctional enzymes.  相似文献   

3.
We cloned, sequenced, and overexpressed cobA, the gene encoding uroporphyrinogen III methyltransferase in Propionibacterium freudenreichii, and examined the catalytic properties of the enzyme. The methyltransferase is similar in mass (27 kDa) and homologous to the one isolated from Pseudomonas denitrificans. In contrast to the much larger isoenzyme encoded by the cysG gene of Escherichia coli (52 kDa), the P. freudenreichii enzyme does not contain the additional 22-kDa peptide moiety at its N-terminal end bearing the oxidase-ferrochelatase activity responsible for the conversion of dihydrosirohydrochlorin (precorrin-2) to siroheme. Since it does not contain this moiety, it is not a likely candidate for synthesis of a cobalt-containing early intermediate that has been proposed for the vitamin B12 biosynthetic pathway in P. freudenreichii. Uroporphyrinogen III methyltransferase of P. freudenreichii not only catalyzes the addition of two methyl groups to uroporphyrinogen III to afford the early vitamin B12 intermediate, precorrin-2, but also has an overmethylation property that catalyzes the synthesis of several tri- and tetra-methylated compounds that are not part of the vitamin B12 pathway. The enzyme catalyzes the addition of three methyl groups to uroporphyrinogen I to form trimethylpyrrocorphin, the intermediate necessary for biosynthesis of the natural products, factors S1 and S3, previously isolated from this organism. A second gene found upstream from the cobA gene encodes a protein homologous to CbiO of Salmonella typhimurium, a membrane-bound, ATP-dependent transport protein thought to be part of the cobalt transport system involved in vitamin B12 synthesis. These two genes do not appear to constitute part of an extensive cobalamin operon.  相似文献   

4.
Siroheme, the cofactor for sulfite and nitrite reductases, is formed by methylation, oxidation, and iron insertion into the tetrapyrrole uroporphyrinogen III (Uro-III). The CysG protein performs all three steps of siroheme biosynthesis in the enteric bacteria Escherichia coli and Salmonella enterica. In either taxon, cysG mutants cannot reduce sulfite to sulfide and require a source of sulfide or cysteine for growth. In addition, CysG-mediated methylation of Uro-III is required for de novo synthesis of cobalamin (coenzyme B(12)) in S. enterica. We have determined that cysG mutants of the related enteric bacterium Klebsiella aerogenes have no defect in the reduction of sulfite to sulfide. These data suggest that an alternative enzyme allows for siroheme biosynthesis in CysG-deficient strains of Klebsiella. However, Klebsiella cysG mutants fail to synthesize coenzyme B(12), suggesting that the alternative siroheme biosynthetic pathway proceeds by a different route. Gene cysF, encoding an alternative siroheme synthase homologous to CysG, has been identified by genetic analysis and lies within the cysFDNC operon; the cysF gene is absent from the E. coli and S. enterica genomes. While CysG is coregulated with the siroheme-dependent nitrite reductase, the cysF gene is regulated by sulfur starvation. Models for alternative regulation of the CysF and CysG siroheme synthases in Klebsiella and for the loss of the cysF gene from the ancestor of E. coli and S. enterica are presented.  相似文献   

5.
A 6.4-kb region of a 6.8-kb BamHI fragment carrying Rhodobacter capsulatus genes involved in late steps of cobalamin synthesis has been sequenced. The nucleotide sequence and genetic analysis revealed that this fragment contains eight genes arranged in at least three operons. Five of these eight genes show homology to genes involved in the cobalamin synthesis of Pseudomonas denitrificans and Salmonella typhimurium. The arrangement of these homologous genes differs considerably in the three genera. Upstream of five overlapping genes (named bluFEDCB), a promoter activity could be detected by using lacZ fusions. This promoter shows no regulation by oxygen, vitamin B12 (cobalamin), or cobinamide. Disruption of the bluE gene by a Tn5 insertion (strain AH2) results in reduced expression of the puf and puc operons, which encode pigment-binding proteins of the photosynthetic apparatus. The mutant strain AH2 can be corrected to a wild-type-like phenotype by addition of vitamin B12 or cobinamide dicyanide. Disruption of the bluB gene by an interposon (strain BB1) also disturbs the formation of the photosynthetic apparatus. The mutation of strain BB1 can be corrected by vitamin B12 but not by cobinamide. We propose that a lack of cobalamin results in deregulation and a decreased formation of the photosynthetic apparatus.  相似文献   

6.
In this paper, we report that the enteric bacterium Salmonella typhimurium synthesized cobalamin de novo under anaerobic culture conditions. Aerobically, metE mutants of S. typhimurium need either methionine or cobalamin as a nutritional supplement for growth. The growth response to cobalamin depends upon a cobalamin-requiring enzyme, encoded by the gene metH, that catalyzes the same reaction as the metE enzyme. Anaerobically, metE mutants grew without any nutritional supplements; the metH enzyme functioned under these conditions due to the endogenous biosynthesis of cobalamin. This conclusion was confirmed by using a radiochemical assay to measure cobalamin production. Insertion mutants defective in cobalamin biosynthesis (designated cob) were isolated in the three major branches of the cobalamin biosynthetic pathway. Type I mutations blocked the synthesis of cobinamide, type II mutations blocked the synthesis of 5,6-dimethylbenzimidazole, and type III mutations blocked the synthesis of cobalamin from cobinamide and 5,6-dimethylbanzimidazole. Mutants that did not synthesize siroheme (cysG) were blocked in cobalamin synthesis. Genetic mapping experiments showed that the cob mutations are clustered in the region of the S. typhimurium chromosome between supD (40 map units) and his (42 map units). The discovery that S. typhimurium synthesizes cobalamin de novo only under anaerobic conditions raises the possibility that anaerobically grown cells possess a variety of enzymes which are dependent upon cobalamin as a cofactor.  相似文献   

7.
Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic conditions. Of the 30 cobalamin synthetic genes, 25 are clustered in one operon, cob, and are arranged in three groups, each group encoding enzymes for a biochemically distinct portion of the biosynthetic pathway. We have determined the DNA sequence for the promoter region and the proximal 17.1 kb of the cob operon. This sequence includes 20 translationally coupled genes that encode the enzymes involved in parts I and III of the cobalamin biosynthetic pathway. A comparison of these genes with the cobalamin synthetic genes from Pseudomonas denitrificans allows assignment of likely functions to 12 of the 20 sequenced Salmonella genes. Three additional Salmonella genes encode proteins likely to be involved in the transport of cobalt, a component of vitamin B12. However, not all Salmonella and Pseudomonas cobalamin synthetic genes have apparent homologs in the other species. These differences suggest that the cobalamin biosynthetic pathways differ between the two organisms. The evolution of these genes and their chromosomal positions is discussed.  相似文献   

8.
Salmonella typhimurium cob mutants are not hyper-virulent   总被引:1,自引:0,他引:1  
Abstract It was previously reported that Salmonella typhimurium LT2 cob mutants defective in the biosynthesis of vitamin B12 (cobalamin) are more virulent than the wild type in mice. Here we show that the strains used previously are non-isogenic and that the proposed increase in virulence of the cob mutant strain results from an uncharacterized mutation in the 'wild type' which attenuates virulence, most likely by decreasing expression of the spv genes on the virulence plasmid. As a result the cob mutant will appear as hyper-virulent. Examination of the virulence of reconstructed wild-type and cob mutant strains showed that their growth rates were similar in mice, and we conclude that vitamin B12 does not affect the virulence of S. typhimurium LT2.  相似文献   

9.
Sulfur metabolism depends on the iron-containing porphinoid siroheme. In Salmonella enterica, the S-adenosyl-L-methionine (SAM)-dependent bismethyltransferase, dehydrogenase and ferrochelatase, CysG, synthesizes siroheme from uroporphyrinogen III (uro'gen III). The reactions mediated by CysG encompass two branchpoint intermediates in tetrapyrrole biosynthesis, diverting flux first from protoporphyrin IX biosynthesis and then from cobalamin (vitamin B(12)) biosynthesis. We determined the first structure of this multifunctional siroheme synthase by X-ray crystallography. CysG is a homodimeric gene fusion product containing two structurally independent modules: a bismethyltransferase and a dual-function dehydrogenase-chelatase. The methyltransferase active site is a deep groove with a hydrophobic patch surrounded by hydrogen bond donors. This asymmetric arrangement of amino acids may be important in directing substrate binding. Notably, our structure shows that CysG is a phosphoprotein. From mutational analysis of the post-translationally modified serine, we suggest a conserved role for phosphorylation in inhibiting dehydrogenase activity and modulating metabolic flux between siroheme and cobalamin pathways.  相似文献   

10.
The tetracycline resistance determinant from pCW3, a conjugative plasmid from Clostridium perfringens, has been identified and the structural gene localized to within a 1.4-kb region. Hybridization analysis, which utilized an internal 0.8-kb specific gene probe, showed that eight nonconjugative tetracycline resistant C. perfringens strains all carried homologous resistance determinants. No homology was detected in DNA prepared from tetracycline resistant isolates of Clostridium difficile or Clostridium sporogenes. However, the one strain of Clostridium paraputrificum that was tested did contain an homologous determinant. No homology was found to any of the recognized classes of tetracycline resistance determinants. The C. perfringens tetracycline resistance determinant represents a new hybridization group, Class P.  相似文献   

11.
Lactobacillus reuteri CRL1098 produces cobalamin   总被引:1,自引:0,他引:1       下载免费PDF全文
We found that Lactobacillus reuteri CRL1098, a lactic acid bacterium isolated from sourdough, is able to produce cobalamin. The sugar-glycerol cofermentation in vitamin B(12)-free medium showed that this strain was able to reduce glycerol through a well-known cobalamin-dependent reaction with the formation of 1,3-propanediol as a final product. The cell extract of L. reuteri corrected the coenzyme B12 requirement of Lactobacillus delbrueckii subsp. lactis ATCC 7830 and allowed the growth of Salmonella enterica serovar Typhimurium (metE cbiB) and Escherichia coli (metE) in minimal medium. Preliminary genetic studies of cobalamin biosynthesis genes from L. reuteri allowed the identification of cob genes which encode the CobA, CbiJ, and CbiK enzymes involved in the cobalamin pathway. The cobamide produced by L. reuteri, isolated in its cyanide form by using reverse-phase high-pressure liquid chromatography, showed a UV-visible spectrum identical to that of standard cyanocobalamin (vitamin B12).  相似文献   

12.
Inclusion of NaCl into the growth medium raised the upper temperature limit of growth of the following organisms: Staphylococcus aureus (two strains), Salmonella senftenberg, S. typhimurium, Escherichia coli, Streptococcus faecalis, Bacillus cereus, Clostridium sporogenes, C. perfringens (two strains). The magnitude of the response varied with the culture, the largest being 3.5 degrees with B. cereus cells. The spores of B. cereus were not protected by salt but clostridial spores behaved as the vegetative cells (response of 2.5 degrees). The optimal salt concentration for the protective effect varied with the organism ranging from 0.2 M for the Gram-negative organisms to 1.0 M for S. aureus.  相似文献   

13.
The flavoprotein and hemoprotein components of Escherichia coli B NADPH-sulfite reductase are encoded by cysJ and cysI, respectively. Plasmids containing these two genes overexpressed flavoprotein catalytic activity and apohemoprotein by 13- to 35-fold, but NADPH-sulfite reductase holoenzyme activity was increased only 3-fold. Maximum overexpression of holoenzyme activity was achieved by the inclusion in such plasmids of Salmonella typhimurium cysG, which encodes a uroporphyrinogen III methyltransferase required for the synthesis of siroheme, a cofactor for the hemoprotein. Thus, cofactor deficiency, in this case siroheme, can limit overexpression of a cloned enzyme. Catalytically active holoenzyme accounted for 10% of total soluble protein in a host containing cloned cysJ, cysI, and cysG. A 5.3-kb DNA fragment containing S. typhimurium cysG was sequenced, and the open reading frame corresponding to cysG was identified by subcloning and by identifying plasmid-encoded peptides in maxicells. Comparison with the sequence reported for the E. coli cysG region (J. A. Cole, unpublished data; GenBank sequence ECONIRBC) indicates a gene order of nirB-nirC-cysG in the cloned S. typhimurium fragment. In addition, two open reading frames of unknown identity were found immediately downstream of cysG. One of these contains 11 direct repeats of 33 nucleotides each, which correspond to the consensus amino acid sequence Asp-Asp-Val-Thr-Pro-Pro-Asp-Asp-Ser-Gly-Asp.  相似文献   

14.
15.
Bacteria belonging to the genus Dehalococcoides play a key role in the complete detoxification of chloroethenes as these organisms are the only microbes known to be capable of dechlorination beyond dichloroethenes to vinyl chloride (VC) and ethene. However, Dehalococcoides strains usually grow slowly with a doubling time of 1 to 2 days and have complex nutritional requirements. Here we describe the growth of Dehalococcoides ethenogenes 195 in a defined mineral salts medium, improved growth of strain 195 when the medium was amended with high concentrations of vitamin B(12), and a strategy for maintaining Dehalococcoides strains on lactate by growing them in consortia. Although strain 195 could grow in defined medium spiked with approximately 0.5 mM trichloroethene (TCE) and 0.001 mg/liter vitamin B(12), the TCE dechlorination and cellular growth rates doubled when the vitamin B(12) concentration was increased 25-fold to 0.025 mg/liter. In addition, the final ratios of ethene to VC increased when the higher vitamin concentration was used, which reflected the key role that cobalamin plays in dechlorination reactions. No further improvement in dechlorination or growth was observed when the vitamin B(12) concentration was increased to more than 0.025 mg/liter. In defined consortia containing strain 195 along with Desulfovibrio desulfuricans and/or Acetobacterium woodii and containing lactate as the electron donor, tetrachloroethene ( approximately 0.4 mM) was completely dechlorinated to VC and ethene and there was concomitant growth of Dehalococcoides cells. In the cultures that also contained D. desulfuricans and/or A. woodii, strain 195 cells grew to densities that were 1.5 times greater than the densities obtained when the isolate was grown alone. The ratio of ethene to VC was highest in the presence of A. woodii, an organism that generates cobalamin de novo during metabolism. These findings demonstrate that the growth of D. ethenogenes strain 195 in defined medium can be optimized by providing high concentrations of vitamin B(12) and that this strain can be grown to higher densities in cocultures with fermenters that convert lactate to generate the required hydrogen and acetate and that may enhance the availability of vitamin B(12).  相似文献   

16.
A unique family of proteins have been identified in the Deinococcus genus with an N-terminal cobalamin (vitamin B(12)) chelatase domain denoted CbiX and an additional unique C-terminal domain with unknown function. Here we report the first crystal structure from this new family of proteins with the structure of Deinococcus radiodurans protein DR2241. The structure reveals a multi-domain protein where domains A (residues 1-132) has the same fold as the small CbiX (CbiX(S)), domains A and B (residues 1-272) follow the chelatase super-family fold and the two additional unique domains C and D have no structural homologues. Domain D harbours the sequence motifs CxxC and CxxxC, in which DR2241 gives the first evidence that these motifs bind a [4Fe-4S] iron-sulphur cluster. In solution there are indications of multimeric forms, and in the crystallographic asymmetric unit a tetramer is found where domains C and D are involved in stabilising the tetrameric assembly.  相似文献   

17.
Proteolytic sporeforming bacteria capable of surviving processing heat treatments in synthetic or fabricated protein foods exhibited no antagonistic effects on growth of Clostridium perfringens, but instead shortened the lag of subsequent growth of C. perfringens in sodium caseinate and isolated soy protein. Bacillus subtilis A cells were cultured in 3% sodium caseinate or isolated soy protein solutions. The subsequent effect on the lag time and growth of C. perfringens type A (strain S40) at 45 C was measured by colony count or absorbance at 650 nm, or both. B. subtilis incubation for 12 h or more in sodium caseinate reduced the C. perfringens lag by 3 h. Incubation of 8 h or more in isolated soy protein reduced the lag time by 1.5 h. Molecular sieving of the B. subtilis-treated sodium caseinate revealed that all molecular sizes yielded a similar reduced lag time. Diethylaminoethyl-Sephadex ion exchange fractionation and subsequent amino acid analysis indicated that the lag time reduction caused by B. subtilis incubation was not related to charge of the peptides nor to their amino acid composition. Apparently the shortened C. perfringens lag in these B. subtilis-hydrolyzed food proteins was a result of the protein being more readily available for utilization by C. perfringens.  相似文献   

18.
The involvement of an outer membrane transport component for vitamin B12 uptake in Salmonella typhimurium, analogous to the btuB product in Escherichia coli, was investigated. Mutants of S. typhimurium selected for resistance to bacteriophage BF23 carried mutations at the btuB locus (butBS) (formerly called bfe, at the analogous map position as the E. coli homolog) and were defective in high-affinity vitamin B12 uptake. The cloned E. coli btuB gene (btuBE) hybridized to S. typhimurium genomic DNA and restored vitamin B12 transport activity to S. typhimurium btuBS mutants. An Mr-60,000 protein in the S. typhimurium outer membrane was repressed by growth with vitamin B12 and was eliminated in a btuBS mutant. The btuBS product thus appears to play the same role in vitamin B12 transport by S. typhimurium as does the E. coli btuBE product. A second vitamin B12 transport system that is not present in E. coli was found by cloning a fragment of S. typhimurium DNA that complemented btuB mutants for vitamin B12 utilization. In addition to this plasmid with a 6-kilobase insert of S. typhimurium DNA, vitamin B12 utilization by E. coli btuB strains required the btuC and btuD products, necessary for transport across the cytoplasmic membrane, but not the btuE or tonB product. The plasmid conferred low levels of vitamin B12-binding and energy-dependent transport activity but not susceptibility to phage BF23 or utilization of dicyanocobinamide. The cloned S. typhimurium DNA encoding this new transport system did not hybridize to the btuBE gene or to E. coli chromosomal DNA and therefore does not carry the S. typhimurium btuBS locus. Increased production of an Mr -84,000 polypeptide associated with the outer membrane was seen. The new locus appears to be carried on the large plasmid in most S. typhimurium strains. Thus S. typhimurium possesses both high- and low-affinity systems for uptake of cobalamins across the outer membrane.  相似文献   

19.
20.
In Bacillus megaterium, the synthesis of vitamin B(12) (cobalamin) and sirohaem diverges at sirohydrochlorin along the branched modified tetrapyrrole biosynthetic pathway. This key intermediate is made by the action of SirC, a precorrin-2 dehydrogenase that requires NAD(+) as a cofactor. The structure of SirC has now been solved by X-ray crystallography to 2.8 A (1 A = 0.1 nm) resolution. The protein is shown to consist of three domains and has a similar topology to the multifunctional sirohaem synthases Met8p and the N-terminal region of CysG, both of which catalyse not only the dehydrogenation of precorrin-2 but also the ferrochelation of sirohydrochlorin to give sirohaem. Guided by the structure, in the present study a number of active-site residues within SirC were investigated by site-directed mutagenesis. No active-site general base was identified, although surprisingly some of the resulting protein variants were found to have significantly enhanced catalytic activity. Unexpectedly, SirC was found to bind metal ions such as cobalt and copper, and to bind them in an identical fashion with that observed in Met8p. It is suggested that SirC may have evolved from a Met8p-like protein by loss of its chelatase activity. It is proposed that the ability of SirC to act as a single monofunctional enzyme, in conjunction with an independent chelatase, may provide greater control over the intermediate at this branchpoint in the synthesis of sirohaem and cobalamin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号