首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: A series of choline analogues and nitrogen mustard derivatives were evaluated as inhibitors of high-affinity transport of choline in rat forebrain synaptosomes. When synaptosomes were preincubated for 10 min with choline mustard aziridinium ion, monoethylcholine and monoethylcholine mustard aziridinium ion, the agents appeared to be equipotent as inhibitors of high-affinity uptake (Ki=2.63, 3.15 and 2.72 μm , respectively). Acetylcholine mustard aziridinium ion was less potent than these compounds (Ki= 27.8 μm ), but it was more potent than ethoxycholine and ethoxycholine mustard aziridinium ion (Ki= 500 and 403 μm ) as a blocker of choline transport. From study with these compounds it was concluded that the high-affinity choline transport mechanism shows specificity for hydroxylated compounds over those in which the same hydroxyl has been acetylated (10-fold) and that the carbonyl oxygen of the acetylated analogues is important, as its removal (to form the ethylether derivative) decreased affinity another 20-fold. The presence of an aziridinium ring on the quaternary nitrogen in place of two methyl groups did not affect the blocking of transport at 10 min of inhibitor preincubation and replacement of a methyl group on the nitrogen by an ethyl group did not alter affinity for the high-affinity carrier. The aziridinium ring on the nitrogen of the mustard analogues was important, however, in determining the extent of reversibility of the binding of these agents to the carrier protein. Choline transport was not restored by washing synaptosomes that were incubated with choline mustard aziridinium ion or monoethylcholine mustard aziridinium ion, but was readily obtained in washed synaptosomes preincubated with monoethylcholine, hemicholinium-3, or pyrrolcholine. The results indicate that the mustard analogues may be potent alkylators of the high-affinity choline carrier and thus, useful agents in monitoring acetylcholine turnover in systems where the carrier is blocked.  相似文献   

2.
Although a potent irreversible inhibitor of high-affinity choline transport in rat brain synaptosomes, choline mustard aziridinium ion (ChM Az) appeared to be a relatively weak inhibitor of choline acetyltransferase (ChAT) in rat brain homogenates, and evidence for irreversible binding of this compound to the enzyme had not been established. Accordingly, the irreversible inactivation of partially purified rat brain ChAT by ChM Az was studied. This compound is a rather weak inhibitor of the enzyme, with 50% inhibition of ChAT activity achieved following 30 min incubation at 37 degrees C with 0.6 mM ChM Az. This result indicates that although ChM Az has affinity for many nucleophiles there was little diluting effect of the inhibitor in the crude brain homogenate which could be attributed to such reactions (50% inhibition caused by 1.8 mM ChM Az following 10 min incubation). Although the initial binding of ChM Az to ChAT may be of a competitive nature, irreversible bond formation resulted. The time-dependent alkylation reaction conformed to pseudo-first-order kinetics with an observed forward rate constant (kobs) of 0.173 min-1; the half-time (t 1/2) for irreversible binding was about 4 min. The irreversible inactivation of ChAT by ChM Az would appear to be slower than the alkylation of high-affinity choline carriers in synaptosomes by this compound, and the relatively weak inhibitory action of ChM Az against either partially purified ChAT or ChAT activity in crude rat brain homogenates is in striking contrast to previous evidence that ChAT in intact synaptosomes was inhibited irreversibly by lower concentrations of the inhibitor.  相似文献   

3.
It has been shown in our laboratory that choline mustard aziridinium ion is a potent and irreversible inhibitor of choline transport into rat brain synaptosomes; this compound showed selectivity for the sodium-dependent, high affinity carrier in that it was 30 times more potent as an inhibitor when compared with the effect on sodium-independent, low affinity choline uptake. In the present study, this mustard analogue did not inhibit synaptosomal uptake of 5-hydroxytryptamine, noradrenaline, or gamma-aminobutyric acid, thereby confirming further the specificity of this compound for the choline carrier. Studies of the effect of depolarization of the nerve terminals on the inactivation of choline carriers by choline mustard were performed. It was determined that alkylation of the carrier was significantly increased in nerve endings previously depolarized. The enhancing effect of depolarization on choline transport velocity and on the alkylation of choline carriers by choline mustard was dependent upon the presence of sodium in the external medium. Possible mechanisms for the enhanced inactivation of choline carriers by choline mustard aziridinium ion are proposed, and kinetic interactions of choline mustard with the high affinity choline carrier and with choline acetyltransferase are reviewed and discussed.  相似文献   

4.
The objectives of the present study were to validate the presence of cytoplasmic and membrane-associated pools of choline acetyltransferase (ChAT) in rat brain synaptosomes, and to evaluate inhibition of these different forms of the enzyme by the nitrogen mustard analogue of choline, choline mustard aziridinium ion (ChM Az). The relative distribution of ChAT and lactate dehydrogenase (LDH) was followed in subfractions of synaptosomes to establish whether ChAT activity associated with salt-washed presynaptic membranes represents membrane-bound protein rather than cytosolic enzyme trapped within undisrupted synaptosomes or revesiculated membrane fragments. The percentage of total synaptosomal ChAT activity (14%) recovered in the final membrane pellet always exceeded that of LDH (6%), lending support to the hypothesis that much of the ChAT associated with the membranes was a membrane bound form of the enzyme. Incubation of purified synaptosomes with ChM Az led to irreversible inhibition of ChAT activity; this loss of enzyme activity could not be accounted for by lysis of nerve terminals during incubation in the presence of the mustard analogue. Subfractionation of the ChM Az-treated nerve terminals revealed that the membrane-bound form of ChAT was inhibited to the greatest extent, followed by the ionically membrane-associated enzyme, with the activity of the water-solubilized enzyme not differing significantly from control. Preparation of the synaptosomal ChAT subfractions from untreated nerve terminals prior to incubation with varying concentrations of ChM Az or naphthylvinylpyridine revealed that under these conditions water-solubilized, ionically membrane-associated, and detergent-solubilized membrane-bound pools of ChAT were not differentially inhibited by either compound.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The inhibition of high-affinity choline transport by hemicholinium mustard (HCM), an alkylating analogue of hemicholinium-3, was examined in rat brain synaptosomes and guinea pig myenteric plexus. In synaptosomes, 50% high-affinity choline transport inhibition occurs with an HCM concentration of 104 nM (4-min incubation). A 10-min preincubation with 10 microM HCM results in essentially complete (greater than 95%) inactivation that persists after washing. Low-affinity choline transport in synaptosomes is unaffected by HCM inhibition at all concentrations examined (1-50 microM). Time course experiments indicate that the maximum irreversible inhibition (58%) seen after a 1-min preincubation with 500 nM HCM decreases to 46% inhibition after a 15-min preincubation; however, analysis of variance reveals that this difference is not significant. HCM inhibition of acetylcholine release from myenteric plexus-longitudinal muscle preparations persists for at least 2 h after removal of drug from the incubation bath; this inactivation can be prevented by coincubation with a high choline concentration during treatment with the mustard. In contrast, inhibition produced by the parent compound hemicholinium-3 is largely reversed by washing in both preparations examined. The observed potency and selectivity of HCM suggest its usefulness as a covalent probe for high-affinity choline transport.  相似文献   

6.
Abstract: Choline uptake by cholinergic nerve terminals is increased by depolarization; the literature suggests that this results from either the appearance of occult transporters or the increased activity of existing ones. The present experiments attempt to clarify the mechanism by which choline transport is regulated by testing if the preexposure of synaptosomes to choline mustard aziridinium ion prevents the stimulation-induced appearance of hemicholinium-3 binding sites and/or choline transport activity. Choline mustard inhibited irreversibly most of the “ground-state” (basal) high-affinity choline transport but only 50% of “ground-state” hemicholinium-3 binding sites. Exposure of both striatal and hippocampal synaptosomes to the mustard, before stimulation, inhibited K+-stimulated increases in choline transport and of [3H]hemicholinium-3 binding. We conclude that the mechanism by which choline transport is regulated involves the increased activity of a pool of transport sites that are occluded to hemicholinium-3 but are available to choline mustard aziridinium ion, and presumably to choline, before stimulation. However, the concentration of mustard needed to inhibit the stimulation-induced increase of [3H]hemicholinium-3 binding and choline transport was lower for striatal synaptosomes than for hippocampal synaptosomes. In the absence of extracellular Ca2+ or presence of high Mg2+ levels, the choline mustard did not prevent the appearance of extra striatal hemicholinium-3 binding sites. Also, high Mg2+ levels removed the ability of the mustard to inhibit K+-stimulated increases of either [3H]hemicholinium-3 binding or choline transport by hippocampal synaptosomes. In contrast, the preexposure of hippocampal synaptosomes to the mustard in the presence of a calcium ionophore (A23187) reduced the concentration of inhibitor needed to prevent the activation of [3H]hemicholinium-3 binding and choline uptake. Thus, we conclude that the ability of the choline mustard to alkylate the pool of choline transporters that are activated by stimulation appears dependent on the entry of extracellular Ca2+.  相似文献   

7.
The physiological mechanisms regulating activity of the sodium-dependent, high-affinity choline transporter and the molecular events in the translocation process remain unclear; the protein has not been purified or characterized biochemically. In the present study, [3H]choline mustard aziridinium ion [( 3H]ChM Az), a nitrogen mustard analogue of choline, bound irreversibly to presynaptic plasma membranes from Torpedo electric organ in a hemicholinium-sensitive, and sodium-, time-, and temperature-dependent manner. Specific binding of this ligand was greatest when it was incubated with membranes in the presence of sodium at 30 degrees C. Separation of the 3H-labelled membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that most of the radiolabel was associated with a polypeptide of apparent molecular mass of approximately 42,000 daltons; labelling of this species was abolished in membranes incubated with ligand in the presence of HC-3. Two other 3H-labelled polypeptides were detected, with apparent molecular masses of approximately 58,000 and 90,000 daltons; radiolabelling of the former was also HC-3 sensitive. [3H]ChM Az may be a useful affinity ligand in the purification of the choline carrier from cholinergic neurons.  相似文献   

8.
The effect of ethylcholine aziridinium ion (AF64A) on choline transport in hippocampal, striatal, and cerebrocortical synaptosomes was studied. Synaptosomes prepared from these three brain regions were equally sensitive to AF64A. Low concentrations of AF64A produced a reversible inhibition (IC50 values = 1.35-2.25 microM), whereas higher concentrations produced an irreversible inhibition (IC50 values = 25-30 microM), which started as competitive. The irreversible component of the inhibition was independent of extracellular Na+ concentration, a finding suggesting that the choline transporter is alkylated at its outward position. The kinetics of the inhibition were rapid and similar in the three brain regions examined. The high-affinity choline transport was more sensitive to the toxin than the low-affinity choline transport. Based on these results, we propose a kinetic model that explains the reversible and the irreversible inhibitions induced by AF64A. The possible relationships between the concentrations that in vitro produce reversible and irreversible inhibition and those that in vivo produce selective and nonselective cholinergic hypofunction are discussed.  相似文献   

9.
Acetylcholine mustard aziridinium ion inhibited the transport of [3H]choline into human erythrocytes. Treatment of the erythrocytes with 1 X 10(-4) M tetraethylpyrophosphate prevented the inhibition of [3H]choline transport by acetylcholine mustard aziridinium ion. Hydrolyzed acetylcholine mustard aziridinium ion inhibited choline transport both in the presence and absence of 1 X 10(-4) M tetraethylpyrophosphate. The product of hydrolysis was equipotent with acetylcholine mustard in its ability to inhibit choline transport; incubation of this product with sodium thiosulfate prevented inhibition of choline transport thereby indicating the presence of an aziridinium ion. The hydrolysis product is likely to be choline mustard aziridinium ion. Results on the efflux of [3H]choline from erythrocytes in the presence of the proposed choline mustard aziridinium ion showed that the mustard moiety was transported into the red cells on the choline carrier. The rate of efflux of [3H]choline produced by choline mustard aziridinium ion was 55% of that produced by the same concentration of choline. It is concluded that acetylcholinesterase (EC 3.1.1.7) of red cells rapidly hydrolyzes acetylcholine mustard aziridinium ion to acetate and choline mustard aziridinium and the latter compound can act as a potent inhibitor of choline transport. This finding would indicate that the hemicholinium-like toxicity of acetylcholine mustard in the mouse is due to the formation of choline mustard aziridinium ion.  相似文献   

10.
Ethylcholine mustard aziridinium ion (AF64A, MEChMAz) has been proposed as a cholinergic neuron-specific neurotoxin. We report that in further studies on its mechanism of action incubation of the cholinergic neuroblastoma X glioma cell line, NG-108-15, with 100 microM AF64A resulted in a rapid decrease in cellular choline acetyltransferase (ChAT) activity which preceded cytotoxicity. Thus, a 60-85% decrease in ChAT activity was measured within 5 h of AF64A exposure, whereas cell lysis (measured as the release of the cytosolic enzyme lactate dehydrogenase into the medium) did not become apparent until 18 h of AF64A exposure. This led us to examine the effects of AF64A on partially purified ChAT. We report a concentration- and time-dependent inhibition of partially purified ChAT by AF64A that could not be reversed by dialysis but could be prevented by coincubation of the enzyme and AF64A with choline but not with acetyl-coenzyme A. We present kinetic evidence that choline and AF64A compete for the same site on the enzyme. In addition, thiosulfate, which inactivates the aziridinium ion, eliminated AF64A's capacity to inhibit the enzyme. AF64A also irreversibly inhibited partially purified choline kinase and acetylcholinesterase but not lactate dehydrogenase, alcohol dehydrogenase, carboxypeptidase A, or chymotrypsinogen, enzymes that do not use choline as a substrate or product. Thus, the data suggest that AF64A acts as an irreversible active site directed inhibitor of ChAT and possibly other enzymes recognizing choline.  相似文献   

11.
Incubation of rat forebrain synaptosomes with choline mustard aziridinium ion in a sodium-rich medium caused a time-dependent inhibition of the high-affinity transport of choline, as well as a significant decrease in intrasynaptosomal choline acetyltransferase activity. In the absence of added sodium choline uptake by a sodium-independent mechanism was also blocked in a time-dependent manner but intrasynaptosomal choline acetyl-transferase activity was unaltered. Neither monoethylcholine nor hemicholinium-3 changed intrasynaptosomal choline acetyl-transferase activity but competitively inhibited the transport of choline. The results indicate that there may be a fraction of choline acetyltransferase that is closely associated with the sodium-dependent high-affinity choline transport system and that this fraction can be irreversibly inhibited by choline mustard aziridinium ion, perhaps indirectly mediated by alkylation of the carrier.  相似文献   

12.
The present experiments used methylcholines to examine the stereoselectivity of choline transport into rat synaptosomes. R(+)-alpha-methylcholine and S(+)-beta-methylcholine were significantly better inhibitors of the high-affinity choline transport system than were their enantiomers. Although both enantiomers of alpha- and of beta-methylcholine inhibited [3H]choline transport, only R(+)-alpha-methylcholine and S(+)-beta-methylcholine could be transported by the high-affinity choline uptake mechanism. Therefore, we conclude that the chiral requirements for recognition of and for transport by the high-affinity transporter are clearly different. In addition to high-affinity choline transport, Na(+)-independent low-affinity transport was measured. This process transported R(+)-alpha-methylcholine, but not S(-)-alpha-methylcholine; however, it showed no stereoselectivity for the enantiomers of beta-methylcholine. Thus, high- and low-affinity choline transport mechanisms exhibit distinct differences in their substrate selectivities. We suggest that the stereoselective properties of choline transport might present a unique opportunity to study choline uptake and metabolism.  相似文献   

13.
The effect of ethyl choline mustard (ECMA), and effective irreversible inhibitor of choline transport, was investigated on the enzymes of choline metabolism. ECMA at concentrations of 50 microM hardly affected choline acetyltransferase and caused only a 20% inhibition of choline kinase at a concentration of 1 mM. However, the mustard was an extremely effective inhibitor of choline dehydrogenase, producing 50% inhibition at concentrations of 6 microM. The inhibition was prevented by incubation in the presence of choline or by prior reaction of the mustard with thiosulphate. Separation of the components of the ECMA solution on TLC suggested that only the compound with an aziridine ring was an effective inhibitor of choline dehydrogenase. The inhibition was resistant to the washing out of excess unreacted mustard. The rate constant of inhibition was 395 M-1 X S-1. By the use of [3H]ECMA a single polypeptide in the enzyme preparation having a MW of 67,000 was labelled. The labelling was thiosulphate-sensitive and prevented by incubation with choline. It is concluded that ECMA is an irreversible inhibitor of choline dehydrogenase. It is at least as effective an inhibitor of choline dehydrogenase as of the choline transport system, although it does not appreciably inhibit choline acetyltransferase or choline kinase in the micromolar range.  相似文献   

14.
Abstract: Intracerebroventricular administration of N6, 2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate (db-cyclic AMP) to mice increased high-affinity choline transport (HAChT) into synaptosomal preparations from the hippocampus, striatum, and frontal cortex in a time-dose-, and brain region-dependent manner. Similar observations were made when the cyclic AMP analogue 8-bromo-cyclic AMP, the adenylyl cyclase activator forskolin, and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine were administered. Inhibition of phosphatase 1 and 2A, with okadaic acid, increased basal choline transport and enhanced the response to db-cyclic AMP. The early increase of HAChT activity induced by db-cyclic AMP was blocked by H-7 and H-89, protein kinase A inhibitors, but not by cycloheximide, a protein synthesis inhibitor. Kinetic analysis of the early changes of HAChT revealed an increase in the apparent Vmax without a change of the Km for choline. Hemicholinium-3 (HC-3) binding was not altered when studied 1 h after db-cyclic AMP administration. In contrast, HC-3 binding and HAChT activity were both elevated when estimated 3 h after the treatment, and pretreatment with cycloheximide partially prevented the db-cyclic AMP-induced HAChT rise. As evidence that enhanced HAChT is associated with a direct action of cyclic AMP-dependent pathways on the cholinergic nerve terminals, addition of 8-bromocyclic AMP to isolated hippocampal synaptosomes induced an increase of HAChT that was prevented by H-89. Choline acetyltransferase activity was not affected at any time during the studies. The synthesis of acetylcholine, however, was enhanced 1 h after db-cyclic AMP addition. Our studies show that cyclic AMP-mimetic compounds appear to modulate the choline carrier by a dual mode: an early increase of the maximal velocity without a change of the number of HC-3 binding sites and a late rise of transport that is accompanied by an increase of HC-3 binding. We postulate that HAChT and consequently acetylcholine synthesis in vivo is modulated, in part, by protein kinase A.  相似文献   

15.
The sensitivity of choline transport to inhibition by ethylcholine mustard aziridinium (ECMA) was studied in several tissues. Choline transport was found to be inhibited irreversibly by ECMA in guinea pig and rat synaptosomes but not inhibited in erythrocytes or kidney slices. If this finding can be extended to other tissues ECMA sensitivity may provide a simple criterion for identifying the choline carrier associated with cholinergic tissue.  相似文献   

16.
Abstract: Dimethylaminoethanol was studied both as a substrate and as an inhibitor of choline uptake in long-term cultures of foetal rat cerebral hemispheres. A saturable component with an apparent Km of 28 μM and Vmax of 11 pmol/min/μg DNA for dimethylaminoethanol, was observed. Like choline, dimethylaminoethanol was also taken up by a second, low-affinity component, the apparent Vmax of which was about 102 pmol/min/μg DNA. Dimethylaminoethanol inhibited the high-affinity but not the low-affinity choline uptake in a competitive manner with an apparent inhibition constant of 6.0 μM. Monomethylaminoethanol (K1# 60 μM) competitively inhibited high-affinity choline transport. At low concentrations hemicholinium-3, but not ethanolamine, effectively inhibited high-affinity uptake of choline and to a lesser degree the uptake of the dimethylaminoethanol. While the high-affinity uptake of both substrates was inhibited by high concentrations of hemicholinium-3 or ethanolamine, the low-affinity system was not affected by hemicholinium-3. From the kinetics of uptake and inhibition patterns of choline and its related analogs, the methyl group seems to play a major role in determining the affinity rate constants for these substrates. The maximum rate of choline uptake via the high-affinity component increases about sixfold during a period of 2 weeks. In the absence of serum the maximum velocity of the high-affinity component is greatly reduced. These observations suggest that the high-affinity choline uptake component is an integral property and a useful marker, of the developing cerebral cells.  相似文献   

17.
Abstract: Using sequential incubations in media of different K+ composition, we investigated the dynamics of choline (Ch) uptake and acetylcholine (ACh) synthesis in rat brain synaptosomal preparations, using two different deuterated variants of choline and a gas chromatographic-mass spectrometric (GC-MS) assay for ACh and Ch. Synaptosomes were preincubated for 10 min in a Krebs medium with or without high K+ and with 2 μM-[2H9]Ch. At the end of the preincubation all variants of ACh and Ch were measured in samples of the pellet and medium. In the second incubation (4 min) samples of synaptosomes were resuspended in normal or high K+ solutions containing [2H4]Ch (2 μM) and all variants of ACh and Ch were measured in the pellet and medium at the end of this period. This protocol allowed us to compare the effects of preincubation in normal or high K+ solution on the metabolism during a second low or high K+ incubation of a [2H9]Ch pool accumulated during the preincubation period. Moreover, we were able to compare and contrast the effects of this protocol on [2H9]Ch metabolism versus [2H4]Ch metabolism. The most striking result we obtained was that [2H9]Ch that had been retained by the synaptosomes after the preincubation was not acetylated during a subsequent incubation in normal or high K+ media. This result suggests that if an intraterminal pool of Ch is involved in ACh synthesis, the size of this pool is below the limits of detection of our assay. We have confirmed the observation that a prior depolarizing incubation results in an enhanced uptake of Ch during a second incubation in normal K+ Krebs. Moreover, Ch uptake is stimulated by prior incubation under depolarizing conditions relative to normal preincubation when the second incubation is in a high K+ solution. These results are discussed in terms of current models of the regulation of ACh synthesis in brain.  相似文献   

18.
Abstract: As in intact tissues, choline influx into synaptosomes is enhanced after a period of depolarization induced release of acetylcholine. The activation of uptake is dependent on the presence of Ca2+ and inhibited by high Mg2+ concentrations in the medium during depolarization. Choline transport in erythrocytes was not activated by prior treatment with potassium. The permeability constant of the synaptosome membrane to choline was found to be 2.7 × 10?8 cm·s?1 and to acetylcholine 1.8 ′ 10?8 cm·s?1. Choline influx has been studied after pre-loading synaptosomes with choline. Different radiolabels were used to measure efflux of preloaded choline and influx simultaneously. Isotopic dilution in flux studies was estimated and corrected for. Influx was stimulated by high internal concentrations of choline, and efflux similarly stimulated by high outside concentrations of choline. The maximal influx and efflux at saturating opposite concentrations of choline were equal with a value of about 500 pmol·min?1 per mg synaptosomal protein. A reciprocating carrier would explain the equality of the maximal influx and efflux. Acetylcholine competes with choline for binding to the carrier but is itself hardly transported. Increased acetylcholine concentrations were shown to inhibit both choline influx and efflux from the trans position. Raising intrasynaptosomal acetylcholine concentrations by pre-loading abolished the stimulation of influx by prior depolarization. It is proposed that high concentrations of acetylcholine immobilize the carrier on the inside of the synaptic membrane. The stimulation of choline influx consequent upon depolarization is caused by release of ACh which results in relief of this immobilisation. The enhanced supply of choline achieved by this mechanism is likely to be important in maintaining stores of the acetylcholine in vivo.  相似文献   

19.
1. Beta carbolines inhibit choline transport in rat brain. 2. The aziridinium ring on the nitrogen of mustard analogs of choline causes irreversible binding to the carrier in rat brain. 3. The uptake system in rat brain is stereoselective, requires a quaternary nitrogen, and prefers analogs with a nitrogen-oxygen distance of about 3.26 A. 4. In mouse brain troxonium derivatives inhibit choline transport. 5. In cuttlefish optic lobes and torpedo electric organ pyrene derivatives potently inhibit choline transport. 6. In guinea pig placenta, the affinity of the choline carrier remains high even when this molecule lacks one or two methyl groups.  相似文献   

20.
The rat diaphragm has been used to investigate the neuromuscular blocking action of acetylcholine mustard which yields a potent nicotinic agonist, an aziridinium ion, in aqueous medium. Evidence was obtained that the acetylcholine mustard aziridinium ion impaired neuromuscular activity when the phrenic nerve was stimulated and that the ion did not directly inhibit muscle contraction. Impairment of neuromuscular activity was characterized by a latent period and depended both on the concentration of aziridinium ion and the frequency of stimulation of the phrenic nerve. Elevated concentrations of Ca-2+ and choline changed the response of the rat diaphragm to the aziridinium ion, the former increasing the rate of development of neuromuscular block and the latter protecting against neuromuscular block. These results indicated that the aziridinium ion may act either at the site of choline uptake or have an effect on acetylcholine synthesis in the nerve ending and that impairment of neuromuscular transmission in the rat diaphragm involved the availability of acetylcholine. Similar results were obtained with acetylcholine mustard aziridinium ion subjected to alkaline hydrolysis. This substance is thought to be choline mustard aziridinium ion. Although difficult to prove with the rat diaphragm it is possible that acetylcholinesterase of this preparation could hydrolyze acetylcholine mustard aziridinium ion at the neurotransmitter site and the resultant choline mustard aziridinium ion would interfere with the uptake of choline and eventually prevent neuromuscular transmission. This hemicholinium-like hypothesis for the mechanism of action of choline mustard aziridinium ion is compatible with reported date for toxicity of acetylcholine mustard aziridinium ion in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号