首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Increasing evidence suggests that most cardiovascular diseases, tumors and other ailments are associated with an inflammatory cascade. The inflammation is accompanied by activation of cells in the circulation and fundamental changes in the mechanics of the microcirculation, expression of pro-inflammatory genes and downregulation of anti-inflammatory genes, attachment of leukocytes to the endothelium, elevated permeability of the endothelium, and many other events. The evidence has opened great opportunities for medicine to develop new anti-inflammatory interventions. But it also raises a fundamental question: What is the origin of inflammation? I will discuss a basic series of studies that was designed to explore trigger mechanisms for inflammation in shock and multi-organ failure, an important clinical problem associated with high mortality. We traced the source of the inflammatory mediators to the powerful digestive enzymes in the intestine. Synthesized in the pancreas as part of normal digestion, they have the ability to degrade almost all biological tissues and molecules. In the lumen of the intestine, digestive enzymes are fully activated and self-digestion of the intestine is prevented by compartmentalization in the lumen of the intestine facilitated by the mucosal epithelial barrier. Under conditions of intestinal ischemia, however, the mucosal barrier becomes permeable to pancreatic enzymes allowing their entry into the wall of the intestine. The process leads to auto-digestion of the intestinal wall and production of inflammatory mediators. The hypothesis that multi-organ failure in shock may be due an auto-digestion process by pancreatic enzymes is ready to be tested in a variety of shock conditions.  相似文献   

2.
Hemorrhagic shock (HS) is associated with high mortality. A severe decrease in blood pressure causes the intestine, a major site of digestive enzymes, to become permeable - possibly releasing those enzymes into the circulation and peritoneal space, where they may in turn activate other enzymes, e.g. matrix metalloproteinases (MMPs). If uncontrolled, these enzymes may result in pathophysiologic cleavage of receptors or plasma proteins. Our first objective was to determine, in compartments outside of the intestine (plasma, peritoneal fluid, brain, heart, liver, and lung) protease activities and select protease concentrations after hemorrhagic shock (2 hours ischemia, 2 hours reperfusion). Our second objective was to determine whether inhibition of proteases in the intestinal lumen with a serine protease inhibitor (ANGD), a process that improves survival after shock in rats, reduces the protease activities distant from the intestine. To determine the protease activity, plasma and peritoneal fluid were incubated with small peptide substrates for trypsin-, chymotrypsin-, and elastase-like activities or with casein, a substrate cleaved by multiple proteases. Gelatinase activities were determined by gelatin gel zymography and a specific MMP-9 substrate. Immunoblotting was used to confirm elevated pancreatic trypsin in plasma, peritoneal fluid, and lung and MMP-9 concentrations in all samples after hemorrhagic shock. Caseinolytic, trypsin-, chymotrypsin-, elastase-like, and MMP-9 activities were all significantly (p<0.05) upregulated after hemorrhagic shock regardless of enteral pretreatment with ANGD. Pancreatic trypsin was detected by immunoblot in the plasma, peritoneal space, and lungs after hemorrhagic shock. MMP-9 concentrations and activities were significantly upregulated after hemorrhagic shock in plasma, peritoneal fluid, heart, liver, and lung. These results indicate that protease activities, including that of trypsin, increase in sites distant from the intestine after hemorrhagic shock. Proteases, including pancreatic proteases, may be shock mediators and potential targets for therapy in shock.  相似文献   

3.
Loss of integrity of the epithelial/mucosal barrier in the small intestine has been associated with different pathologies that originate and/or develop in the gastrointestinal tract. We showed recently that mucin, the main protein in the mucus layer, is disrupted during early periods of intestinal ischemia. This event is accompanied by entry of pancreatic digestive enzymes into the intestinal wall. We hypothesize that the mucin-containing mucus layer is the main barrier preventing digestive enzymes from contacting the epithelium. Mucin breakdown may render the epithelium accessible to pancreatic enzymes, causing its disruption and increased permeability. The objective of this study was to investigate the role of mucin as a protection for epithelial integrity and function. A rat model of 30 min splanchnic arterial occlusion (SAO) was used to study the degradation of two mucin isoforms (mucin 2 and 13) and two epithelial membrane proteins (E-cadherin and toll-like receptor 4, TLR4). In addition, the role of digestive enzymes in mucin breakdown was assessed in this model by luminal inhibition with acarbose, tranexamic acid, or nafamostat mesilate. Furthermore, the protective effect of the mucin layer against trypsin-mediated disruption of the intestinal epithelium was studied in vitro. Rats after SAO showed degradation of mucin 2 and fragmentation of mucin 13, which was not prevented by protease inhibition. Mucin breakdown was accompanied by increased intestinal permeability to FITC-dextran as well as degradation of E-cadherin and TLR4. Addition of mucin to intestinal epithelial cells in vitro protected against trypsin-mediated degradation of E-cadherin and TLR4 and reduced permeability of FITC-dextran across the monolayer. These results indicate that mucin plays an important role in the preservation of the mucosal barrier and that ischemia but not digestive enzymes disturbs mucin integrity, while digestive enzymes actively mediate epithelial cell disruption.  相似文献   

4.
5.
Proteinase-activated receptor 2 (Par2, F2rl1, also designated PAR-2 or PAR2) is prominently expressed in the intestine and has been suggested as a mediator of inflammatory, mitogenic and fibrogenic responses to injury. Mast cell proteinases and pancreatic trypsin, both of which have been shown to affect the intestinal radiation response, are the major biological activators of Par2. Conventional Sprague-Dawley rats, mast cell-deficient rats, and rats in which pancreatic exocrine secretion was blocked pharmacologically by octreotide underwent localized irradiation of a 4-cm loop of small bowel. Radiation injury was assessed 2 weeks after irradiation (early, inflammatory phase) and 26 weeks after irradiation (chronic, fibrotic phase). Par2 expression and activation were assessed by in situ hybridization and immunohistochemistry, using antibodies that distinguished between total (preactivated and activated) Par2 and preactivated Par2. Compared to unirradiated intestine, irradiated intestine exhibited increased Par2 expression, particularly in areas of myofibroblast proliferation and collagen accumulation, after both single-dose and fractionated irradiation. The majority of Par2 expressed in fibrotic areas was activated. Postirradiation Par2 overexpression was greatly attenuated in both mast cell-deficient and octreotide-treated rats. The severity of acute mucosal injury did not affect postirradiation Par2 expression. Mast cells and pancreatic proteinases may exert their fibro-proliferative effects partly through activation of Par2. Par2 may be a potential target for modulating the intestinal radiation response, particularly delayed intestinal wall fibrosis.  相似文献   

6.
In 2008 and 2009 on the Kargat River (basin of Lake Chany) we studied activity of the intestinal digestive enzymes (general activity of proteases, α-amilase, nonspecific esterases and pancreatic lipase) of the young of the Siberian dace Leuciscus leuciscus baicalensis (Dyb.) infected with metacercaria of the family Diplostomidae. The relation between the intensity of the invasion with metacercaria of the family Diplostomidae and activity of the intestinal digestive hydrolases was studied. The negative correlation of the activity of the digestive enzymes and the intensity of the invasion with metacercaria both in various segments and in the whole intestine was revealed.  相似文献   

7.
In intestinal ischemia, inflammatory mediators in the small intestine''s lumen such as food byproducts, bacteria, and digestive enzymes leak into the peritoneal space, lymph, and circulation, but the mechanisms by which the intestinal wall permeability initially increases are not well defined. We hypothesize that wall protease activity (independent of luminal proteases) and apoptosis contribute to the increased transmural permeability of the intestine''s wall in an acutely ischemic small intestine. To model intestinal ischemia, the proximal jejunum to the distal ileum in the rat was excised, the lumen was rapidly flushed with saline to remove luminal contents, sectioned into equal length segments, and filled with a tracer (fluorescein) in saline, glucose, or protease inhibitors. The transmural fluorescein transport was determined over 2 hours. Villi structure and epithelial junctional proteins were analyzed. After ischemia, there was increased transmural permeability, loss of villi structure, and destruction of epithelial proteins. Supplementation with luminal glucose preserved the epithelium and significantly attenuated permeability and villi damage. Matrix metalloproteinase (MMP) inhibitors (doxycycline, GM 6001), and serine protease inhibitor (tranexamic acid) in the lumen, significantly reduced the fluorescein transport compared to saline for 90 min of ischemia. Based on these results, we tested in an in-vivo model of hemorrhagic shock (90 min 30 mmHg, 3 hours observation) for intestinal lesion formation. Single enteral interventions (saline, glucose, tranexamic acid) did not prevent intestinal lesions, while the combination of enteral glucose and tranexamic acid prevented lesion formation after hemorrhagic shock. The results suggest that apoptotic and protease mediated breakdown cause increased permeability and damage to the intestinal wall. Metabolic support in the lumen of an ischemic intestine with glucose reduces the transport from the lumen across the wall and enteral proteolytic inhibition attenuates tissue breakdown. These combined interventions ameliorate lesion formation in the small intestine after hemorrhagic shock.  相似文献   

8.
Intestinal adaptation occurs in response to physiological or pathological processes that include resection, aging, diabetes, radiation, lactation, chronic alcohol feeding, and feeding diets of varying lipid, protein, or carbohydrate composition. The mechanisms involved in the adaptive response include alterations in morphology, cell kinetics, digestive enzyme activity, transport, membrane lipid composition, and enzymes involved in lipid metabolism. This discussion will review the effect of aging and alterations in dietary fatty acid composition on the small intestine. In addition, it may be possible to program the intestinal response to aging by feeding diets of differing fatty acid composition during the critical period of weaning. Alterations in the ratio of polyunsaturated to saturated fatty acids in the diet modifies the age-associated changes in the intestinal uptake of glucose. The changes occur rapidly, progressively, and irreversibly, suggesting that the intestinal uptake of glucose is subject to critical period programming. The mechanism by which diet may modify the ability of the intestine to up- or down-regulate glucose transport requires further investigation.  相似文献   

9.
The gastrointestinal tract is subject to a huge antigenic load, which is especially significant in the intestinal lumen. Being the connecting link between the organism and the external environment, the small intestine fulfils not only digestive and transport functions, but also protective ones and acts as a selective barrier for the flow of nutrients. This review considers proteases of the protective system of small intestine cells, their biochemical properties and activation mechanisms, and involvement in biochemical processes responsible for normal functioning and defense reactions of the intestine. Serine proteases of intestinal immunity are multifunctional enzymes making proteolytic attack aimed to immediately exterminate aggressive elements of the intestinal contents (allergens, toxins), to activate (inactivate) zymogens, receptors, and peptide hormones, and to hydrolyze protein precursors and other biologically active factors. Proteases of intestinal immunity control the inflammatory response, proliferation of B-lymphocytes, apoptosis, and secretory and contractive activity of the intestine; they release neurogenic factors, inactivate biologically active substances, and are involved in degradation of the intercellular matrix and in tissue remodeling.  相似文献   

10.
Following heat stress, the mammalian intestinal epithelial cells respond by producing heat shock proteins that confer protection under stressful conditions, which would otherwise lead to cell damage or death. Some of the noxious processes against which the heat shock response protects cells include heat stress, infection, and inflammation. The mechanisms of heat shock response-induced cytoprotection involve inhibition of proinflammatory cytokine production and induction of cellular proliferation for restitution of the damaged epithelium. This can mean selective interference of pathways, such as nuclear factor kappa B (NF-kappaB) and mitogen-activated protein kinase (MAPK), that mediate cytokine production and growth responses. Insight into elucidating the exact protective mechanisms could have therapeutic significance in treating intestinal inflammations and in aiding maintenance of intestinal integrity. Herein we review findings on heat shock response-induced intestinal epithelial protection involving regulation of NF-kappaB and MAPK cytokine production.  相似文献   

11.
Imamura M 《Peptides》2002,23(2):403-407
PYY is a gastrointestinal hormone, mainly released from the distal intestine in response to intraluminal nutrients or via a neurohormonal pathway originating in the proximal intestine. Although there are several molecular forms of circulating PYY with different bioactivity, and further more than six subtypes of Y-receptors, the function is essentially inhibitory to digestive organs located upstream of the digestive tract. These inhibitory mechanisms are named jejunal, ileal and colonic brakes, and play an important supplementary role in adaptation following intestinal resection. When massive resection of the small intestine is performed, the release of PYY from the distal intestine increases, suppressing gastric acid secretion and motility of the gastrointestinal tract, and stimulating pancreatic secretion. After total colectomy, PYY release is reduced first due to reduction of PYY-containing cells, then gradually increases with time, contributing to adaptation of the digestive organs to the new condition.  相似文献   

12.
The study was conducted to evaluate the effects of dietary butyrate loaded clinoptilolite (CLI-B) on growth performance, pancreatic digestive enzymes, intestinal development and histomorphology, as well as antioxidant capacity of serum and intestinal mucosal in chickens. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly assigned to 4 groups: CON group (fed basal diets), SB group (fed basal diet with 0.05% sodium butyrate), CLI group (fed basal diet with 1% clinoptilolite), and CLI-B group (fed basal diet with 1% CLI-B). The results showed that supplementation of CLI-B significantly decreased (P < 0.05) feed conservation ratio at both 21 and 42 days of age, improved the pancreatic digestive enzymes activities (P < 0.05), increased the villus length and villus/crypt ratio (P < 0.05), and decreased the crypt depth of intestine (P < 0.05) as compared to the other experimental groups. Furthermore, the CLI-B environment improved the antioxidant capacity by increasing the antioxidant enzyme activities (P < 0.05) in intestine mucosal, and decreasing the NO content and iNOS activity (P < 0.05) in serum. In addition, CLI-B supplementation had improved the development of intestine and antioxidant capacity of broilers than supplementation with either clinoptilolite or butyrate sodium alone. In conclusion, 1% CLI-B supplementation improved the health status, intestine development and antioxidant capacity in broiler chickens, thus appearing as an important feed additive for the poultry industry.  相似文献   

13.
Increased neutrophil extracellular traps (NETs) formation has been found to be associated with intestinal inflammation, and it has been reported that NETs may drive the progression of gut dysregulation in sepsis. However, the biological function and regulation of NETs in sepsis-induced intestinal barrier dysfunction are not yet fully understood. First, we found that both circulating biomarkers of NETs and local NETs infiltration in the intestine were significantly increased and had positive correlations with markers of enterocyte injury in abdominal sepsis patients. Moreover, the levels of local citrullinated histone 3 (Cit H3) expression were associated with the levels of BIP expression. To further confirm the role of NETs in sepsis-induced intestinal injury, we compared peptidylarginine deiminase 4 (PAD4)-deficient mice and wild-type (WT) mice in a lethal septic shock model. In WT mice, the Cit H3-DNA complex was markedly increased, and elevated intestinal inflammation and endoplasmic reticulum (ER) stress activation were also found. Furthermore, PAD4 deficiency alleviated intestinal barrier disruption and decreased ER stress activation. Notably, NETs treatment induced intestinal epithelial monolayer barrier disruption and ER stress activation in a dose-dependent manner in vitro, and ER stress inhibition markedly attenuated intestinal apoptosis and tight junction injury. Finally, TLR9 antagonist administration significantly abrogated NETs-induced intestinal epithelial cell death through ER stress inhibition. Our results indicated that NETs could contribute to sepsis-induced intestinal barrier dysfunction by promoting inflammation and apoptosis. Suppression of the TLR9–ER stress signaling pathway can ameliorate NETs-induced intestinal epithelial cell death.Subject terms: Mucosal immunology, Intestinal diseases, Sepsis  相似文献   

14.
The digestive physiology of the germ-free animal has a number of characteristics (cecal hypertrophy, slower small intestine cell renewal, slower gastric emptying and intestinal transit) which distinguish it from that of the conventional animal. If the germ-free model is to be used to determine the role of gastrointestinal microflora in the nutrition of the conventional animal, it is essential to complete the study of these characteristics by data on digestive enzymes in the germ-free. The present paper analyzes these data. There is little information on salivary amylase and none on gastric proteolytic enzymes and intestinal peptidases. More complete data on exocrine pancreas enzymes and intestinal disaccharidases show that the digestive equipment is similar in germ-free and conventional animals. Bile salts, not considered as digestive enzymes, are qualitatively and quantitatively different, depending on the digestive tract bacterial environment. In general, the germ-free animal has some characteristics which should permit better utilization of the diet ingested. Measurements of apparent digestibility do not confirm this hypothesis since results obtained in germ-free and conventional animals of the same species are contradictory.  相似文献   

15.
A study was performed to investigate the effect of weaning at 4 weeks of age on the activity of digestive enzymes in the stomach and pancreatic tissue and in digesta from 3 days prior to weaning to 9 days postweaning in 64 piglets. In stomach tissue the activity of pepsin and gastric lipase was determined. Pepsin activity declined abruptly after weaning but 5 days postweaning the weaning level was regained and in the gastric contents no change in pepsin activity was observed. Weaning did not influence the activity of gastric lipase. The activity of eight enzymes and a cofactor was measured in pancreatic tissue. The effect of weaning on the enzyme activity was highly significant for all enzymes except elastase. The activity of all enzymes remained at the weaning level during day 1–2 postweaning followed by a reduction of the activity. The activity of trypsin, carboxypeptidase A, amylase and lipase exhibited minimum activity 5 days postweaning. Trypsin activity increased to the preweaning level on day 7–9 whereas the activity of the others increased but did not reach the preweaning level. The activity of chymotrypsin, carboxypeptidase B and carboxyl ester hydrolase decreased during the entire experimental period. In digesta no effect of weaning was observed on the activity of amylase and trypsin. The activity of chymotrypsin was reduced after weaning in the proximal third of the small intestine and lipase and carboxyl ester hydrolase activity was reduced in the middle and distal parts of the small intestine after weaning. The present study shows that the activities of the digestive enzymes in the pancreatic tissue are affected by weaning. Even though the pancreatic secretion cannot be judged from these results they show that the enzymes respond differently to weaning. In general the activity of the digestive enzymes in pancreatic tissue is low on day 5 postweaning which in interaction with other factors may increase the risk of developing postweaning diarrhoea.  相似文献   

16.
A study was performed to investigate the effect of weaning at 4 weeks of age on the activity of digestive enzymes in the stomach and pancreatic tissue and in digesta from 3 days prior to weaning to 9 days postweaning in 64 piglets. In stomach tissue the activity of pepsin and gastric lipase was determined. Pepsin activity declined abruptly after weaning but 5 days postweaning the weaning level was regained and in the gastric contents no change in pepsin activity was observed. Weaning did not influence the activity of gastric lipase. The activity of eight enzymes and a cofactor was measured in pancreatic tissue. The effect of weaning on the enzyme activity was highly significant for all enzymes except elastase. The activity of all enzymes remained at the weaning level during day 1-2 postweaning followed by a reduction of the activity. The activity of trypsin, carboxypeptidase A, amylase and lipase exhibited minimum activity 5 days postweaning. Trypsin activity increased to the preweaning level on day 7-9 whereas the activity of the others increased but did not reach the preweaning level. The activity of chymotrypsin, carboxypeptidase B and carboxyl ester hydrolase decreased during the entire experimental period. In digesta no effect of weaning was observed on the activity of amylase and trypsin. The activity of chymotrypsin was reduced after weaning in the proximal third of the small intestine and lipase and carboxyl ester hydrolase activity was reduced in the middle and distal parts of the small intestine after weaning. The present study shows that the activities of the digestive enzymes in the pancreatic tissue are affected by weaning. Even though the pancreatic secretion cannot be judged from these results they show that the enzymes respond differently to weaning. In general the activity of the digestive enzymes in pancreatic tissue is low on day 5 postweaning which in interaction with other factors may increase the risk of developing postweaning diarrhoea.  相似文献   

17.
Isolated human intestinal brush border membranes were used as sources of enzyme to study their degradation by proteolytic enzymes. Human intestinal brush border hydrolases undergo degradation by two separate proteolytic systems. Sucrase and alkaline phosphatase are degraded by pancreatic proteases (e.g. chymotrypsin) at neutral pH, whereas trehalase is degraded by lysosomal extracts at acid pH. Both the membrane bound and membrane free isolated enzymes had similar sensitivity to proteolytic enzymes. Thus, initial removal from the membrane is not essential as a prerequisite to proteolysis. It is postulated that the brush border membrane of the intestine is subject to proteolysis by pancreatic enzymes from the external cell surface and by lysosomal proteases within the cell.  相似文献   

18.
19.
The majority of digestive enzymes in humans are produced in the pancreas where they are stored in zymogen granules before secretion into the intestine. GP2 is the major membrane protein present in zymogen granules of the exocrine pancreas. Numerous studies have shown that GP2 binds digestive enzymes such as amylase, thereby supporting a role in protein sorting to the zymogen granule. Other studies have suggested that GP2 is important in the formation of zymogen granules. A knock-out mouse was generated for GP2 to study the impact of the protein on pancreatic function. GP2-deficient mice displayed no gross signs of nutrient malab-sorption such as weight loss, growth retardation, or diarrhea. Zymogen granules in the GP2 knock-out mice appeared normal on electron microscopy and contained the normal complement of proteins excluding GP2. Primary cultures of pancreatic acini appropriately responded to secretagogue stimulation with the secretion of digestive enzymes. The course of experimentally induced pancreatitis was also examined in the knock-out mice because proteins known to associate with GP2 have been found to possess a protective role. When GP2 knock-out mice were subjected to two different models of pancreatitis, no major differences were detected. In conclusion, GP2 is not essential for pancreatic exocrine secretion or zymogen granule formation. It is unlikely that GP2 serves a major intracellular role within the pancreatic acinar cell and may be functionally active after it is secreted from the pancreas.  相似文献   

20.
By means of biochemical determination of the activity of hydrolases in the digestive system, studies have been made on the enzymic spectrum in the pancreas and small intestine in postnatal life of astrakhan sheep. It was shown that to the moment of birth, animals possess the developed mechanisms of the initial and final stages of hydrolysis of proteins and lipids. At this period, carbohydrate hydrolysis system is presented only by lactase, the activity of pancreatic alpha-amylase, intestinal gamma-amylase and maltase being very low, whereas the activity of saccharides is absent at all. During further development of sheep, the activity of all digestive hydrolases gradually increases, except that of lactase which is almost absent in adult specimens. Saccharides activity was not find in the mucose of the small intestine within the whole postnatal life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号