首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracellular proteases ofAspergillus nidulans are known to be regulated by carbon, nitrogen and sulphur metabolite repression. In this study, a mutant with reduced levels of extracellular protease was isolated by screening for loss of halo production on milk plates. Genetic analysis of the mutant showed that it contains a single, recessive mutation, in a gene which we have designatedxprE, located on chromosome VI. ThexprE1 mutation affected the production of extracellular proteases in response to carbon, nitrogen and, to a lesser extent, sulphur limitation. Three reversion mutations,xprF1, xprF2 andxprG1, which suppressxprE1, were characterised. BothxprF andxprG map to chromosome VII but the two genes are unlinked. ThexprF1, xprF2 andxprG1 mutants showed high levels of milk-clearing activity on medium containing milk as a carbon source but reduced growth on a number of nitrogen sources. Evidence is presented that thexprE1 andxprG1 mutations alter expression of more than one protease and affect levels of alkaline protease gene mRNA.  相似文献   

2.
The extracellular proteases ofAspergillus nidulans are known to be regulated by carbon, nitrogen and sulphur metabolite repression. In this study, a mutant with reduced levels of extracellular protease was isolated by screening for loss of halo production on milk plates. Genetic analysis of the mutant showed that it contains a single, recessive mutation, in a gene which we have designatedxprE, located on chromosome VI. ThexprE1 mutation affected the production of extracellular proteases in response to carbon, nitrogen and, to a lesser extent, sulphur limitation. Three reversion mutations,xprF1, xprF2 andxprG1, which suppressxprE1, were characterised. BothxprF andxprG map to chromosome VII but the two genes are unlinked. ThexprF1, xprF2 andxprG1 mutants showed high levels of milk-clearing activity on medium containing milk as a carbon source but reduced growth on a number of nitrogen sources. Evidence is presented that thexprE1 andxprG1 mutations alter expression of more than one protease and affect levels of alkaline protease gene mRNA.  相似文献   

3.
The extracellular proteases of Aspergillus nidulans are produced in response to limitation of carbon, nitrogen, or sulfur, even in the absence of exogenous protein. Mutations in the A. nidulans xprF and xprG genes have been shown to result in elevated levels of extracellular protease in response to carbon limitation. The xprF gene was isolated and sequence analysis indicates that it encodes a 615-amino-acid protein, which represents a new type of fungal hexokinase or hexokinase-like protein. In addition to their catalytic role, hexokinases are thought to be involved in triggering carbon catabolite repression. Sequence analysis of the xprF1 and xprF2 alleles showed that both alleles contain nonsense mutations. No loss of glucose or fructose phosphorylating activity was detected in xprF1 or xprF2 mutants. There are two possible explanations for this observation: (1) the xprF gene may encode a minor hexokinase or (2) the xprF gene may encode a protein with no hexose phosphorylating activity. Genetic evidence suggests that the xprF and xprG genes are involved in the same regulatory pathway. Support for this hypothesis was provided by the identification of a new class of xprG(-) mutation that suppresses the xprF1 mutation and results in a protease-deficient phenotype.  相似文献   

4.
5.
6.
7.
8.
9.
An apparent operator-constitutive mutation was discovered in the repressible acid phosphatase system in Saccharomyces cerevisiae. The site of mutation, designated PHOO, was found to be closely linked to the phoD locus. The mutant allele, PHOO, was semidominant over the wild-type allele and effective for the expression of the phoD gene in cis position. The phoD mutation gave rise to a defective phenotype for the formation of the repressible acid phosphatase. On the other hand, neither the repressible acid phosphatase activity in the cell-free extracts prepared from cells of the temperature-sensitive phoD mutant grown at 25 C, nor that of the revertants from the phoD mutants, could be distinguished from that of the wild-type strain with respect to thermolability and K(m) value for p-nitrophenylphosphate. These results strongly suggest that the phoD gene is not a structural gene, but a regulatory gene exerting positive control for the formation of repressible acid phosphatase. Close similarity between the apparent role of the phoO-PHOD gene cluster and that of the c-GAL4 gene cluster in the galactose system of S. cerevisiae could be inferred.  相似文献   

10.
11.
白念珠菌的致病性与其形态转变相关,白念珠菌的形态转换受各种外界信号和细胞内信号转导途径的调控。转录因子Flo8在酿酒酵母形态发生中起重要作用,我们将白念珠菌基因组文库导入flo8缺失株中,筛选能够校正flo8缺失株侵入生长缺陷的基因,分离得到一个与酿酒酵母蛋白磷酸酯酶甲基酯酶PPEl同源的基因,命名为CaPPEl。CaPPEl的基因编码区全长1083bp,推测编码一个361氨基酸的蛋白。在单倍体酿酒酵母中,CaPPEl基因的表达可以部分回复flo8缺失株的侵入生长缺陷,但是在MAPK途径缺失株中不能进行侵入生长。在双倍体酿酒酵母中,CaPPEl基因的表达可以部分激活MAPK途径成员缺失株的菌丝生长缺陷,但却只能在flo8缺失株中产生微弱的激活作用。结果表明CaPpel在酿酒酵母的假菌丝生长和侵入生长中参与的信号转导途径不同。  相似文献   

12.
We describe the identification of a new meiosis-specific gene of Saccharomyces cerevisiae, NDT80. The ndt80 null and point mutants arrest at the pachytene stage of meiosis, with homologs connected by full-length synaptonemal complexes and spindle pole bodies duplicated but unseparated. Meiotic recombination in an ndt80 delta mutant is relatively normal, although commitment to heteroallelic recombination is elevated two- to threefold and crossing over is decreased twofold compared with those of the wild type. ndt80 arrest is not alleviated by mutations in early recombination genes, e.g., SPO11 or RAD50, and thus cannot be attributed to an intermediate block in prophase chromosome metabolism like that observed in several other mutants. The ndt80 mutant phenotype during meiosis most closely resembles that of a cdc28 mutant, which contains a thermolabile p34, the catalytic subunit of maturation-promoting factor. Cloning and molecular analysis reveal that the NDT80 gene maps on the right arm of chromosome VIII between EPT1 and a Phe-tRNA gene, encodes a 627-amino-acid protein which exhibits no significant homology to other known proteins, and is transcribed specifically during middle meiotic prophase. The NDT80 gene product could be a component of the cell cycle regulatory machinery involved in the transition out of pachytene, a participant in an unknown aspect of meiosis sensed by a pachytene checkpoint, or a SPO11- and RAD50-independent component of meiotic chromosomes that is the target of cell cycle signaling.  相似文献   

13.
白念珠茵的致病性与其形态转变相关,白念珠茵的形态转换受各种外界信号和细胞内信号转导途径的调控。转录因子Flo8在酿酒酵母形态发生中起重要作用,我们将白念珠茵基因组文库导入flo8缺失株中,筛选能够校正flo8缺失株侵入生长缺陷的基因,分离得到一个与酿酒酵母蛋白磷酸酯酶甲基酯酶PPEI同源的基因,命名为CaPPEl。CaPPEl的基因编码区全长1083bp,推测编码一个361氨基酸的蛋白。在单倍体酿酒酵母中,CaPPE1基因的表达可以部分回复flo8缺失株的侵入生长缺陷,但是在MAPK途径缺失株中不能进行侵入生长。在双倍体酿酒酵母中,CaPPEl基因的表达可以部分激活MAPK途径成员缺失株的茵丝生长缺陷,但却只能在flo8缺失株中产生微弱的激活作用。结果表明CaPpel在酿酒酵母的假茵丝生长和侵入生长中参与的信号转导途径不同。  相似文献   

14.
15.
H. L. Klein 《Genetics》1997,147(4):1533-1543
Most mitotic recombination and repair genes of Saccharomyces cerevisiae show no specificity of action for the genome ploidy. We describe here a novel repair and recombination gene that is specific for recombination and repair between homologous chromosomes. The RDH54 gene is homologous to the RAD54 gene, but rdh54 mutants do not show sensitivity to methyl methanesulfonate at concentrations that sensitize a rad54 mutant. However, the rdh54 null mutation enhances the methyl methanesulfonate sensitivity of a rad54 mutant and single rdh54 mutants are sensitive to prolonged exposure at high concentrations of methyl methanesulfonate. The RDH54 gene is required for recombination, but only in a diploid. We present evidence showing that the RDH54 gene is required for interhomologue gene conversion but not intrachromosomal gene conversion. The rdh54 mutation confers diploid-specific lethalities and reduced growth in various mutant backgrounds. These phenotypes are due to attempted recombination. The RDH54 gene is also required for meiosis as homozygous mutant diploids show very poor sporulation and reduced spore viability. The role of the RDH54 gene in mitotic repair and in meiosis and the pathway in which it acts are discussed.  相似文献   

16.
17.
The strain Saccharomyces cerevisiae W303-1a, able to grow in a medium containing acetic acid as the sole carbon and energy source, was subjected to mutagenesis in order to obtain mutants deficient in monocarboxylate permeases. Two mutant clones exhibiting growth in ethanol, but unable to grow in a medium with acetic acid as the sole carbon and energy source, were isolated (mutants Ace12 and Ace8). In both mutants, the activity for the acetate carrier was strongly affected. The mutant Ace8 revealed not to be affected in the transport of lactate, while the mutant Ace12 did not display activity for that carrier. These results reinforced those previously found in the strain IGC 4072, where two distinct transport systems for monocarboxylates have been described, depending on the growth carbon source. It is tempting to postulate that the Ace8 mutant seems to be affected in the gene coding for an acetate permease. In contrast, the absence of activity for both monocarboxylate permeases in mutant Ace12 could be attributed to a mutation in a gene coding for a regulatory protein not detected before.  相似文献   

18.
A system of strains and growth media was developed to allow efficient detection of forward mutation, reversion, complementation, and suppression at the canavanine-resistance (CAN1) locus of Saccharomyces cerevisiae. Genetic fine-structure analysis revealed that the map length is at least 40, and possibly as much as 60 X-ray map units; this is the longest gene map yet reported in S. cerevisiae. Allelic complementation was not observed, despite testing of a large number of allele pairs, and alleles suppressible by the ochre suppressor SUP11 were absent from a sample of 48 spontaneous mutants and occurred infrequently (7%) among a sample of ultraviolet-induced mutants. Infrequent mutant types included canavanine-resistant mutants capable of arginine uptake and alleles thought to represent deletions or inversions. In contrast to previous reports in the literature, the spontaneous forward mutation rate at CAN1 did not increase during meiosis.  相似文献   

19.
The temperature-sensitive cyr1-2 mutant in Saccharomyces cerevisiae produces low levels of adenylate cyclase and cyclic AMP at 25 degrees C and is unable to synthesize repressible acid phosphatase at 25 degrees C. Suppressor mutants of cyr1-2 were isolated by detecting acid phosphatase activity. One of the dominant suppressor mutations isolated was designated SUP201 and characterized. The SUP201 mutant gene was isolated from a gene library made from cyr1-2 SUP201 mutant DNA. Nucleotide sequence analysis of the cloned SUP201 gene revealed that the SUP201 gene was a mutated tRNA gene flanking GCN4, which worked as a UGA suppressor.  相似文献   

20.
In Saccharomyces cerevisiae, carbon and nitrogen metabolisms are connected via the incorporation of ammonia into glutamate; this reaction is catalyzed by the NADP-dependent glutamate dehydrogenase (NADP-GDH) encoded by the GDH1 gene. In this report, we show that the GDH1 gene requires the CCAAT box-binding activator (HAP complex) for optimal expression. This conclusion is based on several lines of evidence: (1) overexpression of GDH1 can correct the growth defect of hap2 and hap3 mutants on ammonium sulfate as a nitrogen source, (ii) Northern (RNA) blot analysis shows that the steady-state level of GDH1 mRNA is strongly lowered in a hap2 mutant, (iii) expression of a GDH1-lacZ fusion is drastically reduced in hap mutants, (iv) NADP-GDH activity is several times lower in the hap mutants compared with that in the isogenic wild-type strain, and finally, (v) site-directed mutagenesis of two consensual HAP binding sites in the GDH1 promoter strongly reduces expression of GDH1 and makes it HAP independent. Expression of GDH1 is also regulated by the carbon source, i.e., expression is higher on lactate than on ethanol, glycerol, or galactose, with the lowest expression being found on glucose. Finally, we show that a hap2 mutation does not affect expression of other genes involved in nitrogen metabolism (GDH2, GLN1, and GLN3 encoding, respectively, the NAD-GDH, glutamine synthetase, and a general activator of several nitrogen catabolic genes). The HAP complex is known to regulate expression of several genes involved in carbon metabolism; its role in the control of GDH1 gene expression, therefore, provides evidence for a cross-pathway regulation between carbon and nitrogen metabolisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号