首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Solid-liquid phase behavior of binary fatty acid mixtures was investigated by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) for the mixture composed of oleic acid (OA) and stearic acid (SA) and that composed of OA and behenic acid (BA). The DSC results provided a monotectic type T-X phase diagram for these mixtures, from which it was suggested that the two fatty acid species are completely immiscible in a solid phase regardless of the two polymorphs of OA, i.e., alpha-form or gamma-form. The solid phase immiscibility was confirmed by the FT-IR observation that the spectra obtained for the mixtures correspond to the superposition of the two spectra for respective components. Thermodynamic analysis of liquidus line demonstrated that OA and SA form an ideal mixture in a liquid phase, whereas the mixing of OA and BA in a liquid phase is slightly non-ideal.  相似文献   

2.
We measured the influence of saturated and unsaturated free fatty acids on the permeability and partition of ions into 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers. The bilayer permeability was measured using the depletion of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1, 2-dihexadecanoyl-sn-glycero-3-phosphatidylethanolamine (N-NBD-PE) fluorescence as a result of its reduction by dithionite. We observed a distinct increase of dithionite permeability at the main gel-fluid phase transition of DMPC. When vesicles were formed from a mixture of DMPC and oleic acid, the membrane permeability at the phase transition was reduced drastically. Stearic acid and methyl ester of oleic acid have little effect. Similar results in the quenching of pyrene-PC in DMPC vesicles by iodide were obtained. Again, the increase of iodide partition into the lipid phase at the main phase transition of DMPC was abolished by the addition of unsaturated free fatty acids. Free fatty acids, in concentrations up to 5 mol%, do not abolish DMPC phase transition when measured by differential scanning calorimetry. It seems that unsaturated, but not saturated, free fatty acids reduce the lipid bilayer permeability to dithionite and iodide ions at the main phase transition of DMPC, without altering the thermodynamic properties of the bilayer.  相似文献   

3.
The gel to liquid-crystalline phase transition of aqueous dispersions of phospholipid mixtures was investigated by means of the repartition of the spin label 2,2,6,6-tetramethylpiperidine-I-oxyl between aqueous space and lipid hydrocarbon region. The dimyristoylphosphatidylcholine (DMPC)/dibehenoylphosphatidylcholine (DBPC) and dipalmitoylphosphatidylcholine (DPPC)/DBPC phase diagrams indicate gel phase immiscibility, whereas the distearoylphosphatidylcholine (DSPC)/DBPC phase diagram indicates non-ideal gel phase miscibility at low DBPC molar fractions. Aqueous dispersions of DMPC/DPPC/DBPC ternary mixtures show two distinct phase transitions, the first associated with the melting of a DMPC/DPPC phase and the second with the melting of a DBPC phase. Aqueous dispersions of DMPC/DSPC/DBPC ternary mixtures show to phase transitions at low DSPC molar fractions; the first is probably associated with the melting of a DMPC/DSPC phase, and the second with the melting of a DBPC/DSPC phase. At high DSPC molar fractions, only one phase transition is observed; this suggests that all the lipids are mixed in gel state membranes.  相似文献   

4.
Unsaturated fatty acids (UFAs) are known to lower the level of sterols in blood, which accounts for their cardioprotective effect. To understand the molecular basis of this effect, Langmuir monolayer studies have been performed. A series of UFAs differing in the length of the fatty acid chain and the number of double bonds (oleic acid, OA; linoleic acid, LA; stearidonic acid, SDA; eicosanoic acid, EA) were mixed with cholesterol and its more toxic oxidized derivative, 7‑ketocholesterol (7-KC), abundantly present in atheroma plaques. Strong attractive UFA-sterol interactions were attributed to the formation of “surface complexes”, in which sterol molecules are bound, thereby reducing the amount of free sterol molecules. It has been found that strength of interactions increases with the degree of unsaturation of the acyl chain in UFA molecule. The most attractive interactions correspond to mixtures with SDA containing 70 mol% of 7-KC and 50 mol% of cholesterol. In both cases, the formation of high stability complexes of, respectively, 2:1 and 1:1 sterol/SDA stoichiometry has been proposed. Other complexes of lower stability and 1:2 stoichiometry were postulated for chol (or 7-KC)/LA systems. The complexes of the lowest stability correspond to chol (or 7-KC) mixtures with OA and EA of 1:1 stoichiometry. In all the cases, the interactions of 7-KC with UFAs are more energetically favorable versus cholesterol. The elongation of the hydrophobic chain of UFAs decreased the interactions with the studied sterols. The obtained results can be related to different conformations of the fatty acids chains.  相似文献   

5.
Solid-liquid phase behavior was investigated for binary fatty acid mixtures composed of oleic acid (OA; cis-9-octadecenoic acid) and saturated fatty acids, lauric acid (LA; dodecanoic acid), myristic acid (MA; tetradecanoic acid), and palmitic acid (PA; hexadecanoic acid), by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). When the mixture was heated immediately after the solidification from the melt, the heat effect due to the gamma-to-alpha transformation of OA varied depending on the composition of the mixture. However, the mixture subjected to an annealing at the temperature slightly below the melting temperature provided the transformation at constant temperature which corresponds to the gamma-to-alpha transformation temperature of pure OA. This suggests that a solid phase formed by cooling of the melt of the mixture is not in an equilibrium state, but it relaxes to a stable solid during the annealing process. The T-X phase diagrams of these mixtures constructed from the DSC measurements demonstrate that the two fatty acid species are completely immiscible in a solid phase regardless of the type of polymorphs of OA, alpha- or gamma-form. According to a thermodynamic analysis of liquidus line basing on the regular solution model for the melt, the non-ideality of mixing tends to increase with the decrease in the acyl chain length of the saturated fatty acid, although the mixing is rather close to ideal.  相似文献   

6.
The interfacial properties of monomolecular films of stearic acid (SA) oleic acid (OA), linoleic acid (LA), ricinoleic acid (RA), 13(S)-hydroperoxyoctadeca-9Z,11E-dienoic acid (13-HPODE) and 13(S)-hydroxyoctadeca-9Z,11E-dienoic acid (13-HODE) were studied by recording the changes occurring in response to monomolecular film compression in their surface pressure and surface potential at the argon/water interface. The oxidized free fatty acids are more expanded than the parent non-oxidized free fatty acids, reflecting a higher hydrophilic-lipophilic balance. The lift-off values of the molecular area of 13-HODE, 13-HPODE and RA were 68, 74 and 106 A2 molecule(-1), respectively, as compared to 47 and 40 A2 molecule(-1) in the case of LA and OA, respectively. Variations in the molecular orientation of free fatty acids can result in large changes in the dipole moment which are not accompanied by appreciable changes in the surface pressure. In the case of the oxidized free fatty acids, the spontaneous desorption into the aqueous phase was found to increase at increasing surface pressures. The desorption rates of OA and LA increased dramatically in the presence of beta-cyclodextrin (beta-CD); whereas the presence of beta-CD only slightly increased the desorption rates of the oxidized free fatty acids.  相似文献   

7.
D A Wilkinson  J F Nagle 《Biochemistry》1979,18(19):4244-4249
Volumes of lipid dispersions as a function of temperature have been measured for two different kinds of binary mixtures of lecithins, (1) DMPC and DSPC and (2) DMPC and DC20PC. Emphasis was placed on DMPC-rich compositions so as to resolve ambiguities regarding solid-phase immiscibility in DMPC-DSPC mixtures. Special attention has been paid to problems of equilibration in the low-temperature phase and to methods of mixing the lipids. We find that there is no solid-solid immiscibility in DMPC-DSPC mixtures, although this system is close to exhibiting such immiscibility, and that DMPC-DC20PC mixtures exhibit pronounced solid immiscibility.  相似文献   

8.
In the present study, the effect of increasing concentrations of palmitic (PA, C16:0), stearic (SA, C18:0), oleic (OA, C18:1, n-9), linoleic (LA, C18:2n-6), docosahexaenoic (DHA, C22:6 n-3) and eicosapentaenoic (EPA, C20:5 n-3) acids on lymphocyte proliferation was investigated. The maximal non-toxic concentrations of these fatty acids for human lymphocytes in vitro were determined. It was also evaluated whether these fatty acids at non-toxic concentrations affect IL-2 induced lymphocyte proliferation and cell cycle progression. OA and LA at 25 microM increased lymphocyte proliferation and at higher concentrations (75 microM and 100 microM) inhibited it. Both fatty acids promoted cell death at 200 microM concentration. PA and SA decreased lymphocyte proliferation at 50 microM and promoted cell death at concentrations of 100 microM and above. EPA and DHA decreased lymphocyte proliferation at 25 and 50 microM being toxic at 50 and 100 microM, respectively. PA, SA, DHA and EPA decreased the stimulatory effect of IL-2 on lymphocyte proliferation, increasing the percentage of cells in G1 phase and decreasing the proportion of cells in S and G2/M phases. OA and LA caused an even greater pronounced effect. The treatment with all fatty acids increased neutral lipid accumulation in the cells but the effect was more pronounced with PA and DHA. In conclusion, PA, SA, DHA and EPA decreased lymphocyte proliferation, whereas OA and LA stimulated it at non-toxic concentrations.  相似文献   

9.
Isocaloric modification in the ratio of dietary polyunsaturated-to-saturated fatty acids influences intestinal uptake of actively and passively transported nutrients. This study was undertaken to determine which dietary fatty acid was responsible for these alterations in absorption. Adult female rats were fed isocaloric semisynthetic diets high in palmitic and stearic acids (SFA), oleic acid (OA), linoleic acid (LA), or linolenic acid (LNA). An in vitro technique was used to measure the uptake of varying concentrations of glucose as well as a series of fatty acids and cholesterol. Jejunal uptake of 40 mM glucose was highest in rats fed SFA and lowest in those fed LA; ileal glucose uptake was similar in OA, LA, and LNA, but was lowest in SFA. Jejunal uptake of medium-chain fatty acids (8:0-12:0) was higher in OA than in other diet groups; ileal uptake of medium-chain fatty acids was unaffected by diet. Jejunal and ileal uptake of 18:2 was higher in LNA than in SFA or OA; the uptake of the other long-chain saturated or unsaturated fatty acids was unchanged by diet. The ileal but not the jejunal uptake of cholesterol was increased in LA as compared with SFA or OA, and reduced in LNA as compared with LA. These transport changes were not explained by differences in the animals' food consumption, body weight gain, intestinal mass, or mucosal surface area. We postulate that these diet-induced transport alterations may be mediated via changes in brush border membrane phospholipid fatty acyl composition. Thus, intestinal transport of nutrients may be varied by isocaloric changes in the dietary content of individual fatty acids.  相似文献   

10.
Interaction of melittin with phosphatidylcholine molecules in pure vesicles, binary mixtures and a ternary mixture of dimyristoylphosphatidylcholine IDMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated by differential scanning calorimetry. Melittin binds preferentially with DMPC, and results in segregation of DMPC in binary mixtures of DMPC/DPPC and DMPC/DSPC and in a ternary mixture of DMPC/DPPC/DSPC. The results indicate that the hydrophobic part of peptide interacts preferentially with the phospholipid which has the same size of hydrophobic region or fatty acyl chains.  相似文献   

11.
The temperature-composition phase diagrams of dipalmitoylphosphatidylcholine (DPPC)/palmitic acid and distearoylphosphatidylcholine (DSPC)/stearic acid mixtures in excess water were recorded using high-sensitivity differential scanning calorimetry. New, slowly reversible phase transitions were found at 38° C in DPPC/palmitic acid mixtures at 0.4–0.9 mole fractions of palmitic acid and at 46° C in the DSCP/stearic acid binary. These transitions reveal gel-state metastability of the mixtures which is caused most probably by co-crystallization of the two lipids as it cannot be observed in the pure components. Both mixtures display azeotropic behavior at 2 fatty acids per 1 phospholipid. The physical reasons for such behavior have been analyzed theoretically in the framework of the Bragg-Williams and the UNIversal QUAsiChemical (UNIQUAC) approximations. This analysis shows that the azeotropic points in the phase diagrams are due to a combination of compound formation in the solid state and close to random mixing in the liquid state of the mixtures. UNIQUAC provides better fits to the experimental phase diagrams since it accounts also for the dimer-monomer character of the phospholipid/fatty acid mixtures. At fatty acid mole fractions greater than 0.65–0.7 the excess fatty acids phase separate from the compound phase. The stability of the compound phase domains at low fatty acid concentrations in relation to their possible physiological role has been discussed.  相似文献   

12.
This paper reports the results of our analysis of the impact high levels of de novo fatty acids have on the proportions of essential and non-essential fatty acids in human milk lipids. The data for seven fatty acids (linoleic, alpha-linolenic, arachidonic (AA), docosahexaenoic (DHA), palmitic, stearic and oleic) were derived from several studies conducted in Nigeria. The proportion by weight of each of these fatty acids was plotted versus the proportion of C10-14 fatty acids. As the proportion of C10-14 fatty acids increased from 15 to 65%, there was not a proportional decrease in the percentages of all seven fatty acids, but, instead, preferential incorporation of the essential fatty acids, AA and DHA into the triacylglycerol component of the milk. At the same time, the proportions of stearic and oleic acid declined by 69% and 86%, respectively. However, the proportions of linoleic acid, palmitic acid, DHA, AA and alpha-linolenic acid, in milk lipids decreased by only 44%, 40%, 39%, 28% and 2.3%, respectively. These observations indicate that as the contribution of C10-14 fatty acids increases, essential fatty acids are preferentially incorporated into milk triacylglycerols at the expense of oleic acid and stearic acid.  相似文献   

13.
Cell growth, lipid accumulation and cellular lipid composition of Yarrowia lipolytica growing on mixtures of industrial fats containing stearic, oleic, linoleic and palmitic acid have been studied. During growth, the strain incorporated oleic and linoleic acids more rapidly than the saturated fatty acids. Relatively high lipid accumulation (up to 0.44 g of lipids per g of dry matter) was observed when stearic acid was included in the culture medium. In contrast, substrates rich in oleic acid did not favor cellular lipid accumulation. The accumulated lipids, mainly composed of triacylglycerols (45-55% w/w), demonstrated a different total fatty acid composition compared with that of the substrate; in all cases, the microorganism showed the unusual capacity to increase its cellular stearic acid level, even if this fatty acid was not found in high concentrations in the substrate. This permitted the synthesis of interesting lipid profiles with high percentages of stearic acid and non-negligible percentages of palmitic and oleic acid, with a composition resembling that of cocoa-butter.  相似文献   

14.
AimsThis study was performed to elucidate whether mitogen-activated protein kinases (MAPKs) are involved in the modulation of the proliferation and differentiation of skeletal muscle cells by fatty acids.Main methodsC2C12 myoblasts were cultured in differentiation medium containing 2% horse serum for 3 days, and treated with each fatty acid. Phosphorylation levels of MAPKs were examined by immunoblot analysis.Key findingsThe mono-unsaturated fatty acids (MUFAs), oleic acid (OA) and n?6 polyunsaturated fatty acids (n?6 PUFAs), linoleic acid (LA), γ-linoleic acid (GLA), and arachidonic acid (AA) increased the proliferation of C2C12 cells. On the other hand, n?3 polyunsaturated fatty acids (n?3 PUFAs) and saturated fatty acids (SFs) did not affect the proliferation of C2C12 cells. In addition, the treatment of cis-9, trans-11 conjugated linoleic acid (c9,t11 CLA) showed an increased cell proliferation. However, trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) significantly inhibited cell proliferation. Treatment of C2C12 cells with LA, OA, and c9,t11 CLA increased phosphorylation levels of ERK1/2 and JNK during proliferation. During cell differentiation, OA, LA, and c9,t11 CLA stimulated differentiation of C2C12 cells, whereas t10,c12 CLA inhibited differentiation. We also found that OA, LA, and c9, t11 CLA increased phosphorylation level of ERK1/2, but not JNK during differentiation.SignificanceThese results suggest that fatty acids are able to modulate the proliferation and differentiation of skeletal muscle and MAPKs may be involved in the modulation of the proliferation and differentiation of skeletal muscle cells by fatty acids.  相似文献   

15.
A novel Delta5-desaturase-defective mutant was derived from an arachidonic acid-producing fungus, Mortierella alpina 1S-4, after treating the parental spores with N-methyl-N'-nitro-N-nitrosoguanidine. The mutant produced only a trace (about 1%) amount of arachidonic acid, and the ratio of dihomo-gamma-linolenic acid (DGLA) to total fatty acids in each lipid class was markedly high, accounting for as much as 60% in phosphatidylcholine. Under submerged batch culture conditions, the mutant produced 2.4 g of DGLA per liter (43.3% of total fatty acids) when grown at 28 degrees C for 7 days in a 5-liter jar fermentor. The other major (more that 1%) fatty acids were palmitic acid (21.2%), stearic acid (9.6%), oleic acid (14.3%), linoleic acid (4.4%), and gamma-linolenic acid (5.8%). About 80 mol% of the DGLA produced was found in triacylglycerol.  相似文献   

16.
Chronic ethanol exposure is known to affect deacylation-reacylation of membrane phospholipids (PL). In our earlier studies we have demonstrated that chronic exposure to ethanol (EtOH) leads to a progressive increase in membrane phospholipase A2 (PLA2) activity. In the current study, we investigated the effects of chronic EtOH exposure on the incorporation of different free fatty acids (FFAs) into membrane PL. The results suggest that the incorporation of fatty acids into four major PL varied from 9.6 fmol/min/mg protein for docosahexaenoic acid (DHA) into phosphatidylinositol (PI) to 795.8 fmol/min/mg protein for linoleic acid (LA) into phosphatidylcholine (PC). These results also suggest a preferential incorporation of DHA into PC; arachidonic acid (AA) into PI; oleic acid into phosphatidylethanolamine (PE) and PC; LA into PC and stearic acid into PE. Chronic EtOH exposure affected the incorporation of unsaturated fatty acid into PI, phosphatidylserine (PS) and PC. However, EtOH did not affect significantly the incorporation of any of the fatty acids (FA) studied into PE. No significant differences were observed with the stearic acid. It is suggested that acyltransferases may play an important role in the membrane adaptation to the injurious effects of EtOH.  相似文献   

17.
The lateral diffusion of a phospholipid probe is studied in bilayers of binary mixtures of dimyristoylphosphatidylcholine (DMPC)/cholesterol and distearoylphosphatidylcholine (DSPC)/cholesterol and in the ternary system DMPC/DSPC/cholesterol using fluorescence recovery after photobleaching. An approximate phase diagram for the ternary system, as a function of temperature and cholesterol concentration, was obtained using differential scanning calorimetry and the phase diagrams of the binary systems. This phase diagram is similar to those of the phospholipid/cholesterol binary mixtures. In bilayers where solid and liquid phases coexist, the diffusion results are interpreted in terms of phase percolation. The size of the liquid-phase domains is estimated using percolation theory. In the ternary system, addition of cholesterol up to approximately 20 mol% shifts the percolation threshold to lower area fractions of liquid, but the size of the liquid-phase domains does not change. Above approximately 20 mol% cholesterol, the liquid phase is always connected. The size of solid-phase domains clusters is estimated using a model recently developed (Almeida, P.F.F., W.L.C. Vaz, and T.E. Thompson. 1992. Biochemistry. 31:7198-7210). For cholesterol concentrations up to 20 mol%, the size of solid-phase domain units does not change. Beyond 20 mol%, cholesterol causes the size of the solid units to decrease.  相似文献   

18.
Milk was collected from 36 Nepalese women, 15 to 32 years of age, in order to investigate relationships between the proportions of intermediate chain-length (C10-C14) fatty acids and critical n-3 and n-6 polyunsaturated fatty acids in the milk lipids they were producing. Serum was also obtained from these lactating women and the fatty acid composition of their serum phospholipid fraction was determined and compared with that of the corresponding milk lipid fraction. Compared to women in technologically advanced parts of the world, the serum phospholipids of the Nepalese women contained nutritionally adequate proportions of linoleic acid (LA) (16.8%), alpha-linolenic acid (ALA) (0.53%), arachidonic acid (AA) (5.69%), and docosahexaenoic acid (DHA) (1.42%). However, although the milk lipids contained adequate proportions of ALA (1.81%), AA (0.43%), and DHA (0.23%), the lipids contained low to moderate percentages of LA (mean, 9.05%). Positive correlations were observed between the proportions of AA (P=0.001, r=0.50) and ALA (P=0.03, r=0.36) in the serum phospholipids and milk lipids of the women. As the proportion of C10-Cl4 fatty acids in the milk lipids increased from 10% to 40%, there was preferential retention of three critical n-3 and n-6 fatty acids (ALA, AA, and DHA) at the expense of two relatively abundant nonessential fatty acids, namely stearic acid and oleic acid. In addition, using fatty acid melting point data and the mol fraction of the 9 most abundant fatty acids in the milk, we estimated the mean melting point (MMP) of the milk lipids of the Nepalese women. The MMPs ranged from 29.3 to 40.5 degrees C (median, 35.5 degrees C). These results indicate that: 1) the levels of AA and ALA in the blood of lactating mothers influence the levels of these fatty acids in the milk they produce; 2) when the mammary gland produces a milk that is rich in C10-Cl4 fatty acids, it somehow regulates triglyceride synthesis in such a way as to ensure that the milk will provide the exclusively breast-fed infant with the amounts of the critical n-3 and n-6 fatty acids it requires for normal growth and development; and 3) the melting point of the milk lipid fraction is determined mainly by the mol % of the intermediate chain-length (C10-C14) fatty acids, oleic acid, linoleic acid, and alpha-linolenic acid.  相似文献   

19.
The effect of some fatty acids on the phase behavior of hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer was investigated with special interest in possible difference between saturated and unsaturated fatty acids. The phase behavior of hydrated DPPC bilayer was followed by a differential scanning calorimetry and a Fourier transform infrared spectroscopy. The addition of palmitic acid (PA) increased the bilayer phase transition temperature with the increase of the PA content in the mixture. In addition, DPPC molecules in gel phase bilayer became more rigid in the presence of PA compared with those in the absence of PA. This effect of PA on the phase behavior of hydrated DPPC bilayer is common to other saturated fatty acids, stearic acid, myristic acid, and also to unsaturated fatty acid with trans double bond, elaidic acid. Contrary to these fatty acids, oleic acid (OA), the unsaturated fatty acid with cis double bond in the acyl chain, exhibited quite different behavior. The effect of OA on the bilayer phase transition temperature was rather small, although a slight decrease in the temperature was appreciable. Furthermore, the IR spectral results demonstrated that the perturbing effect of OA on the gel phase bilayer of DPPC was quite small. These results mean that OA does not disturb the hydrated DPPC bilayer significantly.  相似文献   

20.
Polyunsaturated free fatty acids (PUFAs) participate in normal functioning of the cell, particularly in control intracellular cell signalling. As nutritional components they compose a human diet with an indirect promoting influence on tumourogenesis. The PUFAs level depends on the functional state of the membrane. This work is focused on changes only of free unsaturated fatty acids amount (AA – arachidonic acid, LA – linoleic acid, ALA – α-linolenic acid, palmitoleic acid (PA) and oleic acid) in cell membranes of colorectal cancer of pT3 stage, G2 grade without metastasis. Qualitative and quantitative composition of free unsaturated fatty acids in the membrane was determined by high-performance liquid chromatography. It was shown that the malignant transformation was accompanied by a decrease in amount of LA and ALA while arachidonic and oleic acids increased. It is of interest that free AA levels are elevated in colon cancer, as AA is the precursor to biologically active eicosanoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号