首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The phases of mitosis were examined in the columnar cells at the base of duodenal crypts in adult male mice given an intravenous injection of 3H-thymidine and sacrificed 20 min later. The duodenum was fixed by immersion into glutaraldehyde-formaldehyde, and the cells were examined in the electron microscope, with or without processing for radioautography. Interphase nuclei are characterized by the distribution of chromatin; aside from the cortical chromatin spread along nuclear envelope and nucleolus, there are chromatin accumulations that belong mainly in two different classes: 1) numerous chromatin "specks" ranging in size from about 5 to 70 nm and averaging 47 nm; 2) a few roughly circular or elongated chromatin "packets" measuring from 70 to 230 nm. Early prophase nuclei differ mainly by a large increase in the number of chromatin packets to 20-30 or more per nuclear profile; their average diameter is 128 nm. During mid-prophase, the chromatin packets enlarge gradually to an average 221 nm diameter. Between mid- and late prophase, there is a further increase in diameter to 679 nm. At metaphase, the packets take on the appearance of mature chromosomes, and their diameter increases to 767 nm. At anaphase, daughter chromosomes migrate to each pole, where they fuse into a compact chromatin mass. At telophase, nucleoplasmic areas progressively enlarge within the chromatin mass and separate strands of chromatin, which gradually become segmented into chromatin clumps. Counts of mitotic cells show a high proportion of prophase and telophase nuclei. Calculation from the counts yields the duration of the phases, that is, 5.6, 0.2, 0.1, and 1.6 hr, respectively, for pro-, meta-, ana-, and telophase. Finally, radioautography 20 min after 3H-thymidine injection shows labeling in 54% of the interphase nuclei, 85% of early prophase nuclei, and 73% of mid-prophase nuclei, while there is no label in late prophase, metaphase, anaphase and telophase nuclei. In confirmation of previous light microscopic work, the S stage of the cycle begins when a cell is in interphase and continues through the early prophase and part of mid-prophase. Moreover, the main sites of DNA synthesis are the chromatin specks during interphase and the cortical chromatin during early and mid-prophase. The chromosome condensation taking place in the meantime may be separated into two main steps: 1) a slow, moderate condensation of the chromatin packets during early and mid-prophase and 2) a rapid, pronounced one during late prophase and prometaphase when the packets become chromosomes.  相似文献   

3.
Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs) in nuclei of quiescent (G0) and cycling (early S-phase) human diploid fibroblasts (46, XY). Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes—independently of their gene density—were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding.  相似文献   

4.
5.
6.
C. P. Pussell 《Genetica》1984,62(3):193-201
A model for the arrangement of chromosomes in interphase nuclei is proposed. The model assumes that interphase chromosomes have a Rabl orientation (a relic telophase arrangement). During interphase and prophase telomeres are attached to the nuclear envelope often in pairs. The association of telomeres, homologous or nonhomologous, is based on similarity of arm lengths and occurs at the time the nuclear envelope reforms. At this stage arm lengths will vary to some extent due to the amount of uncoiling etc. The sequence of chromosomes resulting from telomere-telomere pairing may vary among cells, but the number of arrangements will be restricted by arm length similarities.The ramifications of this model on melotic pairing, the constant attachment of chromosomes to some structure throughout the cell cycle, the distribution of genes within nuclei, and chromosome evolution are raised.  相似文献   

7.
When vertebrate somatic cells are selectively irradiated in the nucleus during late prophase (<30 min before nuclear envelope breakdown) they progress normally through mitosis even if they contain broken chromosomes. However, if early prophase nuclei are similarly irradiated, chromosome condensation is reversed and the cells return to interphase. Thus, the G2 checkpoint that prevents entry into mitosis in response to nuclear damage ceases to function in late prophase. If one nucleus in a cell containing two early prophase nuclei is selectively irradiated, both return to interphase, and prophase cells that have been induced to returned to interphase retain a normal cytoplasmic microtubule complex. Thus, damage to an early prophase nucleus is converted into a signal that not only reverses the nuclear events of prophase, but this signal also enters the cytoplasm where it inhibits e.g., centrosome maturation and the formation of asters. Immunofluorescent analyses reveal that the irradiation-induced reversion of prophase is correlated with the dephosphorylation of histone H1, histone H3, and the MPM2 epitopes. Together, these data reveal that a checkpoint control exists in early but not late prophase in vertebrate cells that, when triggered, reverses the cell cycle by apparently downregulating existing cyclin-dependent kinase (CDK1) activity.  相似文献   

8.
V V Iuzhakov 《Tsitologiia》1983,25(9):1013-1018
Three types of the label localization in the nuclei of Chinese hamster fibroblasts, growing for 9 and 13 hours with 3H-thymidine, were detected using electron microscopic autoradiography: 1. The label is relatively evenly distributed throughout the karyoplasm. 2. Silver grains are concentrated as stripes through the nucleus; a high label density is also found in the nuclear periphery and around the nucleolus. 3. The label is mainly concentrated over the condensed chromatin adjacent to the nuclear membrane. The cells labeled in the first half of S-phase and selected with colchicine in postsynthetic phase of the 1st and the 2nd cycles are characterized by the second and third types of label distribution. In the cell nuclei fixed in the postsynthetic period of the second cycle, the label localization in stripes is discontinuous. The results indicate that during cell transition from S to G2 the newly-synthetized DNA changes its localization in the nucleus. It is suggested that the second type of label distribution depends on the interphase chromosome concentration in definite zones of the nuclear volume after S-phase termination, and the third type label localization is connected with the formation of prophase chromosomes.  相似文献   

9.
We examined the effect of cell cycle progression on various levels of chromosome organization in Drosophila. Using bromodeoxyuridine incorporation and DNA quantitation in combination with fluorescence in situ hybridization, we detected gross chromosomal movements in diploid interphase nuclei of larvae. At the onset of S-phase, an increased separation was seen between proximal and distal positions of a long chromsome arm. Progression through S-phase disrupted heterochromatic associations that have been correlated with gene silencing. Additionally, we have found that large-scale G1 nuclear architecture is continually dynamic. Nuclei display a Rabl configuration for only ∼2 h after mitosis, and with further progression of G1-phase can establish heterochromatic interactions between distal and proximal parts of the chromosome arm. We also find evidence that somatic pairing of homologous chromosomes is disrupted during S-phase more rapidly for a euchromatic than for a heterochromatic region. Such interphase chromosome movements suggest a possible mechanism that links gene regulation via nuclear positioning to the cell cycle: delayed maturation of heterochromatin during G1-phase delays establishment of a silent chromatin state.  相似文献   

10.
Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH-stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells' position within the G1 period. Data are presented that deal with three interrelated topics: (1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. (2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum-starved and contact-inhibited cell nuclei had the highest intensity, hydroxyurea-treated ones had the lowest intensity, while that of isoleucine-deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1.(3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.  相似文献   

11.
We have quantitatively studied the space-time dynamics of mitotic chromosome compaction in cultured amphibian cells. After collecting digital phase-contrast images we have done digital image analysis to study spatial correlations in density. We find a characteristic distance at which the strongest correlations occur, which provides a quantitative measure of the size of patches of dense chromatin during interphase and early prophase. Later in mitosis, this length corresponds to the thickness of prophase and metaphase chromosomes. We find that during interphase strong correlations exist at a few-micrometer length; during prophase this correlation length progressively drops as the chromosomes are compacted. Our data are explained by a model based on assembly of chromatin loops onto already fiberlike interphase chromosomes. To test this model we have microinjected cobalt hexamine trichloride into interphase nuclei and have observed the rapid condensation of the interphase chromatin into thick fibers with a spacing similar to the native-state interphase correlation length determined from our image analysis.  相似文献   

12.
13.
多头绒泡菌PhysarumpolycophalumSchw的营养生长阶段为没有细胞壁的原生质团(合胞体),内部众多的细胞核进行着同步的核内有丝分裂,本文电镜下研究了细胞核在有丝分裂周期中的结构变化。有丝分裂前期,染色质经松散改组和集缩形成染色体,核仁由中央移向边缘,并在近核膜处解体;中期核膜不消失,在核内形成纺锤体,核仁解体后的物质是不规则状散在于核内;有丝分裂后核膜的破裂处重新愈合,染色体解集缩成染色质,分散的核仁物质逐渐合并形成新的核仁。  相似文献   

14.
Kathleen Church 《Chromosoma》1977,64(2):143-154
During premeiotic interphase in the male grasshopper Brachystola magna the nucleus is divided into two nuclear envelope bound compartments, one containing the X chromosome and one the autosomes. — The autosomal compartment is characterized by an invaginated nuclear envelope with nuclear pores distributed throughout the envelope. In a polarized region of the cell the pericentric heterochromatic chromocenters are associated with the inner membrane of the envelope invaginations. In this species the chromosomes are telocentric (acrocentric?) and the pericentric heterochromatin marks the proximal chromosome ends. It is concluded that the chromosome ends are attached to the nuclear envelope at premeiotic interphase. — Comparisons are made between the present observations on chromosome arrangements and the nuclear envelope at premeiotic interphase to earlier observations at early meiotic prophase in the same species (Church, 1976). It is concluded that a rearrangement of both the proximal chromosome ends and the nuclear envelope occurs as cells enter meiotic prophase.  相似文献   

15.
Multinucleate (MN) cells were induced in PtK1 cells by colcemid treatment. A large percentage of cells developed nuclear asynchrony both in relation to DNA synthesis and mitosis within one cell cycle. Asynchrony could be traced even in metaphase and anaphase cells in which interphase nuclei, PCC of S-phase nuclei and less condensed prophase-like chromosomes could be observed along with normally condensed chromosomes. The occurrence of such abnormalities in these large MN cells may be explained on the basis of an uneven distribution of inducer molecules of DNA synthesis and mitosis due to cytoplasmic compartmentation. The less condensed form of all the chromosomes except chromosome 4 could be traced in asynchronous metaphase. The failure of the less condensed chromosomes to undergo complete condensation does not always appear to result from late entry of nuclei containing these chromosomes into G2 phase. It is likely that chromosome 4 carries gene(s) for chromosome condensation, as this chromosome itself never appears in a less condensed form. The inducers for chromosome condensation may not always be available at equal concentrations to all chromosomes located in separate nuclei, thus they may sometimes fail to undergo complete condensation before other nuclei reach the end of prophase, when the nuclear envelopes of all nuclei present in the cell break down simultaneously.  相似文献   

16.
To investigate the evolutionary conservation of higher order nuclear architecture previously described for mammalian cells we have analyzed the nuclear architecture of the simple polyp Hydra. These diploblastic organisms have large nuclei (8–10 m) containing about 3×109 bp of DNA organized in 15 chromosome pairs. They belong to the earliest metazoan phylum and are separated from mammals by at least 600 million years. Single and double pulse labeling with halogenated nucleotides (bromodeoxyuridine, iododeoxyuridine and chlorodeoxyuridine) revealed striking similarities to the known sequence of replication labeling patterns in mammalian nuclei. These patterns reflect a persistent nuclear arrangement of early, mid-, and late replicating chromatin foci that could be identified during all stages of interphase over at least 5–10 cell generations. Segregation of labeled chromatids led after several cell divisions to nuclei with single or a few labeled chromosome territories. In such nuclei distinct clusters of labeled chromatin foci were separated by extended nuclear areas with non-labeled chromatin, which is typical of a territorial arrangement of interphase chromosomes. Our results indicate the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals and suggest the existence of conserved mechanism(s) controlling this architecture.Abbreviations CT Chromosome territory - BrdU Bromodeoxyuridine - IdU Iododeoxyuridine - CldU Chlorodeoxyuridine Communicated by E.A. Nigg  相似文献   

17.
Numerous investigations in the last years focused on chromosome arrangements in interphase nuclei. Recent experiments concerning the radial positioning of chromosomes in the nuclear volume of human and primate lymphocyte cells suggest a relationship between the gene density of a chromosome territory (CT) and its distance to the nuclear center. To relate chromosome positioning and gene density in a quantitative way, computer simulations of whole human cell nuclear genomes of normal karyotype were performed on the basis of the spherical 1 Mbp chromatin domain model and the latest data about sequence length and gene density of chromosomes. Three different basic assumptions about the initial distribution of chromosomes were used: a statistical, a deterministic, and a probabilistic initial distribution. After a simulated decondensation in early G1, a comparison of the radial distributions of simulated and experimentally obtained data for CTs Nos. 12, 18, 19, and 20 was made. It was shown that the experimentally observed distributions can be fitted better assuming an initial probabilistic distribution. This supports the concept of a probabilistic global gene positioning code depending on CT sequence length and gene density.  相似文献   

18.
Chinese hamster cells (M3-1 line) in S phase were laser-UV-microirradiated (lambda, 257 nm) at a small site of the nucleus. Cells were fixed either immediately thereafter or in subsequent stages of the cell cycle, including prophase and metaphase. The microirradiated chromatin was visualized by indirect immunofluorescence microscopy using antibodies specific for UV-irradiated DNA. During the whole post-incubation period (4-15 h) immunofluorescent labelling was restricted to a small part of the nucleus (means, 4.5% of the total nuclear area). In mitotic cells segments of a few chromosomes only were labelled. Following microirradiation of chromosome segments in anaphase, immunofluorescent labelling was observed over a small part of the resulting interphase nucleus. A territorial organization of interphase chromosomes, i.e. interphase chromosomes occupying distinct domains, has previously been demonstrated by our group for the nucleus of Chinese hamster cells in G1. Our present findings provide evidence that this organization pattern is maintained during the entire cell cycle.  相似文献   

19.
Growth of nuclei of a marked population of cells was determined from G1 to prophase in roots of Vicia faba. The cells were marked by inducing them to become tetraploid by treatment with 0.002% colchicine for 1 hr. Variation in nuclear volume is large; it is established in early G1 and maintained through interphase and into prophase. One consequence of this variation is that there is considerable overlap between volumes of nuclei of different ages in the cell cycle; nuclear volume, we suggest, cannot be used as an accurate indicator of the age of the cell in its growth cycle. Nuclei exhibit considerable variation in their growth rate through the cell cycle. Of the marked population of cells, about 65% had completed a cell cycle 14--15 hr after they were formed. These tetraploid nuclei have a cell cycle duration similar to that of fast cycling diploid cells of the same roots. Since they do complete a cell cycle, at least 65% of the nuclei studied must come from rapidly proliferating cells, showing that variability in nuclear volumes must be present in growing cells and cannot be attributed solely to the presence, in our samples, of non-cycling cells.  相似文献   

20.
Large multinucleate (LMN) HeLa cells with more than 10–50 nuclei were produced by random fusion with polyethylene glycol. The number of nuclei in a particular stage of the cell cycle at the time of fusion was proportionate to the duration of the phase relative to the total cell cycle. The fused cells did not gain generation time. Interaction of various nuclei in these cells has been observed. The nuclei initially belonging to the G1-or S-phase required a much longer time to complete DNA synthesis than in mononucleate cells. Some of the cells reached mitosis 15 h after fusion, whereas others required 24 h. The cells dividing early, contained a larger number of initially early G1-phase nuclei than those cells dividing late. The former very often showed prematurely condensed chromosome (PCC) groups. In cells with a large number of advanced nuclei the few less advanced nuclei could enter mitosis prematurely. On the other hand, the cells having a large number of nuclei belonging initially to late S-or G2-phase took longer to reach mitosis. These nuclei have been taken out of the normal sequence and therefore failed to synthesize the mitotic factors and depended on others to supply them. Therefore the cells as a whole required a longer period to enter mitosis. Although the nuclei became synchronized at metaphase, the cells revealed a gradation in prophase progression in the different nuclei. At the ultrastructural level the effect of advanced nuclei on the less advanced ones was evident with respect to chromosome condensation and nuclear envelope breakdown. Less advanced nuclei trapped among advanced nuclei showed PCC and nuclear envelope breakdown prematurely, whereas mitotic nuclei near interphase or early prophase nuclei retained their nuclear envelopes for a much longer time. PCC is closely related to premature breakdown of the nuclear envelope. Our observations clearly indicate that chromosome condensation and nuclear envelope breakdown are two distinct events. Kinetochores with attached microtubules could be observed on prematurely condensed chromosomes. Kinetochores of fully condensed chromosomes often failed to become connected to spindle elements. This indicates that the formation of a functional spindle is distinct from the other events and may depend on different factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号