首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The essential methanogen enzyme Sep-tRNA:Cys-tRNA synthase (SepCysS) converts O-phosphoseryl-tRNACys (Sep-tRNACys) into Cys-tRNACys in the presence of a sulfur donor. Likewise, Sep-tRNA:Sec-tRNA synthase converts O-phosphoseryl-tRNASec (Sep-tRNASec) to selenocysteinyl-tRNASec (Sec-tRNASec) using a selenium donor. While the Sep moiety of the aminoacyl-tRNA substrates is the same in both reactions, tRNACys and tRNASec differ greatly in sequence and structure. In an Escherichia coli genetic approach that tests for formate dehydrogenase activity in the absence of selenium donor we show that Sep-tRNASec is a substrate for SepCysS. Since Sec and Cys are the only active site amino acids known to sustain FDH activity, we conclude that SepCysS converts Sep-tRNASec to Cys-tRNASec, and that Sep is crucial for SepCysS recognition.  相似文献   

2.
Asparagine, one of the 22 genetically encoded amino acids, can be synthesized by a tRNA-dependent mechanism. So far, this type of pathway was believed to proceed via two independent steps. A nondiscriminating aspartyl-tRNA synthetase (ND-DRS) first generates a mischarged aspartyl-tRNAAsn that dissociates from the enzyme and binds to a tRNA-dependent amidotransferase (AdT), which then converts the tRNA-bound aspartate into asparagine. We show herein that the ND-DRS, tRNAAsn, and AdT assemble into a specific ribonucleoprotein complex called transamidosome that remains stable during the overall catalytic process. Our results indicate that the tRNAAsn-mediated linkage between the ND-DRS and AdT enables channeling of the mischarged aspartyl-tRNAAsn intermediate between DRS and AdT active sites to prevent challenging of the genetic code integrity. We propose that formation of a ribonucleoprotein is a general feature for tRNA-dependent amino acid biosynthetic pathways that are remnants of earlier stages when amino acid synthesis and tRNA aminoacylation were coupled.  相似文献   

3.
A single base pair change has been found in a site corresponding to a regulatory region of the first enzyme in the proline biosynthetic pathway. This change alters feedback inhibition and is responsible for the synthesis of high levels of proline that enable Escherichia coli to withstand osmotic stress.  相似文献   

4.
The Escherichia coli su+3 tyrosine tRNA was shown recently to be a leucine-specific tRNA in Saccharomyces cerevisiae. This finding raises the possibility that some determinants for tRNA identity in E. coli may be different in S. cerevisiae. To investigate whether the fungal system is sensitive to the major determinant for alanine acceptance in E. coli, a single G3 . U70 base pair was introduced into the acceptor helix of the su+3 tyrosine tRNA. This substitution converts the identity of the E. coli suppressor in S. cerevisiae from leucine to alanine. Thus, as in E. coli, G3 . U70 is a strong determinant for alanine acceptance that can dominate over other features in a tRNA that might be recognized by alternative charging enzymes.  相似文献   

5.
《FEBS letters》2014,588(9):1808-1812
The human pathogen Staphylococcus aureus is an asparagine prototroph despite its genome not encoding an asparagine synthetase. S. aureus does use an asparaginyl-tRNA synthetase (AsnRS) to directly ligate asparagine to tRNAAsn. The S. aureus genome also codes for one aspartyl-tRNA synthetase (AspRS). Here we demonstrate the lone S. aureus aspartyl-tRNA synthetase has relaxed tRNA specificity and can be used with the amidotransferase GatCAB to synthesize asparagine on tRNAAsn. S. aureus thus encodes both the direct and indirect routes for Asn-tRNAAsn formation while encoding only one aspartyl-tRNA synthetase. The presence of the indirect pathway explains how S. aureus synthesizes asparagine without either asparagine synthetase.  相似文献   

6.
DNA base pair resolution by single molecule force spectroscopy   总被引:3,自引:1,他引:3       下载免费PDF全文
The forces that hold complementary strands of DNA together in a double helix, and the role of base mismatches in these, are examined by single molecule force spectroscopy using an atomic force microscope (AFM). These forces are important when considering the binding of proteins to DNA, since these proteins often mechanically stretch the DNA during their action. In AFM measurement of forces, there is an inherent instrumental limitation that makes it difficult to compare results from different experimental runs. This is circumvented by using an oligonucleotide microarray, which allowed a direct comparison of the forces between perfectly matched short oligonucleotides and those containing a single or double mismatch. Through this greatly increased sensitivity, the force contribution of a single AT base pair was derived. The results indicate that the contribution to forces from the stacking interactions is more important than that from hydrogen bonding.  相似文献   

7.
To elucidate the general constraints imposed on the structure of the D- and T-loops in functional tRNAs, active suppressor tRNAs were selected in vivo from a combinatorial tRNA gene library in which several nucleotide positions of these loops were randomized. Analysis of the nucleotide sequences of the selected clones demonstrates that among the randomized nucleotides, the most conservative are nucleotides 54 and 58 in the T-loop. In most cases, they make the combination U54-A58, which allows the formation of the normal reverse Hoogsteen base pair. Surprisingly, other clones have either the combination G54-A58 or G54-G58. However, molecular modeling shows that these purine–purine base pairs can very closely mimic the reverse Hoogsteen base pair U-A and thus can replace it in the T-loop of a functional tRNA. This places the reverse Hoogsteen base pair 54-58 as one of the most important structural aspects of tRNA functionality. We suggest that the major role of this base pair is to preserve the conformation of dinucleotide 59–60 and, through this, to maintain the general architecture of the tRNA L-form.  相似文献   

8.
A highly conserved protein motif characteristic of Class II aminoacyl tRNA synthetases was found to align with a region of Escherichia coli asparagine synthetase A. The alignment was most striking for aspartyl tRNA synthetase, an enzyme with catalytic similarities to asparagine synthetase. To test whether this sequence reflects a conserved function, site-directed mutagenesis was used to replace the codon for Arg298 of asparagine synthetase A, which aligns with an invariant arginine in the Class II aminoacyl tRNA synthetases. The resulting genes were expressed in E. coli, and the gene products were assayed for asparagine synthetase activity in vitro. Every substitution of Arg298, even to a lysine, resulted in a loss of asparagine synthetase activity. Directed random mutagenesis was then used to create a variety of codon changes which resulted in amino acid substitutions within the conserved motif surrounding Arg298. Of the 15 mutant enzymes with amino acid substitutions yielding soluble enzyme, 13 with changes within the conserved region were found to have lost activity. These results are consistent with the possibility that asparagine synthetase A, one of the two unrelated asparagine synthetases in E. coli, evolved from an ancestral aminoacyl tRNA synthetase.  相似文献   

9.
Elongation factor Tu (EF-Tu) exhibits significant specificity for the different elongator tRNA bodies in order to offset its variable affinity to the esterified amino acid. Three X-ray cocrystal structures reveal that while most of the contacts with the protein involve the phosphodiester backbone of tRNA, a single hydrogen bond is observed between the Glu390 and the amino group of a guanine in the 51-63 base pair in the T-stem of tRNA. Here we show that the Glu390Ala mutation of Thermus thermophilus EF-Tu selectively destabilizes binding of those tRNAs containing a guanine at either position 51 or 63 and that mutagenesis of the 51-63 base pair in several tRNAs modulates their binding affinities to EF-Tu. A comparison of Escherichia coli tRNA sequences suggests that this specificity mechanism is conserved across the bacterial domain. While this contact is an important specificity determinant, it is clear that others remain to be identified.  相似文献   

10.
The U8:A14 tertiary base pair of transfer RNAs (tRNAs) stabilizes the sharp turn from the acceptor stem to the dihydrouridine stem. This tertiary base pair is important for the overall L-shaped tRNA structure. Inspection of tRNA sequences shows that U8:A14 is highly conserved. However, variations of U8:A14 are found in natural sequences. This raises the question of whether all 16 permutations of U8:A14 can be accommodated by a single tRNA sequence framework and by the bacterial translational apparatus. Here we expressed the wild type and 15 variants of U8:A14 of an alanine tRNA amber suppressor in Escherichia coli and tested the ability of each to suppress an amber mutation. We showed that 12 of the 15 variants are functional suppressors (sup+) and 3 are nonfunctional (sup-). Of the 12 functional suppressors, the G8:G14 variant is the most efficient suppressor, whose suppression efficiency is indistinguishable from that of the wild type. Analysis of tRNA structure with chemical probes and the lead-cleavage reaction, however, showed a distinct difference between the G8:G14 variant and the wild type. Thus, two different structures of E. coli tRNAAla/CUA share an identical functional phenotype in protein synthesis. The remaining 11 sup+ variants with reduced suppression efficiencies are likely to have other structural variations. We suggest that the variations of these sup+ mutants are structurally and functionally accommodated by the bacterial translational apparatus. In contrast, the three sup- mutants harbor variations that alter the backbone structure in the corner of the L. These variations are likely to reduce the stability of the tRNA inside the cell or, among others, to interfere with the ability of the tRNA to functionally interact with elongation factor Tu and with the ribosome.  相似文献   

11.
12.
13.
Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNAIle organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNAIle affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNAIle synthesis under cellular conditions. Finally, the extent to which tRNAIle modulates activation and pre-transfer editing is independent of the intactness of its 3′-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3′-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body.  相似文献   

14.
The first sulfoximine-based inhibitor of human asparagine synthetase (ASNS) with nanomolar potency has been shown to suppress proliferation of asparaginase-resistant MOLT-4 cells in the presence of l-asparaginase. This validates literature hypotheses concerning the viability of human ASNS as a target for new drugs against acute lymphoblastic leukemia and ovarian cancer. Developing structure–function relationships for this class of human ASNS inhibitors has proven difficult, however, primarily because of the absence of rapid synthetic procedures for constructing highly functionalized sulfoximines. We now report conditions for the efficient preparation of these compounds by coupling sulfoxides and sulfamides in the presence of a rhodium catalyst. Access to this methodology has permitted the construction of two new adenylated sulfoximines, which were expected to exhibit similar binding affinity and better bioavailability than the original human ASNS inhibitor. Steady-state kinetic characterization of these compounds, however, has revealed the importance of a localized negative charge on the inhibitor that mimics that of the phosphate group in a key acyl-adenylate reaction intermediate. These experiments place an important constraint on the design of sulfoximine libraries for screening experiments to obtain ASNS inhibitors with increased potency and bioavailability.  相似文献   

15.
The nucleotide sequence of asparagine tRNA from brewer's yeast   总被引:1,自引:0,他引:1  
G Keith  G Pixa 《Biochimie》1984,66(9-10):639-643
The nucleotide sequence of asparagine tRNA from brewer's yeast has been determined using postlabeling methods. The primary structure is as follows: pG-A-C-U-C-C-A-U-G-m2G-C-C-A-A-G-D-D-G-G-D-D-A-A-G-G-C-m2 2G- U-G-C-G-A-C-U-G-U-U -t6A-A-psi-C-G-C-A-A-G-A-D-m5C-G-U-G-A-G-T-psi-C-A-m1A-C-C-C-U-C-A-C-U-G -G-G-G- U -C-G-C-C-A. Its anticodon G-U-U can recognize the two codons for asparagine.  相似文献   

16.
The important identity elements in tRNA(Gln) and tRNA(Asn) for bacterial GatCAB and in tRNA(Gln) for archaeal GatDE are the D-loop and the first base pair of the acceptor stem. Here we show that Methanothermobacter thermautotrophicus GatCAB, the archaeal enzyme, is different as it discriminates Asp-tRNA(Asp) and Asp-tRNA(Asn) by use of U49, the D-loop and to a lesser extent the variable loop. Since archaea possess the tRNA(Gln)-specific amidotransferase GatDE, the archaeal GatCAB enzyme evolved to recognize different elements in tRNA(Asn) than those recognized by GatDE or by the bacterial GatCAB enzyme in their tRNA substrates.  相似文献   

17.
18.
The nucleotide sequence of asparagine tRNA from Escherichia coli.   总被引:1,自引:3,他引:1       下载免费PDF全文
The nucleotide seuquence of Escherichia coli asparagine tRNA was determined to be pU-C-C-U-C-U-G-s4U-A-G-U-U-C-A-G-D-C-G-G-D-A-G-A-A-C-G-G-C-G-G-A-C-U-Q-U-U-t6A-A-phi-C-C-G-U-A-U-m G-U-C-A-C-U-G-G-T-phi-C-G-A-G-U-C-C-A-G-U-C-A-G-A-G-G-A-G-C-C-AOH. Its D-stem and D-loop have almost the same sequence as Escherichia coli aspartate tRNA.  相似文献   

19.
S J Park  Y M Hou  P Schimmel 《Biochemistry》1989,28(6):2740-2746
A single G3.U70 base pair in the acceptor helix is a major determinant of the identity of an alanine transfer RNA. Alteration of this base pair to A.U or G.C prevents aminoacylation with alanine. We show here that, at approximate physiological conditions (pH 7.5, 37 degrees C), high concentrations of the mutant A3.U70 species do not inhibit aminoacylation of a wild-type alanine tRNA. The observation suggests that, under these conditions, the G3 to A3 substitution increases Km for tRNA by more than 30-fold. Other experiments at pH 7.5 show that no aminoacylation of A3.U70, G3.C70, or U3.G70 mutant tRNAs occurs with substrate levels of enzyme. This suggests that kcat for these mutant tRNAs is sharply reduced as well and that the catalytic defect is not due to slow release of charged mutant tRNAs from the enzyme. Investigations were also done at pH 5.5, where association of tRNAs with synthetases is generally stronger and where binding can be conveniently measured apart from aminoacylation. Under these conditions, the binding of the A3.U70 and G3.C70 species is readily detected and is only 3-5-fold weaker than the binding of the wild-type tRNA. Although the A3.U70 species was demonstrated to compete with the wild-type tRNA for the same site on the enzyme, no aminoacylation could be detected. Thus, even when conditions are adjusted to obtain strong competitive binding, a sharp reduction in kcat prevents aminoacylation of a tRNA(Ala) species with a substitution at position 3.70.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号