首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluence-response relationships were examined for positive and negative phototropism induced by blue (450 nm) and ultraviolet-B (UV-B, 280 nm) light, respectively, in the Pilobolus crystallinus sporangiophore. Fluence-response curves for both blue and UV-B light obtained by changing the fluence by varying exposure time only showed the classical first and second positive bending. However, fluence-response curves obtained by varying the fluence rate were bell-shaped irrespective of the length of the exposure time. With increasing exposure time the peak became higher along the ascendant arm and the descendant arm was shifted toward the higher fluence. The Bunsen-Roscoe reciprocity law was valid only when the fluence was less than approx. 400 pmol·m-2 for both blue and UV-B light. Because the shapes of the fluence-response curves for blue and UV-B light were nearly the same, the photoreceptor systems for both blue and UV-B light are considered to be the same.Abbreviation UV-B ultraviolet-B  相似文献   

2.
Moritoshi Iino 《Planta》1988,176(2):183-188
The effects of pretreatments with red and blue light (RL, BL) on the fluence-response curve for the phototropism induced by a BL pulse (first positive curvature) were investigated with darkadapted maize (Zea mays L.) coleoptiles. A pulse of RL, giving a fluence sufficient to saturate phytochrome-mediated responses in this material, shifted the bell-shaped phototropic fluence-response curve to higher fluences and increased its peak height. A pulse of high-fluence BL given immediately prior to this RL treatment temporarily suppressed the phototropic fluence-response curve, and shifted the curve to higher fluences than induced by RL alone. The shift by BL progressed rapidly compared to that by RL. The results indicate (1) that first positive curvature is desensitized by both phytochrome and a BL system, (2) that desensitization by BL occurs with respect to both the maximal response and the quantum efficiency, and (3) that the desensitization responses mediated by phytochrome and the BL system can be induced simultaneously but develop following different kinetics. It is suggested that theses desensitization responses contribute to the induction of second positive curvature, a response induced by prolonged irradiation.Abbreviations BL blue light - RL red light CIW-DPB Publication No. 1001  相似文献   

3.
The lag period for the second positive curvature was examined inPilobolus crystallinus sporangiophores. The lag period for curvature development was 20–30 min at lower fluence rates than 6.32 nmol/m2s but greatly extended at higher fluence rates. When a 20-min symmetrical irradiation with blue light was applied before a 20-min unilateral blue light irradiation, sporangiophores bent as much as those unilaterally and continuously irradiated for 40 min. However, when a 20-min unilateral irradiation was followed by a 20-min symmetrical irradiation, sporangiophores did not show any curvature. That is, the reaction during the first 20 min of the lag period is independent of light direction. This light-direction-independent lag period is considered to be the duration required for adaptation. The lag period for phototropism was also extended when fluence rate was reduced after the start of irradiation. These results suggested that an adaptation process is involved in phototropism ofPilobolus.  相似文献   

4.
Sailer H  Nick P  Schafer E 《Planta》1990,180(3):378-382
Gravitropic stimulation of maize (Zea mays L.) seedlings resulted in a continuous curvature of the coleoptiles in a direction opposing the vector of gravity when the seedlings were rotated on a horizontal clinostat. The orientation of this response, however, was reversed when the gravitropic stimulation was preceeded by symmetric preirradiation with blue light (12.7 mol photons·m–2). The fluence-response curve of this blue light exhibited a lower threshold at 0.5 mol·m–2, and could be separated into two parts: fluences exceeding 5 mol·m–2 reversed the direction of the gravitropic response, whereas for a range between the threshold and 4 mol·m–2 a split population was obtained. In all cases a very strong curvature resulted either in the direction of gravity or in the opposite orientation. A minor fraction of seedlings, however, curved towards the caryopsis. Furthermore, the capacity of blue light to reverse the direction of the gravitropic response disappeared with the duration of gravitropic stimulation and it depended on the delay time between both stimulations. Thistonic blue-light influence appears to be transient, which is in contrast to the stability observed fortropistic blue-light effects.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

5.
The fluence-response curve for first positive phototropic curvtureof dark-grown maize coleoptiles is shifted to ten-fold higherfluences if the coieoptiles are irradiated with red light 2h prior to the phototropic induction with blue light. Fluence-responsecurves for this red-induced shift were obtained with unilateralred irradiations 2 h prior to inductive blue pulses of differentfluences. They differ significantly depending on whether thered light was given from the same side as or the opposite sideto the respective inductive blue pulse, thus demonstrating thatthe red light effect is a local response of the coleoptile.The fluence-response curves for an inductive blue pulse in theascending part were compared with those for an inductive bluepulse in the descending part of the fluence-response curve forblue light induced phototropism. They are quite different inthreshold of red light sensitivity and shape for irradiationsfrom both the same and the opposite sides. This offers evidencefor the hypothesis that at least two different photosystemsare involved in phototropism, and that they are modulated differentlyby a red light preirradiation. All these fluence-response curvesindicate that it is possible to increase the response in thecoleoptile, if the red light preirradiation is given oppositeto the inductive blue pulse. This is supported by blue lightfluence-response curves obtained after a weak unilateral redpreirradiation. (Received September 11, 1986; Accepted October 18, 1986)  相似文献   

6.
Dark-adapted coleoptiles of maize (Zea mays L.) were treated with red light (3min at 10.5 μmol m?2S?1) and were Stimulated, after a dark interval, with a pulse of unilateral blue light to induce phototropism. Phototropic fluence-response curves were obtained in this way for different dark intervals. It was confirmed that the bell-shaped fluence-response curve for the first pulse-induced positive phototropism (FPIPP) shifts to higher fluences following the red-light treatment, the maximal shift being achieved at a dark interval of 2h. We found, however, that the two arms of the Fluence-response curve do not shift synchronously. The shift of the descending arm to higher fluences began at 15 min. The ascending arm showed a slight shift to lower fluences before a greater shift to higher flucnces. the change of the shift direction occurring at 30–40min. Accordingly, the fluence-response curve obtained for a 30 min dark interval was comparatively wide. Although dark-adapted coleoptiles showed only fPIPP, another bell-shaped fluence-response curve, representing the second pulse-induced positive phototropism (sPIPP), appeared gradually after the red-light treatment. These changes of the phototropic fluence– respnse curve following exposure to red light are likely to have adaptive values because they favour phototropism under brighter light.  相似文献   

7.
A K Janoudi  K L Poff 《Plant physiology》1993,101(4):1175-1180
Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs.  相似文献   

8.
Iino  Moritoshi  Briggs  Winslow R.  Schäfer  Eberhard 《Planta》1984,160(1):41-51
Unilateral irradiation with red light (R) or blue light (BL) elicits positive curvature of the mesocotyl of maize (Zea mays L.) seedlings raised under R for 2 d from sowing and kept in the dark for 1 d prior to curvature induction. The fluenceresponse curve for R-induced mesocotyl curvature, obtained by measuring curvature 100 min after phototropic induction, shows peaks in two fluence ranges, designated first positive range (from the threshold to the trough), and second positive range (above the trough). The fluence-response curve for BL is similar to that for R but shifted two orders of magnitude to higher fluences. Blue light elicits the classical first positive curvature of the coleoptile, whereas this response is not found with R. Positive mesocotyl curvature induced by either R or BL is eliminated by R given from above just before the unilateral irradiation, whereas BL-induced coleoptile curvature is not eliminated. The above results collectively offer evidence that phototropic curvature of the mesocotyl is induced by R-sensitive photosystem(s). Mesocotyl curvature in the second positive range is reduced by vertical far-red light (FR) applied after phototropic induction with R, but is not affected by FR applied before R. Unilateral irradiation with FR following vertical irradiation with a high R fluence leads to negative curvature of the mesocotyl. It is concluded that mesocotyl curvature in the second positive range results from a gradient in the amount of the FR-absorbing form of phytochrome (Pfr) established across the plant axis. Mesocotyl curvature in the first positive range is inhibited by vertical FR given either before or after phototropic induction with R. Since the FR used here is likely to produce more Pfr than the very low fluences of R eliciting the mesocotyl curvature in the first positive range, it is assumed that FR reduces the response in this case by adding Pfr at both sides of the plant axis. By rotating seedlings on a clinostat with its axis horizontal, the kinetics of mesocotyl curvature can be studied in the absence of a counteracting gravitropic response. On the clinostat, the R-induced mesocotyl curvature develops after a lag, through two successive phases having different curvature rates, the late phase is slower than the early phase. Negative curvature of the coleoptile can be induced by either R or BL; the BL-induced negative curvature is found at fluences higher than those giving positive curvature. The clinostat experiments show that the negative coleoptile curvature induced by either R or BL is a gravitropic compensation for positive mesocotyl curvature.Abbreviations BL blue light - FR far-red light - Pfr phytochrome in the far-red-absorbing form - Pr phytochrome in the red-absorbing form - R red light C.I.W.-D.P.B. Publication No. 824  相似文献   

9.
The possible correlation between blue light-dependent phosphorylation of a 116-kD protein and phototropic responses of etiolated oat (Avena sativa L.) seedlings was tested by a micromethod for protein phosphorylation. Quantitation of the basipetal distribution of this protein showed that the in vitro 32p phosphorylation values declined exponentially from tip to node, with more than 50% of the total label being found in the uppermost 5 mm. Nonsaturating preirradiation of the coleoptiles in vivo resulted in partial phosphorylation with endogenous ATP. Subsequent in vitro phosphorylation under saturating irradiation allowed the determination of the degree of in vivo phosphorylation. Unilateral preirradiation resulted in higher in vivo phosphorylation on the irradiated than on the shaded side of the coleoptile. The fluence-response curve for the difference in phosphorylation between both sides of the coleoptile resembles the fluence-response curve for first-positive phototropic curvature, although it is shifted by two orders of magnitude to higher fluences. Possible reasons for this shift are discussed. In the coleoptile base the phosphorylation gradient across the coleoptile becomes larger with increasing time of irradiation at a constant fluence. Thus, phosphorylation of the 116-kD protein, in accordance with second-positive phototropic curvature, does not obey the Bunsen-Roscoe reciprocity law.  相似文献   

10.
Phototropism of Avena sativa L. has been characterized using a clinostat to negate the gravitropic response. The kinetics for development of curvature was measured following induction by a single pulse of blue light (BL), five pulses of BL at 20-min intervals, and this same pulsed-light regime following a 2-h red light (RL) pre-irradiation. A final curvature of about 14° is expressed within 180 min following the single pulse; a final curvature of about 62° in about 240 min following five pulses without pre-irradiation; and a curvature of over 125° in 360 min following five pulses after the RL pre-irradiation. For seedlings not pre-irradiated, the final curvature to five pulses of BL at a total fluence of 9.4 pmol·cm-2 increases with time of darkness between pulses up to 15 min; with seedlings pre-irradiated with RL, curvature increased more slowly with time of darkness between pulses to a maximum at 35 min. The final curvature induced by a constant fluence of 9.4 pmol·cm-2 increases linearly with time between the first pulse and last pulse of a five-pulse sequence. The curvature induced by a single BL pulse with a 5-min RL co-irradiation increases with fluence to a maximum of about 60° at about 10 pmol·cm-2, and then decreases to 0° at about 200 pmol·cm-2. Curvature induced by five BL pulses following a 2-h RL pre-irradiation increased with fluence from a threshold of about 0.05 pmol·cm-2 to a maximum of 90° at about 10 pmol·cm-2, and then gradually decreased with fluence to 50° at 1 000 pmol·cm-2. Based on these data, it is concluded that the initial photoproduct formed by a BL pulse has a limited lifetime, that there is a kinetic limitation downstream of the photoreceptor pigment for phototropism, and that the additivive effect of pulsed BL is distinct from the potentiating effect of RL on phototropism. Thus, any degree of curvature from 0° to over 90° may be induced by a fluence in the ascending arm of what is traditionally called the first positive phototropic response.Abbreviations BL blue light - RL red light  相似文献   

11.
The relationship between the amount of light and the amount of response for any photobiological process can be based on the number of incident quanta per unit time (fluence rate-response) or on the number of incident quanta during a given period of irradiation (fluence-response). Fluence-response and fluence rate-response relationships have been measured for second positive phototropism by seedlings of Arabidopsis thaliana. The fluence-response relationships exhibit a single limiting threshold at about 0.01 micromole per square meter when measured at fluence rates from 2.4 × 10−5 to 6.5 × 10−3 micromoles per square meter per second. The threshold values in the fluence rateresponse curves decrease with increasing time of irradiation, but show a common fluence threshold at about 0.01 micromole per square meter. These thresholds are the same as the threshold of about 0.01 micromole per square meter measured for first positive phototropism. Based on these data, it is suggested that second positive curvature has a threshold in time of about 10 minutes. Moreover, if the times of irradiation exceed the time threshold, there is a single limiting fluence threshold at about 0.01 micromole per square meter. Thus, the limiting fluence threshold for second positive phototropism is the same as the fluence threshold for first positive phototropism. Based on these data, we suggest that this common fluence threshold for first positive and second positive phototropism is set by a single photoreceptor pigment system.  相似文献   

12.
Neumann R  Iino M 《Planta》1997,201(3):288-292
Phototropism of rice (Oryza sativa L.) coleoptiles induced by unilateral blue light was characterized using red-light-grown seedlings. Phototropic fluence-response relationships, investigated mainly with submerged coleoptiles, revealed three response types previously identified in oat and maize coleoptiles: two pulse-induced positive phototropisms and a phototropism that depended on stimulation time. The effective ranges of fluences and fluence rates were comparable to those reported for maize. Compared with oats and maize, however, curvature responses in rice were much smaller and coleoptiles straightened faster after establishing the maximal curvature. When stimulated continuously, submerged coleoptiles developed curvature slowly over a period of 6 h, whereas air-grown coleoptiles, which showed smaller phototropic responsiveness, established a photogravitropic equilibrium from about 4 h of stimulation. The plot of the equilibrium angle against log fluence rates yielded a bell-shaped optimum curve that spanned over a relatively wide fluence-rate range; a maximal curvature of 25° occurred at a fluence rate of 1 μmol · m−2 · s−1. This optimum curve apparently reflects the light sensitivity of the steady-state phototropic response. Received: 28 June 1996 / Accepted: 30 July 1996  相似文献   

13.
H. Yatsuhashi  A. Kadota  M. Wada 《Planta》1985,165(1):43-50
An action spectrum for the low-fluencerate response of chloroplast movement in protonemata of the fern Adiantum capillus-veneris L. was determined using polarized light vibrating perpendicularly to the protonema axis. The spectrum had several peaks in the blue region around 450 nm and one in the red region at 680 nm, the blue peaks being higher than the red one. The red-light action was suppressed by nonpolarized far-red light given simultaneously or alternately, whereas the bluelight action was not. Chloroplast movement was also induced by a local irradiation with a narrow beam of monochromatic light. A beam of blue light at low energy fluence rates (7.3·10-3-1.0 W m-2) caused movement of the chloroplasts to the beam area (positive response), while one at high fluence rates (10 W m-2 and higher) caused movement to outside of the beam area (negative response). A red beam caused a positive response at fluence rates up to 100 W m-2, but a negative response at very high fluence rates (230 and 470 W m-2). When a far-red beam was combined with total background irradiation with red light at fluence rates causing a low-fluence-rate response in whole cells, chloroplasts moved out of the beam area. When blue light was used as background irradiation, however, a narrow far-red beam had no effect on chloroplast distribution. These results indicate that the light-oriented movement of Adiantum chloroplasts is caused by red and blue light, mediated by phytochrome and another, unidentified photoreceptor(s), respectively. This movement depends on a local gradient of the far-red-absorbing form of phytochrome or of a photoexcited blue-light photoreceptor, and it includes positive and negative responses for both red and blue light.Abbreviations BL blue light - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - UV ultraviolet  相似文献   

14.
At fluence rates below 45 W· m-2 cells of the flagellate stage of Haematococcus lacustris react only positively phototactically with a rather high degree of orientation (indicated by r values up to 0.66 with the Rayleigh test). The directedness of orientation decreases with decreasing irradiance. The degree of directedness of the phototactic response depends on the intensity of preirradiation: Low light intensity applied after strong light application results in a dark reaction (low r values), low light given after darkness stimulates a rather high degree of directedness of positive phototaxis. Weak blue light (=483 nm; 0.4 W · m-2) stimulates positive phototactic response, whereas comparable red light (=658 nm; 0.5 W · m-2) does not.Cells which were grown in a medium containing 10-4 M Norflurazon (effective in inhibition of carotenoid biosynthesis) although maintaining motility completely lose the ability to react positively phototactically. The possible role of carotenoids in the phototactic orientation is discussed.  相似文献   

15.
M. Iino 《Planta》1987,171(1):110-126
Blue-light-induced phototropism of maize (Zea mays L.) coleoptiles was studied with a view to kinetic models. Red-light-grown plants were used to eliminate complication arising from the activation by blue light of phytochrome-mediated phototropism. In the first part, mathematical models were developed to explain the phototropic fluence-response data, which were obtained for the responses induced by a single unilateral pulse (30 s) and those induced by a unilateral pulse (30 s) given immediately after a bilateral pulse (30 s, fixed fluences). These data showed bell-shaped fluence-response curves, characteristic of first positive curvature. Modelling began with the assumptions that the light gradient plays a fundamental role in phototropism and that the magnitude of the response is determined by the gradient, or the concentration difference, in a photoproduct between the irradiated and the shaded sides of the tissue. Minimal mathematical models were then derived, by defining chemical kinetics of the photoreaction and introducing the minimum of parameters needed to correlate the incident fluencerate to the functional fluence-rates within the tissue, the functional fluence-rate to the rate constant of the photoreaction, and the photoproduct concentration difference to the curvature response. The models were tested using a curve-fitting computer program. The model obtained by assigning first-order kinetics to the photoreaction failed to explain the fluence-response data, whereas application of second-order kinetics led to a successful fit of the model to the data. In the second part, temporal aspects of the photosystem were examined. Experimental results showed that a high-fluence bilateral pulse eliminated the bell-shaped fluence-response curve for an immediate unilateral pulse, and that the curve gradually reappeared as the time for unilateral stimulation elapsed after the bilateral pulse. The model based on a second-order photoreaction could be extended to explain the results, with assumed changes in two components: the concentration of the reactant for the photoproduct, and the light-sensitivity of the reaction. The reactant concentration, computed with the curvefitting program, showed a gradual increase from zero to a saturation level. This increase was then modelled in terms of regeneration of the reactant from the photoproduct, with an estimated first-order rate constant of about 0.001·s-1. The computed value for the constant reflecting the light-sensitivity showed a sharp decline after the high-fluence pulse, followed by a gradual return to the initial level. From these analytical results, the appearance of second positive curvature was predicted.Abbreviations FPC first positive curvature - SPC second positive curvature CIW-DPB publication No. 884  相似文献   

16.
Dithiothreitol (DTT), an inhibitor of violaxanthin de-epoxidation and zeaxanthin formation in chloroplasts, inhibited blue-light-stimulated stomatal opening in epidermal peels of Vicia faba L. in a concentration-dependent fashion. Complete inhibition was observed at 3 mM DTT. The DTT effect was specific for the stomatal response to blue light, and the red-light-stimulated opening, which depends on photosynthetic reactions in the guard cells, was unaffected. Preirradiation of stomata in epidermal peels with increasing photon fluence rates of red light, prior to an incubation in 10 mol·m-2·s-1 of blue light and 100 mol·m-2·s-1 red light, resulted in a DTT-sensitive, blue-light-stimulated opening that was proportional to the fluence rate of the red light pre-treatment. Guard cells in epidermal peels and guard-cell protoplasts irradiated with red light showed increases in their zeaxanthin content that depended on the fluence rate of red light, or on the incubation time. The increases in zeaxanthin concentration were inhibited by DTT. The obtained results indicate that zeaxanthin could function as a photoreceptor mediating the stomatal responses to blue light.Abbreviation DTT dithiothreitol This work was supported by grants from the National Science Foundation and the US Department of Energy to E.Z.  相似文献   

17.
P. Kunzelmann  M. Iino  E. Schäfer 《Planta》1988,176(2):212-220
The lateral fluence-rate gradients in unilaterally irradiated maize (Zea mays L.) coleoptiles were calculated on the basis of the proportions of P fr (far-red-absorbing form of phytochrome) measured spectroscopically in transverse slices of the coleoptiles (top 1 cm). The results showed the occurrence of significant gradients that are wavelength-dependent. The gradient at 449 nm was steeper than those measured at 516, 534 and 551 nm, which were steeper than that measured at 665 nm. The ratios between the sides proximal and distal to the light source were, for example, 1:0.12 (449 nm), 1:0.23 (534 nm), and 1:0.28 (665 nm). Fluence-response curves for coleoptile phototropism (first positive curvature produced by less than 100 s unilateral irradiation) were measured at 449, 516, 534 and 551 nm. Comparison of the threshold fluences indicated that the responsiveness to 551 nm is about 104.8 less than that to 449 nm. Increasing wavelengths led to a decrease in maximal curvature, which correlated with the decrease of the fluence-rate ratios between the proximal and distal sides. Phototropic fluence-response curves were also measured using bilateral irradiation (449 nm). In one set of experiments, the fluence ratio was kept constant (either 1:1/2, 1:1/4 or 1:1/16) and the total fluence was varied, and in the other set the fluence applied to one side was kept constant and the fluence ratio was varied. A simple model based on the assumption that only one photoreaction occurs, and that the response is a function of the difference between the proximal and distal sides in the local photoreceptor action was tested. A fluence-response curve for this local photoreceptor action was calculated based on the fluence-rate ratio and the phototropic fluence-response curve measured for 449 nm. This curve was used, in conjunction with the measured fluence-rate ratios, as a basis for calculating phototropic fluence-response curves for other wavelengths and those for 449 nm obtained with bilateral irradiation. The calculated fluence-response curves showed excellent agreement with the experimental data. It is concluded that the threshold for maize coleoptile phototropism reflects the apparent photoconversion cross-section of the blue-light receptor whereas the maximal curvature depends on the steepness of the light gradient across the coleoptile.Abbreviations and symbols I(x) fluence rate at the depth x - P fr phytochrome (far-red absorbing) - P r phytochrome (red absorbing) - P tot total phytochrome (P r+P fr) - photoconversion cross-section  相似文献   

18.
Galland P 《Planta》1998,205(2):269-276
Phototropism experiments were done with sporangiophores of the fungus Phycomyces blakesleeanus to characterize the interaction between far-UV, blue and red light. Far-UV light elicits negative phototropism (bending away from the light source) while blue light elicits positive phototropism (bending toward the light source). In contrast, red light above 600 nm is phototropically inert. Phototropism was analyzed with light regimens of bilateral or unilateral irradiation with far-UV and blue light. Under bilateral irradiation, in which the two light sources were facing each other, blue light partially inhibited the far-UV-elicited phototropism. A fluence-response curve for this inhibition showed that blue light was maximally effective at fluence rates which exceeded 3 to 57 times that of the far-UV. Tonic red light, which was given from above, abolished to a large extent the antagonistic action of blue light. With a regimen of unilateral irradiation, i.e. when far-UV and blue light were given from the same side, a phototropic balance could be achieved with approximately equal fluence rates of blue and UV light. Above or below this critical balance point the bending was either negative or positive. In this setup the effect of tonic red light was complex. First, it caused an enhancement of the positive or negative bending, and second, it caused at some fluence rates a sign reversal from positive to negative phototropism. The balance point itself was only marginally affected. The data cannot be explained on the basis of a single photoreceptor and support the previous notion of separate far-UV and blue-light receptors. The antagonism between these two receptors probably occurs on the level of a red-light-absorbing receptor intermediate. Received: 16 November 1997 / Accepted: 18 December 1997  相似文献   

19.
T. I. Baskin 《Planta》1986,169(3):406-414
First positive phototropism of the third internode of intact, 5-d-old pea (Pisum sativum L.) seedlings, grown under continuous, dim red light, showed maximal response following a photon fluence of 3 mol·m-2 blue light. Greater or lesser fluences (with irradiation time 100 s or less) caused less bending, no response being detectable above 300 or below 0.03 mol·m-2. Bilateral irradiation with blue light caused no detectable inhibition of growth rate over that range of fluences. The linear nutation of the pea third internode was shown to be driven by a balanced oscillation of growth rate such that the overall growth rate was little changed during the oscillation. Phototropic stimulation changed neither the amplitude nor the period of nutation. Nutation and phototropism probably regulate growth independently. Phototropism in response to the optimal blue light fluence was caused by concomitant depressed growth on the irradiated side and stimulated growth on the shaded side of the bending internode. These results are consistent with the Cholodny-Went hypothesis which states that unilateral blue light induces a lateral redistribution of a growth regulator.Abbreviations R red light - BL blue light Carnegie Institution, Department of Plant Biology paper No. 921  相似文献   

20.
P. Galland  A. Palit  E. D. Lipson 《Planta》1985,165(4):538-547
The relationship between phototropism and the light-growth response of Phycomyces blakesleeanus (Burgeff) sporangiophores was investigated. After dark adaptation, stage-IVb sporangiophores were exposed to short pulses of unilateral light at 450 nm wavelength. The sporangiophores show a complex reaction to pulses of 30 s duration: maximal positive bending at 3·10-4 and 10-1 J m-2, but negative bending at 30 J m-2. The fluence dependence for the light-growth response also is complex, but in a different way than for phototropism; the first maximal response occurs at 1.8·10-3 J m-2 with a lesser maximum at 30 J m-2. A hypertropic mutant, L85 (madH), lacks the negative phototropism at 30 J m-2 but gives results otherwise similar to the wild type. The reciprocity rule was tested for several combinations of fluence rates and pulse durations that ranged from 1 ms to 30 s. Near the threshold fluence (3·10-5 J m-2), both responses increase for pulse durations below 67 ms and both have an optimum at 2 ms. At a fluence of 2.4·10-3 J m-2, both responses decrease for pulse durations below 67 ms. The hypertropic mutant (madH), investigated for low fluence only, gave similar results. In both strains, the time courses for phototropism and light-growth response, after single short pulses of various durations, show no clear correlation. These results imply that phototropism cannot be caused by linear superposition of localized light-growth responses; rather, they point to redistribution of growth substances as the cause of phototropism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号