首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1.  In an arena, female Acheta domesticus, which walked directly to a standard model calling song (CS) in a pretest, displayed angular deviations and complete 360° circling following unilateral occlusion of the posterior and anterior tympana. Following removal of the occlusion, the crickets once again oriented directly to the sound source (Fig. 1). Following unilateral removal of the tibia of a prothoracic leg just distal to the ear, crickets oriented directly to a standard CS. Unilateral leg amputation just proximal to the ear caused angular deviations and circling which was similar to that following occlusion of an ear (Fig. 2).
2.  Thresholds of auditory interneurons increased dramatically (to greater than 85 dB) following occlusion of the ear which provides excitatory input to these neurons. Removal of the occlusion restored responsiveness (Fig. 3).
3.  The mean number of complete turns by a cricket with one ear occluded is greatest in response to syllable periods that are most attractive and thus can be used as a measurement of the relative attractiveness of the CS presented (Figs. 4, 5). Females that did not significantly discriminate between different syllable periods before unilateral occlusion of an ear, discriminated between CS syllable periods by their degree of circling following occlusion.
  相似文献   

2.
Summary Phonotactic behavior was studied in male crickets,Teleogryllus oceanicus. Tethered flying males were presented with electronically synthesized calling song models in a two-choice phonotaxis assay, and their song preferences were determined and compared with previous findings for females.Males are poorer at discriminating between songs than females; they do not display choice behavior as frequently as females, and the choices they do make are not as consistent as those of females (Figs. 3, 4). T. oceanicus calling song is composed of rhythmically different chirp and trill sections. The selectivity of males for these two components differs from that of females. Females prefer chirp to trill, but the opposite is true for males (Fig. 5B-F). Males are similar to females in that they prefer either a conspecific song model or its separate components to a heterospecific model (Fig. 5A, G, H).Behavioral and neural implications of these findings are discussed.  相似文献   

3.
Summary Calling song with a carrier frequency of 5 kHz evokes positive phonotaxis in female crickets,Gryllus bimaculatus, when presented at an azimuth. In contrast, a continuous tone of 4.7 kHz in the same position when paired with calling song from above leads to negative phonotaxis. Under open-loop conditions, when a tethered animal runs on a paired tread wheel, characteristic curves are produced with the stable equilibrium point towards or away from the stimulus, respectively (Fig. 3).In order to understand this sign reversal at the neuronal level, directional characteristics of the ascending acoustic inter neurons AN1 and AN2 were measured using extracellular recordings from the cervical connectives.Taking the mean spike rate of the interneurons as a measure for their excitation, the function relating response magnitude to stimulus direction for calling song corresponds well to the behavioural characteristic curve (Fig. 5). The response function obtained using a continuous tone with simultaneous presentation of calling song from above is similar (Fig. 5) and hence does not correspond to the inverse behavioural characteristic curve.However, consideration of the extent to which the temporal parameters of the calling song (syllables and chirps) are reflected in the neuronal response (amplitudes of the Fourier components) leads to characteristic curves for AN1 and AN2 which are in good agreement with the behaviour for stimulation with calling song as well as for the continuous tone experiment (Fig. 8). In addition, the neural response curves correspond to the behaviour in showing smaller amplitudes when a continuous tone rather than the calling song is presented on the horizon (Fig. 8).From these data we conclude that the activity in interneurons AN1 and AN2 does not directly guide orientation in mating behaviour but first is filtered by a mechanism tuned to the frequency of syllables and/or chirps. According to this hypothesis recognition of conspecific song and localization proceed sequentially inGryllus.  相似文献   

4.
5.
6.
7.
ABSTRACT. Male Australian field crickets (Teleogryllus commodus , Walker) reared in LD 12:12 h were transferred to LL at different developmental stages and the timing of their circadian calling song rhythm was analysed in regard to the previous zeitgeber. The phase settings for the onset and end of activity were similar in crickets experiencing the LD/LL transition: (i) 3–52 days after the final moult, (ii) within 24 h before the final moult, or (iii) 1–10 days before the final moult. For all groups the results reveal entrainment of the circadian mechanism at the last LD, thus excluding age-related differences. The rhythms of crickets, transferred from LD to LL as larval instars and also exposed to a reduced temperature (5–8oC) during their last night, were delayed by about 11 h, an effect similar to that in adult crickets after a comparable cold exposure (Loher & Wiedenmann, 1981).
The results are interpreted showing that the circadian control of (the adult's) calling song already functions in the previous (non-singing) larval stages. Since the rhythmicity continued through moults and sexual maturation, it is concluded that the control centres regulating those physiological processes (e.g. pars intercerebralis, corpora allata) are not essential to the basic circadian mechanism.  相似文献   

8.
9.
 A simple hypothesis regarding the recognition behaviour of crickets for conspecific songs is implemented in a dynamic simulation of spiking neurons and tested on a robot base. The model draws on data from cricket neurophysiology but requires only four neurons to reproduce a wide range of the observed behaviour. The directional response depends on relative latencies in firing onset, and the `recognition' emerges from the implicit filtering properties of leaky-integrate-and-fire neurons. Experimental conditions reproduced include tests of syllable rate preference, song from above with sound from one side, and choice between songs. The robot produces behaviour closely comparable to the cricket in all but a `split-song' condition. A number of properties can be observed in the neural circuit that correspond to cricket neurophysiology including apparent `recognition neurons'. Limitations of the model, extensions and alternative models are discussed. Received: 14 July 1997 / Accepted in revised form: 7 September 1999  相似文献   

10.
Male calling song provides a reliable signal of immune function in a cricket   总被引:13,自引:0,他引:13  
A critical prediction of the immunocompetence handicap hypothesis is that the expression of secondary sexual traits should be positively correlated with pathogen resistance ability This correlation is necessary if females are to be able to use a particular sexual trait as an indicator of a male's resistance ability. In this study we document a positive correlation between a sexually selected component of the calling song of male house crickets (the number of syllables per chirp) and haemocyte load, an important determinant of the ability to encapsulate pathogens in insects. The results indicate that, by favouring males which produce more syllables per chirp, females may also select males with higher pathogen resistance ability, potentially generating either direct or indirect selection on female mating preferences.  相似文献   

11.
ABSTRACT. In female Gryllus campestris L., three functional types of ascending auditory intemeurones have been studied by recording from them extracellularly in the split cervical connectives using suction electrodes. Type 1 neurones are characterized by an optimal sensitivity to the carrier frequency of the species calling song (4–5 kHz). They copy the syllable and pause structure of the call at all intensities. The patterned spike discharge is observable at least 8 dB above absolute threshold. With suprathreshold stimulation, the neurones exhibit maximal responses (number of spikes/chirp) around the carrier frequency. The intensity response curves are approximately linear in the range of 40–90 dB SPL. The envelope of each syllable is reflected by a corresponding change in the firing rate, and syllable periods of 24ms and longer are resolved. This type can be considered as a neural correlate for phonotactic behaviour of the female where the syllable period has been found to be the most important temporal parameter. Type 2 neurones are most sensitive in the range of 4–6 and 11–13 kHz. They copy the syllable and pause structure of the species calling song at low and moderate intensities. However, the spikes invade the intersyllable pauses, when stimulated with the calling song at higher intensities (above 85 dB). This is particularly apparent at the onset of a chirp series. The slope of the intensity—response curve mimics that of type 1 units. The neurones cannot follow syllable periods shorter than 32 ms. Type 3 neurones differ from types 1 and 2 by a rather broad-band sensitivity in the range of 3–16 kHz, and in copying the chirp as a whole. Even at low stimulus intensities, the intersyllable pauses are filled with spikes, and information about the syllable—pause structure is lost. Stimulation with suprathreshold intensities gives rise to a rather uniform, broad-band response without distinctive peaks. The intensity—response curve is characterized by a higher absolute threshold, and by the reduction in the response magnitude starting above 70–80 dB. These units are not suitable for copying the calling song temporal structure in detail, but would indicate the chirping rhythm. Their strong response in the range of the species courtship song carrier frequency make them suitable to copy the courtship song.  相似文献   

12.
Summary The activity of auditory receptor cells and prothoracic auditory neurons of the cricket,Gryllus bimaculatus, was recorded intracellularly while the animal walked on a sphere or while passive movement was imposed on a foreleg.During walking the responses to simulated calling song is altered since (i) the auditory sensory cells and interneurons discharged impulses in the absence of sound stimuli (Figs. 1, 3) and (ii) the number of action potentials in response to sound is reduced in interneurons (Figs. 2, 3).These two effects occurred in different phases of the leg movement during walking and therefore masked, suppressed or did not affect the responses to auditory stimuli (Figs. 3, 4). Hence there is a time window within which the calling song can be detected during walking (Fig. 5).The extra excitation of receptors and interneurons is probably produced by vibration of the tympanum because (i) the excitation occurred at the same time as the leg placement (Fig. 4), (ii) during walking on only middle and hindlegs, no extra action potentials were observed (Fig. 6), (iii) in certain phases of passive movements receptor cells and interneurons were excited as long as the ipsilateral ear was not blocked (Figs. 8, 9).Suppression of auditory responses seems to be peripheral as well as central in origin because (i) it occurred at particular phases during active and passive leg movements in receptor cells and interneurons (Figs. 1, 4, 9), (ii) it disappeared if the ear was blocked during passive leg movements (Fig. 9) and (iii) it persisted if the animal walked only on the middle and hind legs (Fig. 6).  相似文献   

13.
Geographically isolated populations often show phenotypic divergence in traits important in reproduction. A large proportion of the phenotypic variation in temporal parameters of the calling song of the field cricket Teleogryllus oceanicus is related to geographical location. Similarity between the songs recorded in different populations reflects geographical proximity. I used a common-garden breeding experiment to determine whether differences between the songs of two populations from the extremes of the geographical and phenotypic distribution (Oahu, Hawaii and Cairns, Australia) have a genetic basis. Differences in the total song duration and the proportion of the long-chirp element in the song remained after five generations of common-garden breeding, indicating that the populations had diverged genetically for these traits. Differences in a third song trait, the intervals between sound pulses and chirps, disappeared after common-garden breeding, suggesting that either the difference between populations in these traits represents phenotypic plasticity or the populations converged as a result of adaptation to the laboratory environment. A prospective analysis of the patterns of genetic variation within populations is presented. Full-sib analyses suggested high levels of genetic variability in song traits. Family mean covariance matrices suggested that populations differ in the genetic architecture of their songs. Females from both populations preferred songs with a high proportion of the long-chirp element, and preferences appeared to have high genetic and residual variability, although the sampling variances on these parameters were high. There was little evidence of a correlation between female preference for the long-chirp element and the amount of the long-chirp element produced by their brothers.  相似文献   

14.
15.
Calling song of the cricket Gryllus assimilis is unusual among Gryllus spp. in the high sound-pulse rate, ca. 80 Hz, within its chirps. We asked whether, as in other cricket species, females were able to analyze such a high pulse rate. In phonotaxis experiments, females failed to respond to stimuli with pulse rates substantially higher or lower than the species-typical value, demonstrating that they are indeed selective for this parameter. We also examined how pulse rate was represented by modulation in firing rate of the neuron AN1, the main carrier of information about cricket-song-like stimuli to the brain. For attractive stimuli, i.e. with high pulse rates, modulation of AN1 firing rate through time was surprisingly modest. This suggests that the brain circuits that analyze AN1 spike trains might be more sensitive to slight variations in AN1 firing rate than their counterparts in more slowly singing species.  相似文献   

16.
17.
1. Most crickets first demonstrated positive phonotaxis to 65 dB CSs having a 53-62 ms SP by day 3 following the imaginal molt (Fig. 3B). The onset of copulatory readiness occurred on average at 3.2 days. 2. The attractive range of SPs for most females became progressively broader as they aged (Fig. 4). Three to 4-day-old females were attracted to a smaller number of CS SPs than were 20-21 day old females (Fig. 4). 3. Older, less selective females did not typically respond to the same range of CS SPs (Fig. 6). However, they were more likely to respond to some SPs (especially 50 ms) than to others (Fig. 7). 4. The phonotactic threshold decreased from 95 dB or greater on day 0 to a mean of 55 dB by day 3, during a period of increasing JHIII biosynthesis, and thereafter remained at that level (Fig. 8). 5. During a period of maximal JHIII production, 3-5 day-old females usually responded to 4 of the 7 SPs presented (Fig. 8). Females older than 12 days were unselective for CS SP, and JHIII synthesis remained at a level below the peak production on day 4 (Fig. 8). 6. Older females, that were unselective for CS SP, became as selective as 3 to 5-day-old females within 4 days of topical application of JHIII (Figs. 9-11).  相似文献   

18.
The influence of age on variation in female phonontaxis in the field cricket,Gryllus integer, was investigated using a Kugel treadmill-type device. Synthetic male calling songs, with different pulse rates, were presented in both single-stimulus and three-stimulus designs. Females were either 11–14 or 25–28 days postecdysis. Females varied in motivation, or the degree of reproductive effort they exhibited, but only in single-stimulus trials: older females achieved higher scores than younger females. Females varied in selectivity, or the extent to which they discriminated among potential mates, in both presentation designs. All females discriminated against atypical pulse rates. In multiple-stimulus trials with normal range pulse rates, younger females were discriminatory; older females were not. Mated females showed reduced phonotaxis and selectivity irrespective of mating interval.  相似文献   

19.
ABSTRACT. Males of the cricket, Gryllus campestris L. (Orthoptera: Gryllidae), displayed three different diel patterns in the timing of their calling song: 55% of all males investigated were dark-active, 25% light-active and 20% light-and-dark-active. Dark-active males continued to stridulate in both constant darkness (DD) and constant light (LL) during the subjective night, with a circadian period usually shorter (in DD) or longer (in LL) than 24h. Light-active males were mainly silent in DD but showed a circadian rhythm in LL, though with a 180° phase shift, i.e. activity during subjective night. This suggests that daytime activity has developed from nocturnal activity by a mechanism which prevents stridulation during darkness, and that both patterns are driven by the same endogenous clock. In the light-and-dark-active males some stridulation takes place during darkness, so dark inhibition is not complete. Such incomplete inhibition seemed to occur only in highly active animals. The three diel distribution patterns of the calling song are discussed in relation to sharing the chances of attracting females.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号