首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the western Baltic Sea, the highly competitive blue mussel Mytilus edulis tends to monopolize shallow water hard substrata. In many habitats, mussel dominance is mainly controlled by the generalist predator Carcinus maenas. These predator-prey interactions seem to be affected by mussel size (relative to crab size) and mussel epibionts.There is a clear relationship between prey size and predator size as suggested by the optimal foraging theory: Each crab size class preferentially preys on a certain mussel size class. Preferred prey size increases with crab size.Epibionts on Mytilus, however, influence this simple pattern of feeding preferences by crabs. When offered similarly sized mussels, crabs prefer Balanus-fouled mussels over clean mussels. There is, however, a hierarchy of factors: the influence of attractive epibiotic barnacles is weaker than the factor ‘mussel size’. Testing small mussels against large mussels, presence or absence of epibiotic barnacles does not significantly alter preferences caused by mussel size. Balanus enhanced crab predation on mussels in two ways: Additional food gain and, probably more important, improvement in handling of the prey. The latter effect is illustrated by the fact that artificial barnacle mimics increased crab predation on mussels to the same extent as do live barnacles.We conclude that crab predation preferences follows the optimal foraging model when prey belong to different size classes, whereas within size classes crab preferences is controlled by epibionts.  相似文献   

2.
The invasive alien crayfish Pacifastacus leniusculus is considered harmful to freshwater pearl mussels Margaritifera laevis and M. togakushiensis. It also often colonises mussel habitats in Japan. In order to test the negative effects of alien crayfish on mussels, we evaluated the predation impact of signal crayfish on freshwater pearl mussels in vitro. We tested the relationship between the survival/injury rates of mussels and crayfish predation with respect to different sizes of mussels (four classes based on shell length: 10, 30, 50 and 70 mm). Crayfish selectively fed on the flesh of the 10-mm size class mussels after breaking their shells. The shell margins of mussels in all size classes were injured by crayfish. Results also showed that crayfish particularly injured the 50-mm size class of mussels. This observation could be attributed to this mussel size being the most suitable shell size (29.56–37.73 mm in carapace length) that the crayfish can effectively hold. This study shows that the presence of invasive crayfish reduces freshwater pearl mussel populations by damaging the shell margins and/or killing the mussels. This negative impact of invasive crayfish not only decreases the mussel population but could also limit mussel recruitment, growth and reproduction.  相似文献   

3.
Habitat selection by tufted ducks (Aythya fuligula), a diving duck which swallows benthic prey organisms, was studied during winter at two neighboring lagoons (Lakes Nakaumi and Shinji, Honshu, Japan) which differ strongly in their benthic fauna and in their diving duck densities. The ducks fed overwhelmingly on the dominant bivalve found in each of the two lagoons, the mussel Musculista senhousia in L. Nakaumi and the clam Corbicula japonica in L. Shinji. In general, however, the ducks probably preferred the mussels to the clams because of: (i) their high (2.9 times) calorific content for their weight; (ii) their high digestibility; (iii) their greater accessibility; and (iv) their shorter handling time. An average tufted duck (850 g) was estimated to require 1.3 kg of mussels or 3.8 kg of clams to meet their daily energy requirements. As a result, the two wintering populations were estimated to consume 4970 t mussels and 4770 t clams during a single wintering season, amounting to some 20% of the standing clam crop. Throughout the winter the average gizzard weight (37 g), and gizzard–body mass ratio (4.2%) of the Lake Nakaumi population were half those of the Lake Shinji population (73 g, 8.1%, respectively), despite their significantly similar nutritive body condition (% body lipid > 12%). The need to maintain a specialized gizzard mass in order to be able to cope with the different prey species results in little opportunity for sampling movements of birds between lakes/prey types and as a result two subpopulations of ducks are indicated to be segregated.  相似文献   

4.
Observations of freshwater drinking in Eiders feeding primarily on mussels led us to hypothesize that the highly saline sea water enclosed in mussels could cause salt-related dehydration problems in the ducks, since they consume entire mussels. The proportion of sea water increases with increasing mussel size. Smaller duck species are more sensitive to the higher salt content of larger mussels than are larger ducks; however, salt stress may be avoided by feeding in habitats with lower salinity, by feeding on less salty food items, by utilizing smaller mussels, by drinking fresh water, or by employing low energy foraging techniques. A possible evolutionary strategy for solving the salt problem might be to increase body mass, enabling ducks to utilize larger mussels without passing an upper salt consumption limit. At the same time, foraging on larger mussels is more economical. Although large size facilitates the utilization of brackish and marine environments, it may be selected against in ducks breeding in fresh water, where fish competition may reduce optimal food item size. In conclusion, salinity is an important habitat barrier in both breeding and overwintering diving ducks, but there are various ways of crossing this barrier. To understand better how ducks utilize their habitats, however, it is necessary to measure habitat salinity levels and the size of both ducks and their preferred and less-preferred food types.  相似文献   

5.
The diet of the starfish, Marthasterias glacialis (L.), consists of a variety of mollusc species, as well as ascidians and barnacles. Starfish densities are maximal where mussels, Choromytilus meridionalis (Krauss), are abundant and in such areas mussels form the bulk of the diet. Laboratory feeding experiments indicate that Marthasterias glacialis select mussels of particular sizes and that the length of prey taken is an increasing function of predator arm length. The time taken to consume each mussel is determined by the ratio of shell length to starfish size. The number of mussels consumed per day increases only slightly with starfish size, but because the prey taken increase in size, energy consumption is maintained at a relatively consistent 1% of predator body energy per day. Using prey selection and feeding rate data for different sized starfish, predictive three dimensional predation surfaces are developed for a natural starfish population feeding on either one or two cohort Choromytilus meridionalis populations. The models indicate that predatory effort should be concentrated on the smallest mussels when a single adult cohort is present, but on recruiting mussels just above the minimum prey size limit where two cohorts are present. Other major predators of mussels, the rock lobster, Jasus lalandii (Milne Edwards), and the whelk, Natica tecta Anton, appear to select similar size-ranges of prey to starfish, despite their differing body forms and feeding methods. Since the juveniles of all three predators can only take small mussels, predator recruitment may well depend upon the successful settlement of strong mussel cohorts. Evidence for such entrainment of predator cohorts to settlements of mussels is presented.  相似文献   

6.
Tufted ducks Aythya fuligula do not control buoyancy during diving   总被引:1,自引:0,他引:1  
Work against buoyancy during submergence is a large component of the energy costs for shallow diving ducks. For penguins, buoyancy is less of a problem, however they still seem to trade‐off levels of oxygen stores against the costs and benefits of buoyant force during descent and ascent. This trade‐off is presumably achieved by increasing air sac volume and hence pre‐dive buoyancy (Bpre) when diving deeper. Tufted ducks, Aythya fuligula, almost always dive with nearly full oxygen stores so these cannot be increased. However, the high natural buoyancy of tufted ducks guarantees a passive ascent, so they might be expected to decrease Bpre before particularly deep, long dives to reduce the energy costs of diving. Body heat lost to the water can also be a cause of substantial energy expenditure during a dive, both through dissipation to the ambient environment and through the heating of ingested food and water. Thus dive depth (dd), duration and food type can influence how much heat energy is lost during a dive. The present study investigated the relationship between certain physiological and behavioural adjustments by tufted ducks to dd and food type. Changes in Bpre, deep body temperature (Tb) and dive time budgeting of four ducks were measured when diving to two different depths (1.5 and 5.7 m), and for two types of food (mussels and mealworms). The hypothesis was that in tufted ducks, Bpre decreases as dd increases. The ducks did not change Bpre in response to different diving depths, and thus the hypothesis was rejected. Tb was largely unaffected by dives to either depth. However, diving behaviour changed at the greater dd, including an increase in dive duration and vertical descent speed. Behaviour also changed depending on the food type, including an increase in foraging duration and vertical descent speed when mussels were present. Behavioural changes seem to represent the major adjustment made by tufted ducks in response to changes in their diving environment.  相似文献   

7.
During the extremely dry period between 2000 and 2003, the water level of Lake Balaton decreased by 82 cm and 80% of the stony littoral, an important habitat for the zebra mussel (Dreissena polymorpha), became dry. A recovery period started in 2004 due to intense precipitation, which increased water levels in the lake. Seasonal and spatial variations of the relative abundance, population density, population structure and biomass of the zebra mussel and the relative abundance of the amphipod Chelicorophium curvispinum were monitored in the period of 2003–2005 at four different shoreline sections and in two different portions (on the bottom and near the surface portion of the rip-rap) of Lake Balaton. Along with these studies, a quantitative survey of mussel larvae found in the plankton and of the abundance of mussel feeding diving ducks were made. As a consequence of the water level fall, on the dried part of the stony littoral, numerous zebra mussel druses perished. Following the dry period in early 2004, the relative abundance of the mussel on the bottom stones was smaller than in 2003 and the bottom community was dominated by C. curvispinum. By the end of 2004 and during 2005, the water level returned to normal and the surfaces of the reinundated stones were conducive to the successful colonization of zebra mussels. Hence, they returned as the dominant fauna in 2005. The stones near the surface might provide a new substrate for the recruitment of zebra mussels, probably offering more suitable substrata for the settlement in 2005 than in 2003. Therefore, the new substrata available in 2005 may have encouraged better and more rapid zebra mussel colonization than before. Zebra mussels may be better competitors for new space than C. curvispinum. A minor change of water-level fluctuation in 2005 and the reduction in population size of the mussel feeding waterfowl could have contributed to the intensive spread of zebra mussel by 2005.  相似文献   

8.
Predation by herring gullsLarus argentatus and oystercatchersHaematopus ostralegus was evaluated on a newly established musselMytilus edulis bed on tidal flats of the German Wadden Sea. The mussel bed covered an area of 2 ha and showed a decrease in biomass of 40% in the most densely covered parts from August to January. Synchronously, the extent of the mussel bed was reduced, resulting in a decrease of average biomass of 98% over the whole mussel bed. From the beginning of August 1994 to mid January 1995, the average size of mussels increased from 10.7 to 20.3 mm. The P/B-ratio was 0.68 in August and 0.18 between September and November. Herring gulls and oystercatchers were the most important mussel predators. On average, 266 herring gulls and 63 oystercatchers were present on the mussel bed during one low tide; 34% of the herring gulls and 78% of the oystercatchers were observed to be feeding. Herring gulls fed at a rate of 4.2 mussels per minute and oystercatchers at a rate of 1.3 mussels per minute. While herring gulls took the most common mussel sizes (mean: 20 mm), oystercatchers searched for the largest mussels available (mean: 25 mm). Herring gulls consumed 13 mussels/m2 (0.3g AFDW) during one day and oystercatchers 1.7 mussels/m2 (0.1 g AFDW). Predation by birds was compensated by 33% of the production. The proportion removed by bird predation amounted to 10% of abundance and to 16% of biomass (including production). Oystercatchers were responsible for 1% of the reduction in abundance and for 3% of biomass. Removal was highest in the most common size classes of mussels, mainly caused by herring gulls. However, the highest proportion of mussels was eaten in the largest size classes, mainly by oystercatchers. *** DIRECT SUPPORT *** A03B6035 00004  相似文献   

9.
Invasive zebra mussels (Dreissena polymorpha) often colonize dragonfly larvae, especially spawling species whose survivorship to emergence as terrestrial predators is consequently reduced. Using individuals of the sprawler, Macromia illinoiensis, as their own controls, we compared the burying behavior of penultimate instar larvae before (i.e. baseline) and after their colonization by zebra mussels under ambient conditions. Individuals that took longer to bury themselves when mussel-free had a higher rate of colonization by mussels over a five-day period compared to those that buried faster. In contrast, the depth at which individuals buried when mussel-free was not predictive of subsequent colonization rate. Although mean bury time did not differ between baseline and when an individual carried one or more mussels, colonized larvae buried more shallowly than when mussel-free. Moreover, attached mussels increased the risk of subsequent colonization by zebra mussels. After naturally losing all of their attached mussels, bury time and depth of individuals did not differ from their baseline behavior, indicating that the changes in the behavior of colonized individuals were due to mussel loads and not their time in captivity. Under natural conditions, the positive feed-back between mussel attachment and increasing vulnerability to colonization helps explain how mussel loads, which are lost at molting, can accumulate quickly over the duration of the final larval stadium. Because zebra mussel attachment decreases the crypsis that that a M. illinoiensis gains from burying, the invasive mussel may also make dragonfly larvae more detectable to visual predators.  相似文献   

10.
The increased use of engineered nanoparticles (ENPs) in consumer products raises the concern of environmental release and subsequent impacts in natural communities. We tested for physiological and demographic impacts of ZnO, a prevalent metal oxide ENP, on the mussel Mytilus galloprovincialis. We exposed mussels of two size classes, <4.5 and ≥4.5 cm shell length, to 0.1–2 mg l−1 ZnO ENPs in seawater for 12 wk, and measured the effect on mussel respiration, accumulation of Zn, growth, and survival. After 12 wk of exposure to ZnO ENPs, respiration rates of mussels increased with ZnO concentration. Mussels had up to three fold more Zn in tissues than control groups after 12 wk of exposure, but patterns of Zn accumulation varied with mussel size and Zn concentrations. Small mussels accumulated Zn 10 times faster than large mussels at 0.5 mg l−1, while large mussels accumulated Zn four times faster than small mussels at 2 mg l−1. Mussels exposed to 2 mg l−1 ZnO grew 40% less than mussels in our control group for both size classes. Survival significantly decreased only in groups exposed to the highest ZnO concentration (2 mg l−1) and was lower for small mussels than large. Our results indicate that ZnO ENPs are toxic to mussels but at levels unlikely to be reached in natural marine waters.  相似文献   

11.
12.
Dropping live mussels (Mytilus sp.) onto hard substrata by Carrion Crows (Corvus corone) and Hooded Crows (Corvus cornix) to access their flesh is a commonly observed behavior from late summer to spring in the United Kingdom and Ireland. Despite previous studies, several aspects of prey‐dropping behavior remained incompletely understood. From September 2008 to January 2010, we determined the heights of drops, likelihood of shell breakage from drops at different heights, effect of mussel size on breakability, energetic costs of flying to drop heights, and the energetic costs of transporting mussels from mussel beds to dropping sites. We studied Carrion Crows on the Isle of Cumbrae, Scotland, and Hooded Crows in Cork Harbor, Ireland. Initial experiments were carried out with mussels to determine breakability in relation to size and drop height, and to estimate mussel energy content. Sizes of mussel shells at Hooded Crow dropping sites were compared with those of live mussels from source mussel beds. Adult Carrion Crows (N = 10) dropped mussels from a mean height of 4.7 m, and adult Hooded Crows (N = 21) from 4.8 m. These heights were close to the minimum (4–4.8 m; determined experimentally) required to break all mussel shells on the first drop. Dropping mussels from the minimum height that guarantees breakage reduces handling time and, by minimizing the size of the resulting debris field, likely reduces the risk of kleptoparasitism. Juvenile Hooded Crows (N = 13) dropped mussels onto suboptimal substrates (gravelly mud) from variable heights (mean = 6.1 m) with a low success rate (0% on first drop). This inefficiency could reflect either inexperience or exclusion from prime hard‐substrate dropping sites by adults. Foraging Hooded Crows selected larger mussels, dropping no mussels <32‐mm shell length. Energetic calculations indicate that a Hooded Crow lifting a medium‐sized mussel (55‐mm shell length) to a height of 5 m incurs a cost of only 0.3% of energy assimilated from that mussel, whereas travel to and from a mussel bed 200 m away costs 5.8% of that energy. These results suggest that choice of mussel dropping height by crows is determined by shell breakability rather than the cost of flying up to the dropping height.  相似文献   

13.
This study aimed to identify the importance of ecological factors to distribution patterns of the invasive Clam (Corbicula fluminea) relative to native mussels (family: Unionidae) across seven rivers within the Mobile and Tennessee basins, Southeast United States. We quantitatively surveyed dense, diverse native mussel aggregations across 20 river reaches and estimated mussel density, biomass, and species richness along with density of invasive C. fluminea (hereafter Corbicula). We measured substrate particle size, velocity, and depth in quadrats where animals were collected. Additionally, we characterized reach scale environmental parameters including seston quantity and quality (% Carbon, % Nitrogen, % Phosphorous), water chemistry (ammonium [NH4+], soluble reactive phosphorous [SRP]), and watershed area and land cover. Using model selection, logistic regression, and multivariate analysis, we characterized habitat features and their association to invasive Corbicula within mussel beds. We found that Corbicula were more likely to occur and more abundant in quadrats with greater mussel biomass, larger substrate size, faster water velocity, and shallower water depth. At the reach scale, Corbicula densities increased where particle sizes were larger. Mussel richness, density, and biomass increased with watershed area. Water column NH4+ increased at reaches with more urban land cover. No land cover variables influenced Corbicula populations or mussel communities. The strong overlapping distribution of Corbicula and mussels support the hypothesis that Corbicula are not necessarily limited by habitat factors and may be passengers of change in rivers where mussels have declined due to habitat degradation. Whether Corbicula is facilitated by mussels or negatively interacts with mussels in these systems remains to be seen. Focused experiments that manipulate patch scale variables would improve our understanding of the role of species interactions (e.g., competition, predation, facilitation) or physical habitat factors in influencing spatial overlap between Corbicula and native mussels.  相似文献   

14.
  1. Post‐maturation growth leading to indeterminate growth patterns is widespread in nature. However, its adaptive value is unclear. Life history theory suggests this allocation strategy may be favored by temporal pulses in the intensity of mortality and/or the capacity to produce new tissues.
  2. Addressing the origin of indeterminate growth and the variability of growth patterns, we studied the growth of duck mussels, Anodonta anatina, a pan‐European unionid, in 18 Polish lakes. For each population, the sex, size, and age of collected mussels were measured to estimate Bertalanffy''s growth curve parameters. We integrated information on A. anatina mortality rates, lake trophy, biofouling by zebra mussels, Dreissena polymorpha, and the prevalence of parasitic trematode larvae to identify selective conditions in lakes.
  3. We found two sources of mortality in A. anatina populations, pertaining to adverse effects of zebra mussel biofouling and trophy state on mussel survival. Additionally, populations with heavier biofouling presented a smaller abundance of parasites, indicative of a relationship between filtering intensity and contraction of water‐borne trematode larvae by filtering A. anatina.
  4. Consistently for each sex, populations with a greater trophy‐related mortality were characterized in A. anatina by a smaller asymptotic size Lmax, indicative of a life history response to mortality risk involving early maturation at a smaller body size. In all populations, females featured higher mortality and larger asymptotic size versus males.
  5. Our findings support a theoretical view that adaptive responses to selection involve adjustments in the lifetime resource allocation patterns. These adjustments should be considered drivers of the origin of indeterminate growth strategy in species taking parental care by offspring brooding in body cavities.
  相似文献   

15.
This study examined the effects of a freshwater filter feeding bivalve (Corbicula leana Prime) and large zooplankton (>200 μm, mostly cladocerans and copepods) on the phytoplankton communities in two lakes with contrasting trophic conditions. A controlled experiment was conducted with four treatments (control, zooplankton addition, mussel addition, and both zooplankton and mussel addition), and each established in duplicate 10-l chambers. In both lakes there were significant effects of mussel grazing on phytoplankton density and biomass. The effects were greater in mesotrophic Lake Soyang than in hypertrophic Lake Ilgam. Effects of zooplankton grazing did not differ between these lakes, and zooplankton effects on phytoplankton were much less than the effects of mussels. Although mussels exerted a varying effect on phytoplankton according to their size, mussels reduced densities of almost all phytoplankton taxa. Total mean filtering rate (FR) of mussels in Lake Soyang was significantly greater than that in Lake Ilgam (p=0.002, n=5). Carbon fluxes from phytoplankton to mussels (977–2,379 μgC l?1d?1) and to zooplankton (76–264 μgC l?1 d?1) were always greater in Lake Ilgam due to the greater phytoplankton biomass (p<0.01, n=6). Based on the C-flux to biomass ratios, the mussels consumed 170–754% (avg. 412%) of phytoplankton standing stock in Lake Soyang, and 38–164% (avg. 106%) in Lake Ilgam per day. The C-flux to biomass ratio for mussels within each lake was much greater than for large zooplankton. Mussels reduced total phosphorus concentration by 5–34%, while increasing phosphate by 30–55% relative to the control. Total nitrogen also was reduced (by 9–25%), but there was no noticeable change in nitrate among treatments. The high consumption rate of phytoplankton by Corbicula leana even in a very eutrophic lake suggests that this mussel could affect planktonic and benthic food web structure and function by preferential feeding on small seston and by nutrient recycling. Control of mussel biomass therefore might be an effective tool for management of water quality in shallow eutrophic lakes and reservoirs in Korea.  相似文献   

16.
1. Since zebra mussel invaded Lake Constance in the 1960s the number of wintering waterbirds increased fourfold. We studied the impact of predation by waterbirds (tufted duck Aythya fuligula, pochard Aythya ferina and coot Fulica atra) on the population of Dreissena polymorpha in winter 2001/2002. These three species, with monthly peak numbers of approximately 230 000 individuals, currently comprise up to 80% of the waterbird population wintering at Lake Constance. 2. Four different study sites and four depths, that represent typical and characteristic habitats of mussels in Upper Lake Constance, were chosen. 3. Zebra mussels were sampled before, during and after predation by waterbirds. Their biomass in shallow areas decreased by >90%; the biomass reduction in deeper areas was highly variable and dependent on the substratum. With one exception, no changes could be detected at the greatest depth (11 m). 4. Concurrent exclosure studies revealed that the decrease in zebra mussels was caused by waterbird predation. A GIS‐based approximation revealed that in an area of 1 km2 a total of approximately 750 t mussel fresh mass was removed by birds, which is equivalent to 1390 g mussels per bird per day. 5. Wintering waterbirds have a strong structural impact on the littoral community of Lake Constance and could be the key predator of zebra mussels.  相似文献   

17.
The common seastars Leptasterias polaris and Asterias vulgaris show competitive interactions in shallow subtidal communities in the northern Gulf of St. Lawrence, particularly during summer when aggregations of the two seastars forage on mussel beds at 1-2 m in depth. We examined interactions between the two seastars in a different situation, in a mussel bed at 6 m in depth (a rare situation in this region). In the deeper mussel bed, seastars were three times more abundant than in the shallower beds, and the mussels were larger. The deeper bed disappeared rapidly due to the intense predation. Although decreased prey abundance should have favored interference interactions, we did not detect either partitioning of mussels by size or avoidance of A. vulgaris by L. polaris as previously reported when mussels are in short supply in shallower water. The lack of an avoidance behavior by L. polaris, together with the higher proportion of L. polaris than A. vulgaris that were feeding, suggests that in this situation, the dominance of A. vulgaris (observed in shallower water) is attenuated, or that L. polaris may dominate.  相似文献   

18.
Integrated multitrophic aquaculture (IMTA) reduces the environmental impacts of commercial aquaculture systems by combining the cultivation of fed species with extractive species. Shellfish play a critical role in IMTA systems by filter-feeding particulate-bound organic nutrients. As bioaccumulating organisms, shellfish may also increase disease risk on farms by serving as reservoirs for important finfish pathogens such as infectious pancreatic necrosis virus (IPNV). The ability of the blue mussel (Mytilus edulis) to bioaccumulate and transmit IPNV to naive Atlantic salmon (Salmo salar) smolts was investigated. To determine the ability of mussels to filter and accumulate viable IPNV, mussels were held in water containing log 4.6 50% tissue culture infective dose(s) (TCID50) of the West Buxton strain of IPNV ml−1. Viable IPNV was detected in the digestive glands (DGs) of IPNV-exposed mussels as early as 2 h postexposure. The viral load in mussel DG tissue significantly increased with time and reached log 5.35 ± 0.25 TCID50 g of DG tissue−1 after 120 h of exposure. IPNV titers never reached levels that were significantly greater than that in the water. Viable IPNV was detected in mussel feces out to 7 days postdepuration, and the virus persisted in DG tissues for at least 18 days of depuration. To determine whether IPNV can be transmitted from mussels to Atlantic salmon, IPNV-exposed mussels were cohabitated with naive Atlantic salmon smolts. Transmission of IPNV did occur from mussels to smolts at a low frequency. The results demonstrate that a nonenveloped virus, such as IPNV, can accumulate in mussels and be transferred to naive fish.  相似文献   

19.
The brown algaFucus vesiculosus formamytili (Nienburg) Nienhuis covered about 70% of mussel bed (Mytilus edulis) surface area in the lower intertidal zone of Königshafen, a sheltered sandy bay near the island of Sylt in the North Sea. Mean biomass in dense patches was 584 g ash-free dry weight m?2 in summer. On experimental mussel beds, fucoid cover enhanced mud accumulation and decreased mussel density. The position of mussels underneath algal canopy was mainly endobenthic (87% of mussels with >1/3 of shell sunk into mud). In the absence of fucoids, mussels generated epibenthic garlands (81% of mussels with <1/3 of shell buried in mud). Mussel density underneath fucoid cover was 40 to 73% of mussel density without algae. On natural beds, barnacles (Balanidae), periwinkles (Littorina littorea) and crabs (particularly juveniles ofCarcinus maenas) were significantly less abundant in the presence of fucoids, presumably because most of the mussels were covered with sediment, whereas in the absence of fucoids, epibenthic mussel clumps provided substratum as well as interstitial hiding places. The endobenthic macrofauna showed little difference between covered and uncovered mussel beds. On the other hand, grazing herbivores — the flat periwinkleLittorina mariae, the isopodJaera albifrons and the amphipodsGammarus spp. — were more abundant at equivalent sites with fucoid cover. The patchy growth ofFucus vesiculosus on mussel beds in the intertidal Wadden Sea affects mussels and their epibionts negatively, but supports various herbivores and increases overall benthic diversity.  相似文献   

20.
1. The diets of pochard (Aythya ferina), scaup (A. marila) and goldeneye (Bucephala clangula) overwintering on Lough Neagh are dominated by chironomid larvae, while molluscs are more important in that of tufted duck (A. fuligula). 2. Inshore areas of Lough Neagh offer poor feeding conditions for these diving ducks because chironomid larvae and molluscs are of small individual body size or low abundance. These factors lead to all four ducks foraging at least in part at depths greater than those usually exploited. 3. Due to their common consumption of molluscs, the diet of tufted duck shows a higher overlap with that of an introduced roach (Rutilus rutilus) population than with any other duck or fish species. 4. The feeding ecology of tufted duck and roach in Lough Neagh may form an example of distant competition and be at least partly responsible for recent fluctuations in the numbers of tufted duck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号