首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of growth light intensity on the photosynthetic apparatus of pea (Pisum sativum) thylakoid membranes. Plants were grown either in a growth chamber at light intensities that ranged from 8 to 1050 microeinsteins per square meter per second, or outside under natural sunlight. In thylakoid membranes we determined: the amounts of active and inactive photosystem II, photosystem I, cytochrome b/f, and high potential cytochrome b559, the rate of uncoupled electron transport, and the ratio of chlorophyll a to b. In leaves we determined: the amounts of the photosynthetic components per leaf area, the fresh weight per leaf area, the rate of electron transport, and the light compensation point. To minimize factors other than growth light intensity that may alter the photosynthetic apparatus, we focused on peas grown above the light compensation point (20-40 microeinsteins per square meter per second), and harvested only the unshaded leaves at the top of the plant. The maximum difference in the concentrations of the photosynthetic components was about 30% in thylakoids isolated from plants grown over a 10-fold range in light intensity, 100 to 1050 microeinsteins per square meter per second. Plants grown under natural sunlight were virtually indistinguishable from plants grown in growth chambers at the higher light intensities. On a leaf area basis, over the same growth light regime, the maximum difference in the concentration of the photosynthetic components was also about 30%. For peas grown at 1050 microeinsteins per square meter per second we found the concentrations of active photosystem II, photosystem I, and cytochrome b/f were about 2.1 millimoles per mol chlorophyll. There were an additional 20 to 33% of photosystem II complexes that were inactive. Over 90% of the heme-containing cytochrome f detected in the thylakoid membranes was active in linear electron transport. Based on these data, we do not find convincing evidence that the stoichiometries of the electron transport components in the thylakoid membrane, the size of the light-harvesting system serving the reaction centers, or the concentration of the photosynthetic components per leaf area, are regulated in response to different growth light intensities. The concept that emerges from this work is of a relatively fixed photosynthetic apparatus in thylakoid membranes of peas grown above the light compensation point.  相似文献   

2.
在自然条件下,植物接受的照光量经常变化,而植物在进化过程中已形成了相应的适应机制,用以维持光环境变化过程中2个光反应之间光能转换的能量平衡.植物的调控系统不但能通过调控叶片和叶绿体的运动以及光合色素的积累调节光的吸收,还可以通过光系统的状态转换灵活地调节捕光色素蛋白复合体吸收的能量分配.特别是在低光强下,植物通过可对电子传递链的氧化还原状态做出响应的激酶和磷酸酶调控光系统Ⅱ捕光色素蛋白复合体(LHCⅡ)的可逆磷酸化,从而调节激发能在PSⅠ与PSⅡ之间的分配.植物的状态转换机制是植物适应光质等光环境变化的重要机制.本文综述了植物状态转换机制的研究进展,阐述了LHCⅡ的磷酸化及其在PSⅠ与PSⅡ两个光系统间的移动及其状态转换在植物适应光环境变化中的生理意义,并展望了今后的主要研究方向.  相似文献   

3.
Scald reduces the photosynthetic area, causing yield losses in rice. Changes in gas exchange parameters caused by the pathogen begin before the onset of symptoms. Chemical methods are most commonly applied to control this disease; further research into biological control methods is required. Since Trichoderma asperellum induces plant pathogen defences, increases growth, and improves photosynthetic capability, this study investigated the efficacy of T. asperellum (Ufra T06, UfraT09, Ufra T12, and Ufra T52 (Ta)) in reducing the scald lesion size and the area under the disease progress curve and in minimising the negative effects of scald on gas exchange, chlorophyll a fluorescence, chlorophyll content, and oxidative stress enzyme activity. The experiment was a completely randomised design with five replications and two treatments. Scald was reduced by 62% in plants treated with T. asperellum compared with that in control. There was a 62% increase in the net CO2 assimilation rate (A) and a drop of 78% in the transpiration rate (E) in plants treated with T. asperellum. The maximum fluorescence (Fm) was 128% higher, and ascorbate peroxidase activity was also higher in plants treated with T. asperellum than in the control. This shows that the use of T. asperellum may be effective in improving the sustainability of the integrated management of rice diseases.  相似文献   

4.
A brief review of the photosynthetic apparatus of higher plants is given, followed by a consideration of the modifications induced in this apparatus by changes in light intensity and light quality. Possible strategies by which plants may optimize photosynthetic activity by both long- and short-term modifications of their photosynthetic apparatus in response to changing light regimes are discussed.  相似文献   

5.
高山植物光合机构耐受胁迫的适应机制   总被引:1,自引:0,他引:1  
植物的光合作用是易受环境影响的重要生理过程之一.高山植物作为生长在特定极端环境(低温/强辐射)下的植物群体,其光合器官在形态结构和生理功能上形成了抵御强辐射和低温胁迫的特殊适应机制.但由于较高的生境异质性,高山植物的光保护适应机制存在较大的差异.光保护适应机制与光合作用密切关联,影响植物的碳同化能力和生物量的形成能力.本文对近年来国内外有关高山植物光合器官叶绿体的形态、超微解剖结构及光合机构光保护适应机理的研究进展进行了综述,并提出了今后高山植物光合作用生理适应性研究的方向.  相似文献   

6.
紫茎泽兰光合特性对生长环境光强的适应   总被引:46,自引:6,他引:46  
测定了不同光强下生长的紫茎泽兰叶片最大净光合速率(Pmax)、叶绿素荧光参数、光合色素含量和比叶重(SLW),探讨了其光适应能力及生理生态学机制.强光下(100%相对光强)紫茎泽兰发生了轻度光抑制,Pmax、SLW、类胡萝卜素含量和日间热耗散升高,但热耗散能力没有提高.强光下紫茎泽兰通过:1)加强日间热耗散和活性氧清除能力以及光系统Ⅱ反应中心可逆失活来耗散过剩光能;2)增大P~以增加光能利用;3)提高SLW,降低单位干重叶绿素含量以减少光能吸收3个途径避免了光合机构光破坏.弱光下(36%、12.5%和4.5%相对光强)紫茎泽兰日间热耗散很小,SLW降低,但P~较高,这有利于其增加光能吸收和利用效率.紫茎泽兰能在很大的光强范围内有效地维持光合系统正常运转,这可能是其表现较强入侵性的原因之一.  相似文献   

7.
Detached leaves of 14 day-old dark-grown pea seedlings were immersed with their cut ends either in water (control) or in 20 mM Pb(NO3)2 solution. They were exposed to continuous illumination during 24 and 48 h. The formation of PSII primary photochemistry in thylakoids was determined in vivo by measuring changes in values of parameters of chlorophyll a fast fluorescence kinetics: Fo, Fm, Fv, Fv/Fm and t 1/2. The amount of lead accumulation in leaves, content of chlorophylls and carotenoids and rates of CO2 uptake in light and evolution in darkness (Pn-net photosynthesis and DR - dark respiration respectively) were determined. It has been found that with the exception of Fo, values of Fv, Fm and Fv/Fm were reduced by Pb2+. The values of t 1/2 were significantly larger in Pb2+ treated leaves. Decrease in the chlorophyll a fluorescence parameters was paralleled with the strong inhibition by this metal the biosynthesis of chlorophyll a and b but less of the carotenoids. Pb2+ drastically reduced Pn but had a stimulatory action on DR after 24 h and small inhibition of DR after 48 h exposure of leaves to this metal. As a consequence, after 48 h of greening the ratio of DR/Pn of control leaves was 0.45 whereas in Pb2+ treated leaves 2.7. It is proposed that DR in leaves plays a protective role against damage of Pn by Pb2+. Protection can be due to the supply the respiratory derived reductant and ATP to carry out cell metabolism upon reduced photosynthesis.  相似文献   

8.
光强对4种鸭跖草科植物生长和光合特性的影响   总被引:1,自引:0,他引:1  
陈斌  刘筱玮  贾琳  杨扬  何淼 《生态学报》2022,42(4):1450-1461
为探究4种鸭跖草科植物对不同光环境的适应能力,以紫鸭跖草、花叶水竹草、吊竹梅、绿叶水竹草4种植物为试验材料,利用遮光网设置5种光强梯度(分别为自然光强的100%、75%、50%、25%、5%),研究不同光强对4种植物生长和光合特性的影响。结果表明:随光强的减弱,4种植物的叶面积、比叶面积、株高、叶片夹角显著增加,但紫鸭跖草在5%自然光强下叶面积显著降低,同时降低的光强显著降低了4种植物叶片的上下表皮厚度和叶片厚度,以及紫鸭跖草、花叶水竹草和绿叶水竹草的栅栏组织厚度、花叶水竹草和绿叶水竹草的海绵组织厚度,但4种植物的栅栏组织和海绵组织比未发生显著变化。紫鸭跖草和花叶水竹草的Chl a、Chl b和Chl (a+b)含量随光强的降低呈先升后降趋势,而吊竹梅和绿叶水竹草的Chl a、Chl b和Chl (a+b)含量则显著升高。与100%自然光强和5%自然光强相比,4种植物在25%—75%自然光强下,能保持高的气孔开度、净光合速率、气孔导度、胞间二氧化碳浓度和蒸腾速率。研究表明,4种鸭跖草科植物具有较强的光适应性,可以通过调整植株形态、叶片解剖结构、光合色素含量、气孔开度和导度的方式在弱光环...  相似文献   

9.
Photosynthetic rate (Pn) and the partitioning of noncyclic photosynthetic electron transport to photorespiration (Jo) in seedlings of four subtropical woody plants growing at three light intensities were studied in the summer time by measurements of chlorophyll fluorescence and CO2 exchange. Except Schima superba, an upper canopy tree species, the tree species Castanopsis fissa and two understory shrubs Psychotria rubra, Ardisia quinquegona had the highest Pn at 36% of sunlight intensity. The total photosynthetic electron transport rate (JF) and the ratio of Jo/JF were elevated in leaves under full sunlight. Jo/JF ratio reached 0.5-0.6 and coincided with the increasing of oxygenation rate of Rubisco (Vo), the activity of glycolate oxidase and photorespiration rate at full sunlight. It is suggested that an increasing partitioning proportion of photosynthetic electron transport to photorespiration might be one of the protective regulation mechanisms in forest plant under strong summer light and high tempe  相似文献   

10.
Photosynthetic rate (Pn) and the partitioning of noncyclic photosynthetic electron transport to photorespiration (JO) in seedlings of four subtropical woody plants growing at three light intensities were studied in the summer time by measurements of chlorophyll fluorescence and CO2 exchange. ExceptSchima superba, an upper canopy tree species, the tree speciesCastanopsis fissa and two understory shrubsPsychotria rubra, Ardisia quinquegona had the highestP n at 36% of sunlight intensity. The total photosynthetic electron transport rate (JF) and the ratio ofJ O/JF were elevated in leaves under full sunlight.J O/JF ratio reached 0.5–0.6 and coincided with the increasing of oxygenation rate of Rubisco (VO), the activity of glycolate oxidase and photorespiration rate at full sunlight. It is suggested that an increasing partitioning proportion of photosynthetic electron transport to photorespiration might be one of the protective regulation mechanisms in forest plant under strong summer light and high temperature conditions.  相似文献   

11.
Ligation of pigments to proteins of the thylakoid membrane is a central step in the assembly of the photosynthetic apparatus in higher plants. Because of the potentially damaging photooxidative activity of chlorophylls, it is likely that between their biosynthesis and final assembly, chlorophylls will always be bound to protein complexes in which photooxidation is prevented by quenchers such as carotenoids. Such complexes may include chlorophyll carriers and/or membrane receptors involved in protein insertion into the membrane. Many if not all pigment-protein complexes of the thylakoid are stabilised towards protease attack by bound pigments. The major light-harvesting chlorophyll a/b protein (Lhebl,2) folds into its native structure in vitro only when it binds pigments. Pigment-induced folding may also be a general feature of chlorophyll-carotenoid proteins of the photosynthetic apparatus.  相似文献   

12.
Abstract The kinetics of a range of chlorophyll fluorescence parameters, non-cyclic electron transport and the capacity of the thylakoids to bind Atrazine were examined during photoinhibition treatment of intact pea chloroplasts. Parameters of fluorescence induction of chloroplasts in the presence and absence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea at 20 °C and at 77 K were determined. The contributions of photochemical and non-photochemical quenching processes to the loss of fluorescence during photoinhibitory treatment were assessed. Two distinct phases of photoinhibitory damage were observed. During the initial 5 min period of exposure to light the minimal fluorescence level (Fo) increased, whilst the maximal fluorescence level (FP) decreased, both coupled and uncoupled non-cyclic electron transport to methyl viologen decreased and the ability to bind Atrazine to the thylakoids decreased. Fluorescence analyses demonstrated that during this period thylakoids were becoming increasingly less efficient at generating and maintaining a transmembrane proton electrochemical gradient. Photoinhibitory damage that occurred at later times between 5 and 20 min was of a very different nature. Both Fo and FP declined, a loss of coupled and uncoupled non-cyclic electron transport was observed together with a loss of the capacity to photo-oxidize water. However, no further loss of Atrazine-binding was associated with such changes. A consistent decrease in the quantum yield of non-cyclic electron transport was also observed throughout photoinhibition treatment. The possibility of two distinct mechanisms of photoinhibitory damage to the photosynthetic apparatus is discussed.  相似文献   

13.
Illumination of wheat (Triticum aestivum L.) leaves during heat treatment produced either additional injury or protection of photosynthetic apparatus depending on irradiance and the heating dose. Furthermore, illumination of leaves during hyperthermia exerted differential impacts on thermal tolerances of photosynthesis and photosystem II-driven electron transport assessed from the reduction of 2,6-dichlorophenolindophenol (DCPIP). Measurements with infrared gas analyzer showed that mild heating of leaves in darkness (10 min at 38–40°C) had stronger inhibitory effect on CO2 uptake than heating of leaves exposed to low and moderate complex irradiances (3–30 klx), as well as excessive irradiance (75–100 klx). When the leaves were heated at higher temperatures (42–44°C), the low and moderate irradiances had a protective action, while high-intensity light aggravated the inhibition of photosynthesis. Illumination of leaves with weak light during heat treatment mitigated the impairment of chloroplast ultrastructure, whereas irradiation with high-intensity light (100 klx) destroyed the sensitive population of chloroplasts. The heat-stimulated photoinhibition was stronger for leaf photosynthesis than for DCPIP reduction in chloroplasts isolated from heat-treated leaves. No correlation was observed between the extent of violaxanthin deepoxidation, zeaxanthin accumulation, and the protective effect of light on photosynthetic apparatus during heat treatments.  相似文献   

14.
Effect of lead on the photosynthetic apparatus of annual grasses   总被引:5,自引:0,他引:5  
The effect of lead (in the form of Pb(CH3COO)2 3H2O at concentrations of 200, 400, and 800 mg/kg substrate) on the photosynthetic apparatus of barley (cv. Dina) and oat (cv. Falensky) was studied. Exposure to low concentrations of lead (200 mg/kg) slightly increased the content of chlorophyll in leaves and the rate of photosynthesis. Medium concentrations of lead (400 mg/kg) had no marked effect on the parameters analyzed, whereas high concentrations (800 mg/kg) decreased the area of leaves, the content of green pigments in them, and the rate of photosynthesis.Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 2, 2005, pp. 184–188.Original Russian Text Copyright © 2005 by Kaznina, Laidinen, Titov, Talanov.  相似文献   

15.

Depending upon their growth responses to high and low irradiance, respectively, thermophilic Synechococcus sp. isolates from microbial mats associated with the effluent channels of Mushroom Spring, an alkaline siliceous hot spring in Yellowstone National Park, can be described as either high-light (HL) or low-light (LL) ecotypes. Strains isolated from the bottom of the photic zone grow more rapidly at low irradiance compared to strains isolated from the uppermost layer of the mat, which conversely grow better at high irradiance. The LL-ecotypes develop far-red absorbance and fluorescence emission features after growth in LL. These isolates have a unique gene cluster that encodes a putative cyanobacteriochrome denoted LcyA, a putative sensor histidine kinase; an allophycocyanin (FRL-AP; ApcD4-ApcB3) that absorbs far-red light; and a putative chlorophyll a-binding protein, denoted IsiX, which is homologous to IsiA. The emergence of FRL absorbance in LL-adapted cells of Synechococcus sp. strain A1463 was analyzed in cultures responding to differences in light intensity. The far-red absorbance phenotype arises from expression of a novel antenna complex containing the FRL-AP, ApcD4-ApcB3, which is produced when cells were grown at very low irradiance. Additionally, the two GAF domains of LcyA were shown to bind phycocyanobilin and a [4Fe-4S] cluster, respectively. These ligands potentially enable this photoreceptor to respond to a variety of environmental factors including irradiance, redox potential, and/or oxygen concentration. The products of the gene clusters specific to LL-ecotypes likely facilitate growth in low-light environments through a process called Low-Light Photoacclimation.

  相似文献   

16.
Chloroplasts of barley plants grown under red light (RL, 660 nm) dramatically differed from the chloroplasts of plants raised under blue light (BL, 450 nm) or control plants (white light). The chloroplasts under RL had an extensive membrane system with high stacking degree and disordered irregular shaped stacks (shaggy-formed grana). After 5 h in darkness, dynamic rearrangements of chloroplast architecture in RL- and especially BL-grown plants were restricted compared with control plants. The light spectral quality affected the content and proportions of photosynthetic pigments. The leaves of RL-grown plants had the increased ratio of low-temperature fluorescence bands, F741/F683, corresponding to emission of PSI and PSII, respectively. This increase can be related to specific architecture of chloroplasts in RL-treated plants, providing close spacing between the two photosystems, which enhances energy transfer from PSII to PSI and facilitates the movement of LHCII toward PSI.  相似文献   

17.
Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b6f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I.  相似文献   

18.
19.
Recombination of the primary radical pair of photosystem II (PSII) of photosynthesis may produce the triplet state of the primary donor of PSII. Triplet formation is potentially harmful because chlorophyll triplets can react with molecular oxygen to produce the reactive singlet oxygen (1O?). The yield of 1O? is expected to be directly proportional to the triplet yield and the triplet yield of charge recombination can be lowered with a magnetic field of 100-300 mT. In this study, we illuminated intact pumpkin leaves with strong light in the presence and absence of a magnetic field and found that the magnetic field protects against photoinhibition of PSII. The result suggests that radical pair recombination is responsible for significant part of 1O? production in the chloroplast. The magnetic field effect vanished if leaves were illuminated in the presence of lincomycin, an inhibitor of chloroplast protein synthesis, or if isolated thylakoid membranes were exposed to light. These data, in turn, indicate that 1O? produced by the recombination of the primary charge pair is not directly involved in photoinactivation of PSII but instead damages PSII by inhibiting the repair of photoinhibited PSII. We also found that an Arabidopsis thaliana mutant lacking α-tocopherol, a scavenger of 1O?, is more sensitive to photoinhibition than the wild-type in the absence but not in the presence of lincomycin, confirming that the target of 1O? is the repair mechanism.  相似文献   

20.
盐胁迫下水稻叶片光合参数对光强的响应   总被引:8,自引:3,他引:8  
以耐盐性不同的两个水稻品种秋光和辽盐2号为试材,在设定条件下测定长时间NaCl胁迫下水稻剑叶的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci)在不同光照强度(PFD)诱导下的反应差异与水稻抗性的关系.结果表明,在不同浓度NaCl胁迫下,随着PFD的升高,两品种的Pn和Gs均呈上升趋势,与对照相比,耐盐品种辽盐2号的Pn增加了14.87%,而秋光的Pn则下降了17.91%.Ci、Ls及Pn/Gs比值的变化趋势表明,气孔因素和非气孔因素对辽盐2号的光合变化起到了积极作用,而气孔因素则是引起秋光光合变化的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号