首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have isolated multiple cDNAs encoding cytochromes P450 (P450s) from Arabidopsis thaliana employing a PCR strategy. Degenerate oligonucleotide primers were designed from amino acid sequences conserved between two plant P450s, CYP71A1 and CYP73A2, including the heme-binding site and the proline-rich motif found in the N-terminal region, and 11 putative P450 fragments were amplified from first-strand cDNA from 7-day-old Arabidopsis as a template. With these PCR fragments as hybridization probes, 13 full-length and 3 partial cDNAs encoding different P450s have been isolated from an Arabidopsis cDNA library. These P450s have been assigned to either one of the established subfamilies: CYP71B, CYP73A, and CYP83A; or novel subfamilies: CYP76C, CYP83B, and CYP91A. The primary protein structures predicted from the cDNA sequences revealed that the regions around both the heme-binding site and the proline-rich motif were highly conserved among all these P450s. The N-terminal structures of the predicted P450 proteins suggested that these Arabidopsis P450s were located at the endoplasmic reticulum membrane. The loci of four P450 genes were determined by RFLP mapping. One of the clones, CYP71B2, was located at a position very close to the ga4 and gai mutations. RNA blot analysis showed expression patterns unique to each of the P450s in terms of tissue specificity and responsiveness to wounding and light/dark cycle, implicating involvement of these P450s in diverse metabolic processes.  相似文献   

2.
The kinetics of protein-protein interaction and heme reduction between adrenodoxin wild type as well as eight mutants and the cytochromes P450 CYP11A1 and CYP11B1 was studied in detail. Rate constants for the formation of the reduced CYP11A1.CO and CYP11B1.CO complexes by wild type adrenodoxin, the adrenodoxin mutants Adx-(4-108), Adx-(4-114), T54S, T54A, and S112W, and the double mutants Y82F/S112W, Y82L/S112W, and Y82S/S112W (the last four mutants are Delta113-128) are presented. The rate constants observed differ by a factor of up to 10 among the respective adrenodoxin mutants for CYP11A1 but not for CYP11B1. According to their apparent rate constants for CYP11A1, the adrenodoxin mutants can be grouped into a slow (wild type, T54A, and T54S) and a fast group (all the other mutants). The adrenodoxin mutants forming the most stable complexes with CYP11A1 show the fastest rates of reduction and the highest rate constants for cholesterol to pregnenolone conversion. This strong correlation suggests that C-terminal truncation of adrenodoxin in combination with the introduction of a C-terminal tryptophan residue enables a modified protein-protein interaction rendering the system almost as effective as the bacterial putidaredoxin/CYP101 system. Such a variation of the adrenodoxin structure resulted in a mutant protein (S112W) showing a 100-fold increased efficiency in conversion of cholesterol to pregnenolone.  相似文献   

3.
Cytochromes P450 play a vital role in the steroid biosynthesis pathway of the adrenal gland. An example of an essential P450 cytochrome is the steroid 11beta-hydroxylase CYP11B1, which catalyses the conversion of 11-deoxycorticol to hydrocortisone. However, despite its high biotechnological potential, this enzyme has so far been unsuccessfully employed in present-day biotechnology due to a poor expression yield and inherent protein instability. In this study, CYP11B1 was biotransformed into various strains of the yeast Schizosaccharomyces pombe, all of which also expressed the electron transfer proteins adrenodoxin and/or adrenodoxin reductase - central components of the mitochondrial P450 system - in order to maximise hydrocortisone production efficiency in our proposed model system. Site-directed mutagenesis of CYP11B1 at positions 52 and 78 was performed in order to evaluate the impact of altering the amino acids at these sites. It was found that the presence of an isoleucine at position 78 conferred the highest 11beta-hydroxylation activity of CYP11B1. Coexpression of adrenodoxin and adrenodoxin reductase appeared to further increase the 11beta-hydroxylase activity of the enzyme (3.4 fold). Adrenodoxin mutants which were found to significantly enhance enzyme efficiency in other cytochromes in previous studies were also tested in our system. It was found that, in this case, the wild type adrenodoxin was more efficient. The new fission yeast strain TH75 coexpressing the wild type Adx and AdR displays high hydrocortisone production efficiency at an average of 1mM hydrocortisone over a period of 72h, the highest value published to date for this biotransformation. Finally, our research shows that pTH2 is an ideal plasmid for the coexpression of the mitochondrial electron transfer counterparts, adrenodoxin and adrenodoxin reductase, in Schizosaccharomyces pombe, and so could serve as a convenient tool for future biotechnological applications.  相似文献   

4.
Models capable of predicting the possible involvement of cytochromes P450 in the metabolism of drugs or drug candidates are important tools in drug discovery and development. Ideally, functional information would be obtained from crystal structures of all the cytochromes P450 of interest. Initially, only crystal structures of distantly related bacterial cytochromes P450 were available-comparative modeling techniques were used to bridge the gap and produce structural models of human cytochromes P450, and thereby obtain some useful functional information. A significant step forward in the reliability of these models came four years ago with the first crystal structure of a mammalian cytochrome P450, rabbit CYP2C5, followed by the structures of two human enzymes, CYP2C8 and CYP2C9, and a second rabbit enzyme, CYP2B4. The evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism, is presented as a case study.  相似文献   

5.
The series of diamondoids: adamantane, diamantane, triamantane, 2-isopropenyl-2-methyladamantane and 3-isopropenyl-3-methyldiamantane (3-IPMDIA), were employed to elucidate the molecular basis of their interaction with the active site of cytochromes P450 (CYP) of a 2B subfamily. These potent inhibitors of CYP2B enzymes were docked into the homology model of CYP2B4. Apparent dissociation constants calculated for the complexes of CYP2B4 with docked diamandoids agreed closely with the experimental data showing inhibition potency of the compounds and their binding affinity to CYP2B4. Superimposed structures of docked diamondoids mapped binding site residues. As they are mainly non-polar residues, the hydrophobicity plays the major role in the binding of diamondoids. Overlapping structure of diamondoids defined an elliptical binding cavity (5.9A inner diameter, 7.9A length) forming an angle of approximately 43 degrees with the heme plane. CYP2B specific diamondoids, namely 3-IPMDIA, showing the highest binding affinity, should be considered for a potential clinical use.  相似文献   

6.
The results of quantitative structure-activity relationship (QSAR) studies on inhibitors and substrates of cytochrome P450 2B (CYP2B) subfamily enzymes are reported. It was found that lipophilicity (in the form of log P) is the most important property for explaining the variations in inhibitory activity, and there are similarities between QSARs for both substrates and inhibitors for CYP2B6 (human), and also between those of other CYP2B enzymes, such as CYP2B1 (rat) and CYP2B4 (rabbit). Both linear and quadratic lipophilicity relationships are evidenced in human and other mammalian species, and the particular type of expression found is probably due to the nature of the compounds under investigation, as it is usually the homologous series which tend to show quadratic relationships in log P. The findings from QSAR studies can be rationalized by molecular modelling of the active site interactions with both P450 crystal structures and homology models of CYP2B subfamily enzymes.  相似文献   

7.
CYP73 enzymes are highly conserved cytochromes P450 in plant species that catalyse the regiospecific 4-hydroxylation of cinnamic acid to form precursors of lignin and many other phenolic compounds. A CYP73A1 homology model based on P450 experimentally solved structures was used to identify active site residues likely to govern substrate binding and regio-specific catalysis. The functional significance of these residues was assessed using site-directed mutagenesis. Active site modelling predicted that N302 and I371 form a hydrogen bond and hydrophobic contacts with the anionic site or aromatic ring of the substrate. Modification of these residues led to a drastic decrease in substrate binding and metabolism without major perturbation of protein structure. Changes to residue K484, which is located too far in the active site model to form a direct contact with cinnamic acid in the oxidized enzyme, did not influence initial substrate binding. However, the K484M substitution led to a 50% loss in catalytic activity. K484 may affect positioning of the substrate in the reduced enzyme during the catalytic cycle, or product release. Catalytic analysis of the mutants with structural analogues of cinnamic acid, in particular indole-2-carboxylic acid that can be hydroxylated with different regioselectivities, supports the involvement of N302, I371 and K484 in substrate docking and orientation.  相似文献   

8.
Clodfelter KH  Waxman DJ  Vajda S 《Biochemistry》2006,45(31):9393-9407
Computational solvent mapping moves small organic molecules as probes around a protein surface, finds favorable binding positions, clusters the conformations, and ranks the clusters on the basis of their average free energy. Prior mapping studies of enzymes, crystallized in either substrate-free or substrate-bound form, have shown that the largest number of solvent probe clusters invariably overlaps in the active site. We have applied this method to five cytochromes P450. As expected, the mapping of two bacterial P450s, P450 cam (CYP101) and P450 BM-3 (CYP102), identified the substrate-binding sites in both ligand-bound and ligand-free P450 structures. However, the mapping finds the active site only in the ligand-bound structures of the three mammalian P450s, 2C5, 2C9, and 2B4. Thus, despite the large cavities seen in the unbound structures of these enzymes, the features required for binding small molecules are formed only in the process of substrate binding. The ability of adjusting their binding sites to substrates that differ in size, shape, and polarity is likely to be responsible for the broad substrate specificity of these mammalian P450s. Similar behavior was seen at "hot spots" of protein-protein interfaces that can also bind small molecules in grooves created by induced fit. In addition, the binding of S-warfarin to P450 2C9 creates a high-affinity site for a second ligand, which may help to explain the prevalence of drug-drug interactions involving this and other mammalian P450s.  相似文献   

9.
Limited proteolysis of rat liver microsomes was used to probe the topography and structure of cytochrome P450 bound to the endoplasmic reticulum. Three cytochromes P450 from two families were examined. Monoclonal antibodies to cytochrome P450 forms 1A1, 2B1, and 2E1 were used to immunopurify these proteolyzed cytochromes P450 from microsomes from rats treated with 3-methylcholanthrene, phenobarbital, and acetone, respectively. Electrophoretic and immunoblot analysis of tryptic fragments revealed a highly sensitive cleavage site in all three cytochromes P450. N-Terminal sequencing was performed on the fragments after transfer onto poly(vinylidene difluoride) membranes and showed that this preferential cleavage site is at amino acid position 298 of P450 1A1, position 277 of P450 2B1, and position 278 of P450 2E1. Multiple sequence alignment revealed that these positions are at the amino terminal of a highly conserved region of these cytochromes P450. The important functional role implied by primary sequence conservation along with the proteolytic sensitivity at its amino terminal suggests that this region is a protein domain. Comparison with the known structure of the bacterial cytochrome P450cam predicts that this proteolytically sensitive site is within an interhelical turn region connected to the distal helix that partially encompasses the heme-containing active site. Substrate binding to the cleaved cytochromes P450 was examined in order to determine whether the newly added conformational freedom near the cleavage site functionally altered these cytochromes P450. Cleavage of P450 2B1 abolished benzphetamine binding, which indicates that the cleavage site contains an important structural determinant for binding this substrate. However, cleavage did not affect benzo[a]pyrene binding to P450 1A1.  相似文献   

10.
By replacing specific amino acids at positions 112, 147 and 152 of the human aldosterone synthase (CYP11B2) with the corresponding residues from human, mouse or rat 11beta-hydroxylase (CYP11B1), we have been able to investigate whether these residues belong to structural determinants of individual enzymatic activities. When incubated with 11-deoxycorticosterone (DOC), the 11beta-hydroxylation activity of the mutants was most effectively increased by combining D147E and I112P (sixfold increase). The two substitutions displayed an additive effect. The same tendency can be observed when using 11-deoxycortisol as a substrate, although the effect is less pronounced. The second step of the CYP11B2-dependent DOC conversion, the 18-hydroxylation activity, was not as strongly increased as the 11beta-hydroxylation potential. Activity was unaffected by D147E, whereas the single mutant I112P displayed the most pronounced activation (70% enhancement), thus causing different increasing effects on the first two enzymatic reaction steps. A slightly enhanced aldosterone synthesis from DOC could be measured due to increased levels of the intermediates. However, the 18-oxidation activity of all the mutants, except for I112S and D147E, was slightly reduced. The strongly enhanced 18-hydroxycorticosterone and aldosterone formation observed in the mutants provides important information on a possible role of such amino-acid replacements in the development of essential hypertension. Furthermore, the results indicate the possibility of a differential as well as independent modification of CYP11B2 reaction steps. The combination of functional data and computer modelling of CYP11B2 suggests an indirect involvement of residue 147 in the regulation of CYP11B isoform specific substrate conversion due to its location on the protein surface. In addition, the results indicate the functional significance of amino-acid 112 in the putative substrate access channel of human CYP11B2. Thus, we present the first example of substrate recognition and conversion being attributed to the N-terminal part of human CYP11B2.  相似文献   

11.
Cytochromes P450 comprise a large superfamily and several of their isoforms play a crucial role in metabolism of xenobiotics, including drugs. Although these enzymes demonstrate broad and cross‐substrate specificity, different cytochrome P450 subfamilies exhibit certain selectivity for some types of substrates. Analysis of amino acid residues of the active sites of six cytochrome subfamilies (CYP1А, CYP2А, CYP2С, CYP2D, CYP2E and CYP3А) enables to define subfamily‐specific patterns that consist of four residues. These residues are located on the periphery of the active sites of these cytochromes. We suggest that they can form a primary binding site at the entrance to the active site, defining cytochrome substrate recognition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We reported previously that the protein kinase C (PKC) inhibitor GF109203X stimulated the hamster CYP11B2 promoter activity in transfected NCI-H295 cells. PKCalpha, -epsilon, and -zeta were detected in hamster adrenal zona glomerulosa and NCI-H295 cells, and PKCtheta in NCI-H295 cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) inhibited basal and stimulated cytochrome P450 aldosterone synthase mRNA expression by angiotensin (AII), dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP), or KCl in NCI-H295 cells. Basal CYP11B2 promoter activity was inhibited in cells cotransfected with constitutively active (CA) PKCalpha, -epsilon, and -theta mutants, whereas it was increased with CA-PKCzeta. Dominant negative (DN) PKCalpha, -theta, -epsilon, and -zeta mutants stimulated the promoter activity. AII-, KCl-, and Bt2cAMP-stimulatory effects were abolished in cells cotransfected with CA-PKCalpha, -epsilon, or -theta. The effect of Bt2cAMP was abolished by CA-PKCzeta but AII and KCl were still able to enhance the promoter activity. DN-PKCalpha, -epsilon, -theta, or -zeta did not inhibit these effects. G?6976 enhanced promoter activity, providing further evidence that PKCalpha was involved. Various CYP11B2 promoter constructs were used to identify the area associated with TPA and PKC inhibition. TPA and CA-PKCalpha, -epsilon, or -theta abolished the effects of AII, KCl, and Bt2cAMP on the activity of -102 and longer constructs. In summary, our findings suggest that the hamster CYP11B2 gene is under differential control by conventional (alpha) and atypical (zeta) PKC.  相似文献   

13.
Proteomic approaches have been used for detection and identification of cytochromes P450 forms from highly purified membrane preparations of human liver. These included the protein separation by 2D-and/or 1D-electrophoresis and molecular scanning of a SDS-PAGE gel fragment in a range 45–66 kDa (this area corresponds molecular weights of cytochromes P450). The analysis of protein content was statistically evaluated by means of an original 1D-ZOOMER software package which allowed to carry out the processing of mass spectra mixture instead of individual mass spectra used by standard techniques. In the range 45–66 kDa we identified 13 microsomal membrane proteins including such cytochrome P450 forms as CYPs 1A2, 1B1, 2A6, 2E1, 2C8, 2C9, 2C10, 2D6, 3A4, 4A11, 4F2. Study of enzymatic activities of human liver microsomal cytochrome P450 isoforms CYP 1A, 2B, 3A, and 2E revealed the decrease in the rates of O-dealkylation and N-demethylation catalyzed by CYP 450 1A1/1A2 and 3A4 under pathological conditions, whereas 7-benzyloxyresorufin-O-debenzylase activity (which characterizes the total activity of CYP 2B and CYP 2C), the activities of CYP 2E1 (methanol oxidation), 7-pentoxyresorufin-O-dealkylation (CYP 2B), 7-ethoxy-and 7-methoxycoumarin-O-dealkylases (CYP 2B1) remained basically unchanged.  相似文献   

14.
In the last 4 years, breakthroughs were made in the field of P450 2B (CYP2B) structure-function through determination of one ligand-free and two inhibitor-bound X-ray crystal structures of CYP2B4, which revealed many of the structural features required for binding ligands of different size and shape. Large conformational changes of several plastic regions of CYP2B4 can dramatically reshape the active site of the enzyme to fit the size and shape of the bound ligand without perturbing the overall P450 fold. Solution biophysical studies using isothermal titration calorimetry (ITC) have revealed the large difference in the thermodynamic parameters of CYP2B4 in binding inhibitors of different ring chemistry and side chains. Other studies have revealed that the effects of site-specific mutations on steady-state kinetic parameters and mechanism-based inactivation are often substrate dependent. These findings agree with the structural data that the enzymes adopt different conformations to bind various ligands. Thus, the substrate specificity of an individual enzyme is determined not only by active site residues but also non-active site residues that modulate conformational changes that are important for substrate access and rearrangement of the active site to accommodate the bound substrate.  相似文献   

15.
To investigate structure-function relationships of cytochromes P450 (CYP), 3-azidiamantane was employed for photoaffinity labeling of rabbit microsomal CYP2B4. Four diamantane labeled tryptic fragments were identified by mass spectrometry and sequencing: peptide I (Leu359-Lys373), peptide II (Leu30-Arg48), peptide III (Phe127-Arg140), and peptide IV (Arg434-Arg443). Their positions were projected into CYP2B4 model structures and compared with substrate binding sites, proposed by docking of diamantane. We identified novel binding regions outside the active site of CYP2B4. One of them, defined with diamantane modified Arg133, marks a possible entrance to the active site from the heme proximal face. In addition to crystal structures of CYP2B4 chimeras and molecular dynamics simulations, our data of photoaffinity labeling of the full CYP2B4 molecule provide further insight into functional and structural aspects of substrate binding.  相似文献   

16.
We studied the effect of intermolecular interactions between cytochromes P450 1A2 (CYP1A2) and 2B4 (CYP2B4) on the barotropic inactivation of the ferrous carbonyl complexes of the hemoproteins. When taken separately, these hemoproteins reveal quite distinct barotropic behavior. While the 2B4(Fe(2+))-CO complex is very sensitive to hydrostatic pressures and undergoes P450 --> P420 transition at rather low pressures (P(1/2) = 297 MPa, DeltaV(0) = -61 ml/mol), the 1A2(Fe(2+))-CO is extremely resistant to barotropic inactivation. Only about 8% of the 1A2 was exposed to pressure-induced P450 --> P420 transition (P(1/2) = 420 MPa, DeltaV(0) = -28 ml/mol). The formation of the mixed oligomers of 2B4 and 1A2 was found to have a dramatic effect on the barotropic behavior of 2B4. In the heterooligomers of 1A2 and 2B4, the 2B4 hemoprotein appears to be largely protected from barotropic inactivation. In 1:1 mixed oligomers no more than 25% of the total P450 content undergoes P450 --> P420 inactivation with the molar reaction volume value (DeltaV(0) = -26 ml/mol) similar to those found for pure 1A2. Moreover, interactions between 1A2 and 2B4 results in a displacement of the Soret band of the ferrous carbonyl complex of CYP2B4 to shorter wavelength (from 451.3 to 448.4 nm) and largely strengthens the dependence of the Soret band wavenumber on hydrostatic pressure below 200 MPa. This effect suggests an important hydration of the CYP2B4 heme moiety in response to the interactions with CYP1A2. We discuss these results in terms of the hypothesis that the heterooligomerization of cytochromes P450 in microsomes plays an important role in the control of the activity and coupling of the microsomal monooxygenase.  相似文献   

17.
Homology modeling and substrate binding study of human CYP4A11 enzyme   总被引:3,自引:0,他引:3  
Chang YT  Loew GH 《Proteins》1999,34(3):403-415
Although both bacterial CYP102 (P450BM3) and mammalian CYP4A isozymes share a common function as fatty acid hydroxylases, distinctly different preferred sites of oxidation are observed with the CYP102 performing the usual non-terminal hydroxylation or epoxidation and the CYP4A enzymes performing the unusual and enigmatic terminal hydroxylation. The origin of this unique product specificity in human CYP4A11 has been explored in this work, focusing on possible differences in the binding site architecture of the two isozymes as the cause. To this end, 3D model structures of the human CYP4A11 enzyme were built and compared to the X-ray structure of CYP102. The substrate-binding channel identified in CYP4A11 was found to have a much more sterically restricted active site than that in CYP102 that could cause limited access of long-chain fatty acid to the ferryl oxygen leading to the preferred omega-hydroxylation. Results of docking of a common substrate, lauric acid, into the binding site of both CYP4A11 and CYP102 and molecular dynamics simulations provided additional support for this hypothesis. Specifically, in the CYP4A11-lauric acid simulations, the omega hydrogens were closest to the ferryl oxygen most of the time. By contrast, in the CYP102-lauric acid complex, the substrate could penetrate further into the active site providing access of the non-terminal (omega-1, omega-2) positions to the ferryl oxygen. These results, taken together, have elucidated the origin of the unusual product specificity of CYP4A11 and illustrated the central role of binding site architecture in subtle modulation of function.  相似文献   

18.
Spectroscopic methods reveal differences in flexibility and stability of P450 forms. Among microsomal P450s, the most flexible active site has been found in the CYP3A4 enzyme as it is compressible and the heme vinyl side chains may adopt two different conformations. On the other hand, active site of this enzyme denatures quite easily upon hydrostatic pressure. The most rigid active site able to withstand the effect of high pressure has CYP1A2. The bacterial CYP102 (BM3) flavocytochrome has also a rather stable, but flexible active site. The differences between CYP3A4 and CYP1A2 active sites apparently reflect their ability to bind various substrates: whereas the CYP3A4 binds a vast variety of structures, the CYP1A2 preferentially binds planar, aromatic structures and its substrate specificity is relatively narrow.  相似文献   

19.
In the current study, an approach to elucidating the substrate specificity of cytochromes P450 based on the analysis of current-voltage characteristics of voltammograms and amperograms is proposed. Data on the electrochemical behavior of bioelectrodes with immobilized cytochromes P450 2B4, 1A2, 3A4, 11A1 (P450scc), and 51b1 (Mycobacterium tuberculosis sterol 14α-demethylase or CYP51 MT) in the presence of typical substrates and inhibitors for these hemoprotein forms are reported. Immobilization of the enzymes was accomplished by using graphite screen-printed electrodes modified with gold nanoparticles and with the synthetic membrane-like compound didodecyldimethylammonium bromide. The method of electro-analysis can be applied to the search of potential substrates and inhibitors of cytochromes P450 and to creation of multichannel electrochemical plates (chips, panels) with immobilized cytochromes P450. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 4, pp. 542–549.  相似文献   

20.
Cytochromes P450 (CYPs or P450s) contain a highly conserved threonine residue in the active site, which is referred to as Thr302 in the amino acid sequence of CYP2B4. Extensive biochemical and crystallographic studies have established that this Thr302 plays a critical role in activating molecular oxygen to generate Compound I, a putative iron(IV)-oxo porphyrin cation radical, that carries out the preliminary oxygenation of CYP substrates. Because of its proximity to the center of the P450 active site, this Thr302 is susceptible to mechanism-based inactivation under certain conditions. In this article, we review recent studies on the mechanism-based inactivation of three mammalian P450s in the 2B family, CYP2B1 (rat), 2B4 (rabbit) and 2B6 (human) by tert-butylphenylacetylene (tBPA). These studies showed that tBPA is a potent mechanism-based inactivator of CYP2B1, 2B4 and 2B6 with high kinact/KI ratios (0.23–2.3 min−1 μM−1) and low partition ratios (0–5). Furthermore, mechanistic studies revealed that tBPA inactivates these three CYP2B enzymes through the formation of a single ester adduct with the Thr302 in the active site. These inhibitory properties of tBPA allowed the preparation of a modified CYP2B4 where the Thr302 was covalently and stoichiometrically labeled by a reactive intermediate of tBPA in quantities large enough to permit spectroscopic and crystallographic studies of the consequences of covalent modification of Thr302. Molecular modeling studies revealed a unique binding mode of tBPA in the active site that may shed light on the potency of this inhibition. The results from these studies may serve as a basis for designing more specific and potent inhibitors for P450s by targeting this highly conserved threonine residue which is present in the active sites of most mammalian P450s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号