首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 983 毫秒
1.
The interactions of wheat-germ agglutinin (WGA) with the GlcNAc beta 1,6Gal sequence, a characteristic component of branched poly-N-acetyllactosaminoglycans, were investigated using isothermal titration calorimetry and X-ray crystallography. GlcNAc beta 1,6Gal exhibited an affinity greater than GlcNAc beta 1,4GlcNAc to all WGA isolectins, whereas Gal beta 1,6GlcNAc showed much less affinity than GlcNAc beta 1,4GlcNAc. X-ray structural analyses of the glutaraldehyde-crosslinked WGA isolectin 3 crystals in complex with GlcNAc beta 1,6Gal, GlcNAc beta 1,4GlcNAc and GlcNAc beta 1,6Gal beta 1,4Glc were performed at 2.4, 2.2 and 2.2 A resolution, respectively. In spite of different glycosidic linkages, GlcNAc beta 1,6Gal and GlcNAc beta 1,4GlcNAc exhibited basically similar binding modes to each other, in contact with side chains of two aromatic residues, Tyr64 and His66. However, the conformations of the ligands in the two primary binding sites were not always identical. GlcNAc beta 1,6Gal showed more extensive variation in the parameters defining the glycosidic linkage structure compared to GlcNAc beta 1,4GlcNAc, demonstrating large conformational flexibility of the former ligand in the interaction with WGA. The difference in the ligand binding conformation was accompanied by alterations of the side chain conformation of the amino acid residues involved in the interactions. The hydrogen bond between Ser62 and the non-reducing end GlcNAc was always observed regardless of the ligand type, indicating the key role of this interaction. In addition to the hydrogen bonding and van der Waals interactions, CH--pi interactions involving Tyr64, His66 and Tyr73 are suggested to play an essential role in determining the ligand binding conformation in all complexes. One of the GlcNAc beta 1,6Gal ligands had no crystal packing contact with another WGA molecule, therefore the conformation might be more relevant to the interaction mode in solution.  相似文献   

2.
The crystal structures of two closely related members of the multigene family of wheat lectins (isolectins 1 and 2) have been compared. These isolectins differ at five sequence positions, one being located in the saccharide binding site modulating ligand affinity. Crystals of the two isolectins are closely isomorphous (space group C2). The atomic models are based on structure refinement at 1.8 A resolution in the case of isolectin 2 (WGA2) and 2.0 A resolution in the case of isolectin 1 (WGA1). Refinement results for WGA1, recently completed with a crystallographic R-factor of 16.5% (Fo greater than 3 sigma (Fo)), are presented. Examination of a difference Fourier map, [FWGA2-FWGA1], at 2.0 A resolution and direct superposition of the two models indicated an overall close match of the two structures. Local differences are observed in the region of residues 44 to 69, where three sequence differences occur, and at highly mobile external residues on the surface. The average positional discrepancy (root-mean-square delta r) for corresponding protein atoms in the two crystal structures is 0.64 A for independent protomer I and 0.61 A for protomer II (0.29 A and 0.30 A for main-chain atoms). The mean atomic temperature factors are very similar 20.9 versus 22.0 A2). Regions of high flexibility coincide in the two isolectin structures. Of the 210 water sites identified in WGA1, 144 have corresponding positions in WGA2. A set of 51 well-ordered sites was found to be identical in the two independent environments in both structures, and was considered to be important for structure stabilization. Both of the unique sugar binding sites superimpose very closely, exhibiting root-mean-square positional differences ranging from 0.29 A to 0.42 A. The side-chains of the critical tyrosine residues, Tyr73 (P-site) and Tyr159 (S-site), superimpose best, while other highly flexible aromatic groups (Tyr64 and Trp150) and several water sites display large differences in position (0.5 to 1.0 A) and high temperature factors. The aromatic side-chains of Tyr66 in WGA1 and His66 in WGA2 are oriented similarly.  相似文献   

3.
The crystal structures of complexes of isolectins 1 and 2 of wheat germ agglutinin (WGA1 and WGA2) with N-acetylneuraminyl-lactose (NeuNAc-alpha(2-3)-Gal-beta(1-4)-Glc) have been refined on the basis of data in the 8 to 2.2 A resolution range to final crystallographic R-factors of 17.2% and 15.3% (Fo greater than 1 sigma), respectively. Specific binding interactions and water association, as well as changes in conformation and mobility of the structure upon ligand binding, were compared in the two complexes. The temperature factors (B = 16.3 A2 and 18.4 A2) were found to be much lower compared with those of their respective native structures (19 to 22 A2). Residues involved in sugar binding, dimerization and in lattice contacts exhibit the largest decreases in B-value, suggesting that sugar binding reduces the overall mobility of the protein molecules in the crystal lattice. The binding mode of this sialyl-trisaccharide, an important cell receptor analogue, has been compared in the two isolectins. Only one of the two unique binding sites (4 per dimer), located in the subunit/subunit interface, is occupied in the crystals. This site, termed the "primary" binding site, contains one of the five amino acid substitutions that differentiate WGA1 and WGA2. Superposition of the refined models in each of the independent crystallographic environments indicates a close match only of the terminal non-reducing NeuNAc residue (root-mean-square delta r of 0.5 to 0.6 A). The Gal-Glc portion was found to superimpose poorly, lack electron density, and possess high atomic thermal factors. In both complexes NeuNAc is stabilized through contact with six amino acid side-chains (Ser114 and Glu115 of subunit 1 and Ser62, Tyr64, Tyr(His)66 and Tyr73 of subunit 2), involving all NeuNAc ring substituents. Refinement has allowed accurate assessment of the contact distances for four hydrogen bonds, a strong buried non-polar contact with the acetamido CH3 group and a large number of van der Waals' interactions with the three aromatic side-chains. The higher affinity of N-acetylneuraminyl-lactose observed by nuclear magnetic resonance studies for WGA1 can be explained by the more favorable binding interactions that occur when residue 66 is a Tyr. The tyrosyl side-chain provides a larger surface for van der Waals' stacking against the NeuNAc pyranose ring than His66 and a hydrogen bond contact with Gal (C2-OH), not possible in WGA2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Precision in the determination of the 3D structures of proteins by NMR depends on obtaining an adequate number of NOE restraints. Ambiguity in the assignment of NOE cross peaks between aromatic and other protons is an impediment to high quality structure determination. Two pulse sequences, 3D Haro-NOESY-CH3NH and 3D Caro-NOESY-CH3NH, based on a modification of a technique for simultaneous detection of 13C-1H (of CH3) and 15N-1H correlations in one measurement, are proposed in the present work. These 3D experiments, which are optimized for resolution in the 13C and 15N dimensions, provide NOE information between aromatic protons and methyl or amide protons. CH2 moieties are filtered out and the CH groups in aromatic rings are selected, allowing their NOE cross peaks to be unambiguously assigned. Unambiguous NOEs connecting aromatic and methyl or amide protons will provide important restraints for protein structure calculations.  相似文献   

5.
The complete sequential assignment and conformation of d-GpCpGpC in D2O has been determined from 1D NMR spectra at 285-320 K and room temperature 2D-COSY and NOESY spectra. The tetradeoxynucleotide exists primarily as a right handed double helix at 285 K, having Tm as 314 K. On binding to a tripeptide Lys-Tyr-Lys in a concentration equimolar to tetranucleotide duplex, the Tyr ring protons shift upfield by 0.14 ppm at 285 K. The increase in Tm on binding suggests stabilization of duplex. The existence of intermolecular NOEs between C4 sugar protons and Tyr alpha C and Lys alpha C protons give direct evidence of proximity of Tyr residue to the C4 base of d-GpCpGpC. The conformation of d-GpCpGpC remains unchanged on binding. The observed results are interpreted in terms of preferential stacking of aromatic ring of Tyr residue with proximal base-pair of d-GpCpGpC, stabilized by electrostatic interaction of Lysine side chains with backbone phosphates. This is in contrast to intercalculation of aromatic dyes within base-pairs resulting in a change in sugar conformation at the binding site.  相似文献   

6.
N-Acetylglucosamine (GlcNAc), a major component of complex carbohydrates, is synthesized de novo or salvaged from lysosomally degraded glycoconjugates and from nutritional sources. The salvage pathway requires that GlcNAc kinase converts GlcNAc to GlcNAc-6-phosphate, a component utilized in UDP-GlcNAc biosynthesis or energy metabolism. GlcNAc kinase belongs to the sugar kinase/Hsp70/actin superfamily that catalyze phosphoryl transfer from ATP to their respective substrates, and in most cases catalysis is associated with a large conformational change in which the N-terminal small and C-terminal large domains enclose the substrates. Here we report two crystal structures of homodimeric human GlcNAc kinase, one in complex with GlcNAc and the other in complex with ADP and glucose. The active site of GlcNAc kinase is located in a deep cleft between the two domains of the V-shaped monomer. The enzyme adopts a "closed" configuration in the GlcNAc-bound complex and GlcNAc interacts with residues of both domains. In addition, the N-acetyl methyl group contacts residues of the other monomer in the homodimer, a unique feature compared to other members of the sugar kinase/Hsp70/actin superfamily. This contrasts an "open" configuration in the ADP/glucose-bound structure, where glucose cannot form these interactions, explaining its low binding affinity for GlcNAc kinase. Our results support functional implications derived from apo crystal structures of GlcNAc kinases from Chromobacter violaceum and Porphyromonas gingivalis and show that Tyr205, which is phosphorylated in thrombin-activated platelets, lines the GlcNAc binding pocket. This suggests that phosphorylation of Tyr205 may modulate GlcNAc kinase activity and/or specificity.  相似文献   

7.
B J Lee  H Aiba  Y Kyogoku 《Biochemistry》1991,30(37):9047-9054
The identification and assignment of the proton magnetic resonances of some aliphatic and aromatic amino acid residues of cyclic AMP receptor protein (CRP) are reported. The signals of the leucine and valine residues at around 0 ppm were identified on the basis of intermolecular nuclear Overhauser effects, deuterium labeling, and partial proteolytic digestion. On the addition of cAMP, methyl proton signals due to Val-49 and three leucine residues were detected as upfield-shifted signals at around -0.2 ppm. These signals can be used as indicators of the proper binding of cAMP because they are not observed on the addition of cGMP or 2'-deoxy-cAMP. They are also not observed on cAMP binding to mutant CRP*5 (Ser-62-Phe), which can only be activated by a high concentration of cAMP, but they are observed on cAMP binding to other mutant CRP*s (four species), which can be activated by lower concentrations of cAMP. The resonance of some aromatic protons, i.e., C-2H of two tryptophans, C-2H and C-4H of six histidines, and C-2,6H and C-3,5H of six tyrosine residues in CRP, were assigned by means of deuterium labeling and NOE measurements. The 1H NMR spectrum of labeled CRP [Trp(ring-d5), Phe(ring-d5), and Tyr(3,5-d2)] showed good resolution in the aromatic region. The addition of cAMP to this CRP in D2O caused pronounced line broadening of resonances arising from the residues in the cAMP-binding domain, but the resonances of the DNA-binding domain were not affected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The interaction between hen lysozyme and urea has been investigated using 1H nuclear magnetic resonance spectroscopy. Chemical shift changes for resonances of a number of residues in the vicinity of the active site of the protein have been observed in the presence of urea prior to denaturation. These shifts are similar to those induced in the hen lysozyme spectrum by the specific binding of N-acetylglucosamine (GlcNAc) in site C of the active site cleft, indicating that urea and GlcNAc induce a similar conformational change in the enzyme. This implies that the conformational changes experienced by the enzyme on the binding of GlcNAc oligosaccharides are the consequence of interactions, possibly hydrogen bonding, involving the N-acetyl group of the sugar residue bound in site C, rather than the result of contacts between the protein and the pyranose rings of the oligosaccharides. This suggests that hen lysozyme employs an induced fit type mechanism to discriminate for N-acetylated saccharides as substrates.  相似文献   

9.
The conformational properties of the competitive angiotensin II antagonist sarmesin [Sar-Arg-Val-Tyr(Me)-His-Pro-Phe] and its heptapeptide analogue [des1]sarmesin in dimethylsulphoxide-d6 were investigated by nuclear Overhauser effect (NOE) enhancement studies. Assignment of all backbone and side-chain protons was possible by combining information from intraresidue NOE studies with two-dimensional correlated spectroscopy (COSY) studies. Saturation of the His C alpha proton of sarmesin produced essentially the same interresidue NOE enhancement of the two Pro C delta protons, illustrating the presence of the trans His-Pro bond. Saturation of the Sar N-methyl group caused enhancement of one of the His C beta protons, suggesting the presence of a turn in the N-terminal region of the molecule. Saturation of His C2 in sarmesin and [des1]sarmesin enhanced the Tyr(Me) methyl signal. Saturation of the Tyr(Me) methyl protons in [des1]sarmesin produced NOE enhancement of the His C2 and C4 protons, and saturation of the His C2 proton enhanced the Tyr(Me) meta and ortho proton signals. Interresidue interactions between the Tyr(Me) and His protons in sarmesin and [des1]sarmesin illustrate that these two side-chains remain in close proximity even in the absence of the postulated hydrogen bond between Tyr hydroxyl and the His imidazole ring in angiotensin II. The data suggest a preferred conformation for sarmesin in DMSO in which the peptide backbone is S-shaped and similar to that for angiotensin II.  相似文献   

10.
P Cagas  C A Bush 《Biopolymers》1992,32(3):277-292
To probe differences in conformation of the type 1 and type 2 linkages in blood group oligosaccharides, two-dimensional nuclear Overhauser effect spectroscopy (2D-NOESY) and 1H T1 data were obtained for two blood group A oligosaccharide alditols containing the type 1 and type 2 linkage. The NOE data were interpreted using a complete relaxation matrix approach. Simulations of NOE and T1 values were made using disaccharide and tetrasaccharide model conformations generated by a systemic variation of the glycosidic dihedral angles phi and psi. NOEs from the amide protons of GlcNAc and GalNAc in the type 1 pentasaccharide alditol were obtained, and simulated in a manner similar to those from carbon-bound protons. In addition to providing data for determining the conformation of the type 1 linkage from amide proton NOEs of GlcNAc and GalNAc to neighboring residues, amide proton NOEs also yield information on the orientation of the acetamido side chains. The amide NOE data indicated subtle differences in the orientation of the amide side chain of GlcNAc among the A type 1 pentasaccharide alditol and two previously studied blood group oligosaccharides, lacto-N-difucohexaose 1 and lacto-N-fucopentaose 1. From the NOE and 1H T1 data, and from simple rigid geometry energy calculations, it is concluded that the type 1 and type 2 linkages in the oligosaccharides studied have different conformations and that these conformations are relatively rigid in solution.  相似文献   

11.
1H resonance assignments in the NMR spectra of the self-complementary hexadeoxyribonucleoside pentaphosphate d(5'-GCATGC)2 and its complex with the antibiotic nogalamycin, together with interproton distance constraints obtained from two-dimensional nuclear Overhauser effect (NOE) spectra, have enabled us to characterize the three-dimensional structure of these species in solution. In the complex described, two drug molecules are bound per duplex, in each of two equivalent binding sites, with full retention of the dyad symmetry. Twenty-eight NOE distance constraints between antibiotic and nucleotide protons define the position and orientation of the bound drug molecule. Nogalamycin intercalates at the 5'-CA and 5'-TG steps with the major axis of the anthracycline chromophore aligned approximately at right angles to the major axes of the base pairs. The nogalose sugar occupies the minor groove of the helix and makes many contacts with the deoxyribose moieties of three nucleotides along one strand of the duplex in the 5'-TGC segment. The charged dimethylamino group and hydroxyl functions of the bicyclic sugar lie in the major groove juxtaposed to the guanine base, the bridging atoms of the bicyclic sugar making contacts with the methyl group of the thymine. Thus the antibiotic is not symmetrically disposed in the intercalation site but is in close contact in both grooves with atoms comprising the 5'-TGC strand. The intercalation cavity is wedge-shaped, the major axes of the base pairs forming the site being tilted with respect to one another. All base-pair hydrogen-bonding interactions are maintained in the complex, and there is no evidence for Hoogsteen pairing. The free duplex adopts a regular right-handed B-type conformation in which all glycosidic bond angles are anti and all sugar puckers lie in the C2'-endo range. In the complex the glycosidic bond angles and the sugar puckers deviate little from those observed for the duplex alone. The presence of two bound nogalamycin molecules substantially slows the "breathing" motions of the base pairs forming the intercalation cavity, and the observation of two downfield-shifted resonances in the 31P NMR spectrum of the complex suggests a pronounced local helix unwinding at the drug binding site. The footprinting data of Fox and Waring [Fox, K.R., & Waring, M.J. (1986) Biochemistry 25, 4349-4356] imply that the highest affinity binding sites of nogalamycin have the sequence 5'-GCA (or 5'-TGC).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Decay accelerating factor (DAF) is a cell-surface phosphatidylinositol-anchored protein that protects the cell from inadvertent complement attack by binding to and inactivating C3 and C5 convertases. We have measured DAF on human umbilical vein endothelial cells (HUVEC) by immunoradiometric assay after its removal by phosphatidylinositol-specific phospholipase C or Nonidet P-40 detergent extraction and have previously demonstrated that DAF synthesis can be stimulated by phorbol ester activation of protein kinase C. We now report that although stimulation (4-48 h) of HUVEC with various cytokines, including TNF, IL-1, and IFN-gamma, did not alter DAF levels, wheat germ agglutinin (WGA) (5-50 micrograms/ml), a lectin specific for binding N-acetyl neuraminic acid and N-acetyl glucosamine residues, increased DAF levels fivefold when incubated with HUVEC for 12 to 24 h. The lectins Con A and PHA also stimulated DAF expression twofold, whereas a number of others including Ulex europaeus, Bandeiraea simplicifolia lectin I, and Ricinus communis agglutinin I, which bind to endothelial cells, were inactive. The increase in DAF by WGA was inhibited by N-acetyl glucosamine (10-50 mM) but by neither N-acetyl neuraminic acid nor removal of surface N-acetyl neuraminic acid with neuraminidase. However, succinylated WGA, which has unaltered affinity for N-acetyl glucosamine but not longer binds N-acetyl neuraminic acid, was inactive. These data suggest that the binding of WGA to sugar residues alone is not sufficient to trigger DAF expression and that occupation of additional, specific sites are required. The increase in DAF levels on HUVEC was blocked by inhibitors of RNA and protein synthesis. We conclude that continuous occupation by WGA of specific binding sites on HUVEC triggers events leading to DAF synthesis. This unique, long term stimulation of endothelial cells by lectins may be relevant to cell:cell interactions at the endothelium.  相似文献   

13.
Equilibrium binding studies have been performed over a range of temperatures from 25.4 to 47.3 degrees C between wheat germ agglutinin isolectin I (WGA I) and the alpha 2-3 isomer of (N-acetylneuraminyl)lactose (NeuNAc alpha 2-3Gal beta 1-4G1c). Proton nuclear magnetic resonance spectroscopy at 360 MHz has been used to monitor titrations in this system under conditions where the fraction of total ligand which is bound is small, yet the fractional occupation of sites covers a wide range. Several of the ligand resonances, including the N-acetyl methyl and the axial and equatorial hydrogens at carbon 3 of the NeuNAc residue, are shifted and broadened in the presence of WGA due to chemical exchange between the free and bound environments. The lifetime broadening of the N-acetyl resonance at room temperature of a series of related sialyloligosaccharides has been previously used by us to measure binding affinities to two WGA isolectins [Kronis, K.A., & Carver, J.P. (1982) Biochemistry 21, 3050-3057]. In this paper we report the temperature dependence of the apparent bound shifts and the apparent bound line widths of the N-acetyl, H3a, and H3e peaks. The true bound shifts for the three resonances have been obtained from these data by using the equations derived by Swift and Connick [Swift, T.J., & Connick, R.E. (1962) J. Chem. Phys. 37, 307-320]. The total bound shifts, per monomer, were found to be -1.98, -4.0, and -0.8 ppm for the N-acetyl, the H3a, and the H3e resonances, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM‐PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Selective incorporation of the stereospecifically deuteriated sugar moieties (> 97 atom % 2H enhancements at H2', H2', H3' and H5'/5' sites, approximately 85 atom % 2H enhancement at H4' and approximately 20 atom % 2H enhancement at H1') in DNA and RNA by the 'NMR-window' approach has been shown to solve the problem of the resonance overlap [refs. 1, 2 & 3]. Such specific deuterium labelling gives much improved resolution and sensitivity of the residual sugar proton (i.e. H1' or H4') vicinal to the deuteriated centers (ref. 3). The T2 relaxation time of the residual protons also increases considerably in the partially-deuteriated (shown by underline) sugar residues in dinucleotides [d(CpG), d(GpC), d(ApT), d(TpA)], trinucleotide r(A2'p5'A2'p5'A) and 20-mer DNA duplex 5'd(C1G2C3-G4C5G6C7G8A9A10T11T12C13G14C15G16C17G18C19G20)(2) 3'. The protons with shorter T2 can be filtered away using a number of different NMR experiments such as ROESY, MINSY or HAL. The NOE intensity of the cross-peaks in these experiments includes only straight pathway from H1' to aromatic proton (i-i and i-i + 1) without any spin-diffusion. The volumes of these NOE cross-peaks could be measured with high accuracy as their intensity is 3 to 4 times larger than the corresponding peaks in the fully protonated residues in the normal NOESY spectra. The structural informations thus obtainable from the residual protons in the partially-deuteriated part of the duplex and the fully protonated part in the 'NMR window' can indeed complement each other.  相似文献   

16.
Cleavage of an asparagine-linked sugar chain by hydrogen peroxide (H2O2) and a copper salt was investigated. Incubation of a 2-aminopyridine (PA)-labeled biantennary sugar chain, GlcNAcbeta1-2Manalpha1-6(GlcNAcbeta1-2Manalpha1-3)Manbeta1-4GlcNAcbeta1-4GlcNAc-PA, with H2O2 and Cu2+ led to formation of four major degradation products. Reversed phase high performance liquid chromatographic analysis coupled with glycosidase digestion indicated that the sugar chain is not randomly degraded but specifically degraded at a GlcNAc residue. Treatment with either of H2O2 or copper alone did not cleave nor degrade the sugar chain to any extent. Electron spin resonance (ESR) spectra obtained using a spin trap reagent were consistent with the generation of OH* or an OH*-like radical by the H2O2/copper salt mixture. The addition of ascorbic acid enhanced this radical generation as well as the degradation of the sugar chain. It was also found that H2O2/Cu2+ destroys the N-acetyl group of the monosaccharide GlcNAc, as judged by a decrease in the ultraviolet absorption spectrum of this group. On the other hand, replacement of copper by Fe2+ caused no cleavage of the sugar chain, although comparable levels of the same radical species were generated. Furthermore, spectrophotometric analysis showed that a GlcNAc-containing sugar chain coordinates to copper but not to iron, and, thus, the coordination appears to play an essential role in the degradation of the sugar chain. These findings suggest that coordination of copper ions to GlcNAc residues localizes the generation of a radical, which cleaves the glycosidic linkage, possibly involving alteration of the N-acetyl group, thereby allowing the GlcNAc-specific cleavage.  相似文献   

17.
18.
The crystal structure of wheat germ agglutinin isolectin 1 (WGA1) complexed with a tryptic sialoglycopeptide fragment (T-5) from its erythrocyte receptor glycophorin A, which contains the O-linked tetrasaccharide NeuNAc-alpha 2,3-Gal-beta 1,3-(alpha 2,6-NeuNAc) Gal-NAc-alpha 1-O-Thr, has been determined by molecular replacement techniques and refined at 2.0-A resolution (R = 18.1%). The structure reveals that association between WGA1 dimers, composed of two identical four-domain (A-D) monomers, and T-5 is asymmetric and involves sialic acid binding at three nonequivalent aromatic residue-rich sites. Two independent binding modes are observed. In the dominant ("major") binding mode, the two highest affinity sites are utilized to cross-link neighboring crystallographically related WGA1 dimers. The branched tetrasaccharide has an extended rigid conformation, and its terminal alpha 2,6-NeuNAc and alpha 2,3-NeuNAc residues occupy specificity sites in domains B1 (monomer 1) and C2 (monomer 2) on opposing dimers, respectively. This asymmetric selection of binding sites leads to infinite open-ended arrays of interlinked lectin molecules. In the subsidiary "minor" binding mode, only the terminal alpha 2,6-NeuNAc, anchored to the aromatic residue-rich binding site in domain A2, is clearly visible. The remaining portion of T-5 is disordered. This structure presents the first evidence for NeuNAc binding in the aromatic residue-rich sites of domains A and C and suggests a preference of WGA for alpha 2,6-linked NeuNAc. Moreover, the unusual asymmetric WGA1-tetrasaccharide association, involving domain binding sites that differ in their binding affinities for NeuNAc, offers explanations for the widely observed cooperative cell binding behavior of WGA.  相似文献   

19.
G Bains  R T Lee  Y C Lee  E Freire 《Biochemistry》1992,31(50):12624-12628
The energetics of association of wheat germ agglutinin (WGA) with N-acetylglucosamine (GlcNAc) and its beta(1,4) oligomers have been measured using isothermal titration calorimetry. Association constants of 0.4, 5.3, 11.1, 12.3, and 19.1 mM-1 and enthalpies of binding of -6.1, -15.6, -19.4, -19.3, and -18.2 kcal mol-1 were obtained at 26 degrees C for the titration of WGA with GlcNAc, (GlcNAc)2, (GlcNAc)3, (GlcNAc)4, and (GlcNAc)5, respectively. The term T delta S was always of negative value, indicating that the binding process is enthalpically driven. Titrations of WGA performed at pH 4.5 did not differ significantly from those performed at pH 7.0, suggesting that no groups with a pKa in this range are directly involved in the binding event. Also, performing the titration in a buffer system with a higher enthalpy of protonation did not change the enthalpy of binding confirming that there is no net protonation or deprotonation when WGA binds GlcNAc residues at pH 7. A model of four independent binding sites was found to adequately describe the binding curves, except in the case of (GlcNAc)4 which exhibited positive cooperativity. The energetic values are discussed within the context of the structure of the WGA-(GlcNAc)2 complex.  相似文献   

20.
Structure of the complementary complex d(pTGTTTGGC) d(pCCAAAC)A in the aqueous solution has been investigated by one- and two-dimensional 1H NMR spectroscopy. The resonances of nonexchangeable protons of bases as well as methyl and deoxyribose 1', 2'a, 2'b, 3' and 4' protons have been assigned by means of two-dimensional J-correlated spectroscopy (COSY) and two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY). Using one-dimensional NOE measurements, 62 interproton distances (intranucleotide: (H6/H8)i--(H1')t, (H6/H8)i--(H2'a)i, (H1')i--(H2'a)i, (H1')i--(H2'b)i; internucleotide: (H6/H8)i--(H1')i-1, (H6/H8)i--(H2'a)i-1, (H6/H8)i--(H2'b)i-1, (H5/CH3)i--(H6/H8)i-1, (H5/CH3)i--(H2'a/H2'b)i-1) have been determined for nearest-neighbour protons. Spin-coupling constant values for some sugar protons have been obtained from COSY spectra. The restrained molecular mechanics calculations have yielded the possible solution structures of duplex fitting the experimental set of interproton distances and coupling constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号