首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In a recent communication (Thompson, J., Curtis, M. A., and Miller, S.P.F. (1986) J. Bacteriol. 167, 522-529) we described the purification and characterization of N5-(1-carboxyethyl)ornithine from cells of Streptococcus lactis 133. This unusual amino acid has not previously been found in nature. Radiotracer experiments presented here reveal that exogenous [14C]ornithine serves as the precursor for biosynthesis of [14C]arginine, [14C]N5-(1-carboxyethyl)ornithine, and [14C]N5-acetylornithine by cells of S. lactis K1 during growth in a defined medium lacking arginine. In the absence of both arginine and ornithine, cells of S. lactis K1 can also generate intracellular [14C]N5-(1-carboxyethyl)ornithine from exogenous [14C]glutamic acid. Previously we showed that the properties of N5-(1-carboxyethyl)ornithine prepared from S. lactis were identical to one of the two diastereomers [2S, 7S) or (2S, 7R] present in a synthetic preparation of (2S, 7RS)-N5-(1-carboxyethyl)ornithine. The two diastereomers have now been unambiguously synthesized by an Abderhalden-Haase condensation between (2S)-N2-t-butoxycarbonyl-ornithine and the chiral (2S)-, and (2R)-bromopropionates. By 13C-NMR spectroscopy it has been established that the preparation from S. lactis is exclusively (2S, 7S)-N5-(1-carboxyethyl)ornithine. has been demonstrated in a cell-free extract of S. lactis 133. The requirements for ornithine, pyruvic acid, and NAD(P)H suggest that biosynthesis of N5-(1-carboxyethyl)ornithine occurs via a reductive condensation mechanism. A general survey revealed that N5-(1-carboxyethyl)ornithine was produced only by certain strains of Group N streptococci. These findings may indicate a plasmid locus for the gene(s) encoding the enzyme(s) for N5-(1-carboxyethyl)ornithine biosynthesis.  相似文献   

2.
Intracellular concentrations of amino acids were determined in cells of Streptococcus lactis 133 during growth in complex, spent, and chemically defined media. Glutamic and aspartic acids represented the major constituents of the amino acid pool. However, organisms grown in spent medium or in defined medium supplemented with ornithine also contained unusually high levels of two additional amino acids. One of these amino acids was ornithine. The second compound exhibited properties of a neutral amino acid by coelution with valine from the amino acid analyzer. The compound did not, however, comigrate with valine or any other standard amino acid by two-dimensional thin-layer chromatography. The unknown amino acid was purified by paper and thin-layer chromatography, and its molecular structure was determined by 1H and 13C nuclear magnetic resonance spectroscopy. This new amino acid was shown to be N5-(1-carboxyethyl)-ornithine. The 14C-labeled compound was formed by cells of S. lactis 133 during growth in spent medium or defined medium containing [14C]ornithine. Formation of the derivative by resting cells required ornithine and the presence of a metabolizable sugar. N5-(1-Carboxyethyl)-ornithine was synthesized chemically from both poly-S-ornithine and (2S)-N2-carbobenzyloxy-ornithine as a 1:1 mixture of two diastereomers. The physical and chemical properties of the amino acid purified from S. lactis 133 were identical to those of one of the synthetic diastereomers. The bis-N-trifluoroacetyl-di-n-butyl esters of the natural and synthetic compounds generated identical gas chromatography-mass spectrometry spectra. A mechanism is suggested for the in vivo synthesis of N5-(1-carboxyethyl)-ornithine, and the possible functions of this new amino acid are discussed.  相似文献   

3.
The O-specific polysaccharide of Providencia rustigianii O14 was obtained by mild acid degradation of the LPS and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. The polysaccharide was found to contain N (epsilon)-[(S)-1-carboxyethyl]-N(alpha)-(D-galacturonoyl)-L-lysine ('alaninolysine', 2S,8S-AlaLys). The amino acid component was isolated by acid hydrolysis and identified by 13C NMR spectroscopy and specific optical rotation, using synthetic diastereomers for comparison. The following structure of the trisaccharide repeating unit of the polysaccharide was established:Anti-P. rustigianii O14 serum was found to cross-react with O-specific polysaccharides of Providencia and Proteus strains that contains amides of uronic acid with N(epsilon)-[(R)-1-carboxyethyl]-L-lysine and L-lysine.  相似文献   

4.
A di-(carboxamidomethyl) derivative of molybdopterin, the organic component of the molybdenum cofactor, has been prepared under conditions favoring retention of all of the structural features of the molecule. The specific radioactivity of [1-14C]iodoacetamide incorporated relative to the amount of phosphate indicated two alkylation sites per pterin. Energy-dispersive x-ray analysis of the derivative showed the presence of 2 sulfurs in the derivative. An exact mass corresponding to the molecular formula C14H18N7O5S2 was obtained for the MH+ ion of the alkylated, dephosphorylated compound by fast atom bombardment mass spectroscopy. 1H NMR spectra of the phosphorylated and dephosphorylated forms of alkylated molybdopterin, in conjunction with the other data, have provided strong corroboration of the validity of the proposed structure of molybdopterin (Johnson, J. L., and Rajagopalan, K. V. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6856-6860) as a 6-alkylpterin with a 4-carbon side chain containing an enedithiol on C-1' and C-2', a secondary alcohol on C-3', and a phosphorylated primary alcohol on C-4'. As isolated, the di-(carboxamido-methyl)molybdopterin was found to be a 5,6,7,8-tetrahydropterin.  相似文献   

5.
The eucaryotic microorganism, Neurospora crassa, is able under specified conditions (Zamir, L.O., Jung, E., and Jensen, R.A. (1982) J. Biol. Chem. 258, 6492-6496) to synthesize a cyclohexadienyl derivative of prephenic acid having the novel structure of a spiro-gamma-lactam. This L-gamma-(spiro-4-hydroxy-2,5-cyclohexadienyl)-pyroglutamate is herein given the trivial name, spiro-arogenate, to indicate its close relationship to the amino acid, L-arogenate. Spiro-arogenate is quantitatively converted to phenylalanine at mildly acidic pH and can be converted to arogenate by boiling at basic pH. The structure of spiro-arogenate was established through the application of spectroscopic techniques (ultraviolet, 1H-NMR, 13C-NMR, and mass spectrometry). The 1H-NMR and 13C-NMR spectra of spiro-arogenate isolated as the natural product conformed to the spectrum of spiro-arogenate prepared by chemical synthesis by S. Danishefsky and co-workers (Danishefsky, S., Morris, J., and Clizbe, L.A. (1981) J. Am. Chem. Soc. 103, 1602-1604). Circular dichroism established the S configuration of the asymmetric carbon at C-8 of spiro-arogenate.  相似文献   

6.
H A Bates  A Kaushal  P N Deng  D Sciaky 《Biochemistry》1984,23(14):3287-3290
Histopine, an unusual amino acid derivative of histidine isolated from crown gall tumors of sunflowers (Helianthus annus) inoculated with Agrobacterium tumefaciens strain B6, was previously assigned the gross structure N-(1-carboxyethyl) histidine (2). A diastereomeric mixture containing histopine (2a and 2b) was readily prepared by reductive alkylation of (S)-histidine (1) with pyruvic acid and sodium cyanoborohydride. The individual diastereomers were prepared by reaction of (S)-histidine with (R)- and (S)-2-bromopropionic acid. (R)-N-(1-Carboxyethyl)-(S)-histidine (2a) supports the growth of A. tumefaciens whereas (S)-N-(1-carboxyethyl)-(S)-histidine (2b) is inactive. Therefore, we assign structure 2a to histopine.  相似文献   

7.
Accurate 1H, 15N, and 13C chemical shift assignments were determined for staphylococcal nuclease H124L (in the absence of inhibitor or activator ion). Backbone 1H and 15N assignments, obtained by analysis of three-dimensional 1H-15N HMQC-NOESY data [Wang, J., Mooberry, E.S., Walkenhorst, W.F., & Markley, J. L. (1992) Biochemistry (preceding paper in this issue)], were refined and extended by a combination of homo- and heteronuclear two-dimensional NMR experiments. Staphylococcal nuclease H124L samples used in the homonuclear 1H NMR studies were at natural isotopic abundance or labeled randomly with 2H (to an isotope level of 50%); nuclease H124L samples used for heteronuclear NMR experiments were labeled uniformly with 15N (to an isotope level greater than 95%) or uniformly with 13C (to an isotope level of 26%). Additional nuclease H124L samples were labeled selectively by incorporating single 15N- or 13C-labeled amino acids. The chemical shifts of uncomplexed enzyme were then compared with those determined previously for the nuclease H124L.pdTp.Ca2+ ternary complex [Wang, J., LeMaster, D. M., & Markley, J.L. (1990) Biochemistry 29, 88-101; Wang, J., Hinck, A.P., Loh, S. N., & Markley, J.L. (1990) Biochemistry 29, 102-113; Wang, J., Hinck, A.P., Loh, S.N., & Markley, J.L. (1990) Biochemistry 29, 4242-4253]. The results reveal that the binding of pdTp and Ca2+ induces large shifts in the resonances of several amino acid segments. These chemical shift changes are interpreted in terms of changes in backbone torsion angles that accompany the binding of pdTp and Ca2+; changes at the binding site appear to be transmitted to other regions of the molecule through networks of hydrogen bonds.  相似文献   

8.
Cryptomonad strain CBD phycoerythrin 566 carries four open-chain tetrapyrrole (bilin) prosthetic groups: three singly thioether-linked bilins at alpha-19, beta-82, and beta-158 and a bilin linked through two thioether bonds at beta-50,61 (amino acid sequence numbering from Wilbanks, S. M., Wedemayer, G.J., and Glazer, A.N. (1989) J. Biol. Chem. 264, 17860-17867). The structures of all four peptide-linked prosthetic groups were determined by 1H NMR spectroscopy. The bilin at beta-82 was identified as phycoerythrobilin (PEB), a common prosthetic group in cyanobacterial and red algal phycobiliproteins. The structures of the remaining bilins were novel. The bilin at alpha-19, designated Cys-bilin 618, differed from PEB in having additional double bonds between C-2 and C-3 of ring A and between C-12' and C-12", i.e. an acryloyl substituent at C-12 of ring C. The doubly linked bilin at beta-50,61 designated DiCys-bilin 584, differed from doubly linked PEB (Schoenleber, R.W., Lundell, D.J., Glazer, A.N., and Rapoport, H. (1984) J. Biol. Chem. 259, 5481-5484) in possessing an acryloyl substituent at C-12 of ring C in place of a propionyl substituent. Similarly, the bilin at beta-158, designated Cys-bilin 584, differed from singly-linked PEB in possessing an acryloyl substituent at C-12 of ring C in place of a propionyl substituent. The three novel cryptomonad bilins join heme d1 and chlorophylls c1, c2, and c3 as the only known porphyrin-derived natural products with acryloyl substituents.  相似文献   

9.
The heterodimeric CGRP receptor requires co-expression of calcitonin receptor-like receptor (CRLR) and an accessory protein called receptor activity-modifying protein (RAMP) 1 (McLatchie, L. M., Fraser, N. J., Main, M. J., Wise, A., Brown, J., Thompson, N., Solari, R., Lee, M. G., and Foord, S. M. (1998) Nature 393, 333-339). Several non-peptide CGRP receptor antagonists have been shown to exhibit marked species selectivity, with >100-fold higher affinities for the human CGRP receptor than for receptors from other species (Doods, H., Hallermayer, G., Wu, D., Entzeroth, M., Rudolf, K., Engel, W., and Eberlein, W. (2000) Br. J. Pharmacol. 129, 420-423; Edvinsson, L., Sams, A., Jansen-Olesen, I., Tajti, J., Kane, S. A., Rutledge, R. Z., Koblan, K. S., Hill, R. G., and Longmore, J. (2001) Eur. J. Pharmacol. 415, 39-44). This observation provided an opportunity to map the determinants of receptor affinity exhibited by BIBN4096BS and the truncated analogs, Compounds 1 and 2. All three compounds exhibited higher affinity for the human receptor, human CRLR/human RAMP1, than for the rat receptor, rat CRLR/rat RAMP1. We have now demonstrated that this species selectivity was directed exclusively by RAMP1. By generating recombinant human/rat CRLR/RAMP1 receptors, we demonstrated that co-expression of human CRLR with rat RAMP1 produced rat receptor pharmacology, and vice versa. Moreover, with rat/human RAMP1 chimeras and site-directed mutants, we have identified a single amino acid at position 74 of RAMP1 that modulates the affinity of small molecule antagonists for CRLR/RAMP1. Replacement of lysine 74 in rat RAMP1 with tryptophan (the homologous amino acid in the human receptor) resulted in a > or =100-fold increase in antagonist affinities, similar to the K(i) values for the human receptor. These observations suggest that important determinants of small molecule antagonist affinity for the CGRP receptor reside within the extracellular region of RAMP1 and provide evidence that this receptor accessory protein may participate in antagonist binding.  相似文献   

10.
B H Oh  E S Mooberry  J L Markley 《Biochemistry》1990,29(16):4004-4011
Multinuclear two-dimensional NMR techniques were used to assign nearly all diamagnetic 13C and 15N resonances of the plant-type 2Fe.2S* ferredoxin from Anabaena sp. strain PCC 7120. Since a 13C spin system directed strategy had been used to identify the 1H spin systems [Oh, B.-H., Westler, W. M., & Markley, J. L. (1989) J. Am. Chem. Soc. 111, 3083-3085], the sequence-specific 1H assignments [Oh, B.-H., & Markley, J. L. (1990) Biochemistry (first paper of three in this issue)] also provided sequence-specific 13C assignments. Several resonances from 1H-13C groups were assigned independently of the 1H assignments by considering the distances between these nuclei and the paramagnetic 2Fe.2S* center. A 13C-15N correlation data set was used to assign additional carbonyl carbons and to analyze overlapping regions of the 13C-13C correlation spectrum. Sequence-specific assignments of backbone and side-chain nitrogens were based on 1H-15N and 13C-15N correlations obtained from various two-dimensional NMR experiments.  相似文献   

11.
N5-(L-1-Carboxyethyl)-L-ornithine:NADP+ oxidoreductase (EC 1.5.1.-) from Streptococcus lactis K1 has been purified 8,000-fold to homogeneity. The NADPH-dependent enzyme mediates the reductive condensation between pyruvic acid and the delta- or epsilon-amino groups of L-ornithine and L-lysine to form N5-(L-1-carboxyethyl)-L-ornithine and N6-(L-1-carboxyethyl)-L-lysine, respectively. The five-step purification procedure involves ion-exchange (DE52 and phosphocellulose P-11), gel filtration (Ultrogel AcA 44), and affinity chromatography (2',5'-ADP-Sepharose 4B). Approximately 100-200 micrograms of purified enzyme of specific activity 40 units/mg were obtained from 60 g of cells, wet weight. Anionic polyacrylamide gel electrophoresis revealed a single enzymatically active protein band, whereas three species (pI 4.8-5.1) were detected by analytical electrofocusing. The purified enzyme is active over a broad pH range of 6.5-9.0 and is stable to heating at 50 degrees C for 10 min. Substrate Km values were determined to be: NADPH, 6.6 microM; pyruvate, 150 microM; ornithine, 3.3 mM; and lysine, 18.2 mM. The oxidoreductase has a relative molecular mass (Mr = 150,000) as estimated by high pressure liquid chromatography exclusion chromatography and by polyacrylamide gradient gel electrophoresis. Conventional gel filtration indicated an Mr = 78,000, and a single protein band of Mr = 38,000 was revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is composed of identical subunits of Mr = 38,000, which may associate to yield both dimeric and tetrameric forms. Polyclonal antibody to the purified protein inhibited enzyme activity. The amino acid composition of the enzyme is reported, and the sequence of the first 37 amino acids from the NH2 terminus has been determined by stepwise Edman degradation.  相似文献   

12.
Pyoverdins were isolated and characterized respectively from the cultures of Pseudomonas tolaasii NCPPB 2192 (pyoverdins Pt, Pt A, and Pt B) and Pseudomonas fluorescens CCM 2798 (Pyoverdins Pf/1, Pf/2, Pf, Pf/3/1, and Pf/3/2) each grown in iron-deficient conditions. Their structures were established by using FAB-MS, NMR, and CD techniques. These siderophores are chromopeptides, and all but one (pyoverdin Pf/3/3) possess at the N-terminal end of their peptide chain the same chromophore that has been reported in pyoverdin Pa from Pseudomonas aeruginosa ATCC 15692 [Wendenbaum, S., Demange, P., Dell, A., Meyer, J. M., & Abdallah, M. A. (1983) Tetrahedron Lett. 24, 4877-4880] and pseudobactin B 10 from Pseudomonas B10 [Teintze, M., Hossain, M. B., Barnes, C. L., Leong, J., & Van der Helm, D. (1981) Biochemistry 20, 6446-6457] which is derived from 2,3-diamino-6,7-dihydroxyquinoline. In pyoverdins Pt this chromophore is bound to a linear peptide chain D-Ser-L-Lys-L-Ser-D-Ser-L-Thr-D-Ser-L-OHOrn-L-Thr-D-Ser-D-OHOrn (cyclic) which has its C-terminal end blocked by cyclic D-N delta-hydroxyornithine. In pyoverdins Pf, the peptide chain is also linear, SerCTHPMD-Gly-L-Ser-D-threo-OHAsp-L-Ala-Gly-D-Ala-Gly-L-O HOrn(cyclic), and contains an unusual natural amino acid which is the result of the condensation of 1 mol of serine and 1 mol of 2,4-diaminobutyric acid, forming a cyclic amidine. The pyoverdins Pt differ only in substituent bound to the nitrogen on C-3 of the chromophore, which is succinic acid in pyoverdin Pt A, succinamide in pyoverdin Pt, and alpha-ketoglutaric acid bound to the chromophore by its C-5 carbon atom in pyoverdin Pt B. Similarly, pyoverdin Pf/1, pyoverdin Pf/2, pyoverdin Pf (the major compound), and pyoverdin Pf/3/2 are substituted respectively by L-malic acid, succinic acid, L-malic amide, and succinamide. Pyoverdin Pf/3/3 has the same chromophore as azotobactin, the peptidic siderophore of Azotobacter vinelandii. These pyoverdins are very similar to pseudobactin B 10, the siderophore of Pseudomonas B10: they are linear peptides containing three bidentate groups strongly chelating Fe(III) and blocked at their N-terminal end by the catecholic chromophore and at their C-terminal end by cyclic N delta-hydroxyornithine. They differ therefore from other pyoverdins such as those from P. aeruginosa ATCC 15692 which contain a partly cyclic peptide [Briskot, G., Taraz, K., & Budzikiewicz, H. (1989) Liebigs Ann. Chem., 375-384].  相似文献   

13.
B H Oh  J L Markley 《Biochemistry》1990,29(16):4012-4017
All the nitrogen signals from the amino acid side chains and 80 of the total of 98 backbone nitrogen signals of the oxidized form of the 2Fe.2S* ferredoxin from Anabaena sp. strain PCC 7120 were assigned by means of a series of heteronuclear two-dimensional experiments [Oh, B.-H. Mooberry, E. S., & Markley, J. L. (1990) Biochemistry (second paper of three in this issue )]. Two additional nitrogen signals were observed in the one-dimensional 15N NMR spectrum and classified as backbone amide resonances from residues whose proton resonances experience paramagnetic broadening. The one-dimensional 15N NMR spectrum shows nine resonances that are hyperfine shifted and broadened. From this inventory of diamagnetic nitrogen signals and the available X-ray coordinates of a related ferredoxin [Tsukihara, T., Fukuyama, K., Nakamura, M., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., Hase, T., & Matsubara, H. (1981) J. Biochem. 90, 1763-1773], the resolved hyperfine-shifted 15N peaks were attributed to backbone amide nitrogens of the nine amino acids that share electrons with the 2Fe.2S* center or to backbone amide nitrogens of two other amino acids that are close to the 2Fe.2S* center. The seven 15N signals that are missing and unaccounted for probably are buried under the envelope of amide signals. 1H NMR signals from all the amide protons directly bonded to the seven missing and nine hyperfine-shifted nitrogens were too broad to be resolved in conventional 2D NMR spectra.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We isolated a novel acid-labile yellow chromophore from the incubation of lysine, histidine and d-threose and identified its chemical structure by one and two-dimensional NMR spectroscopy combined with LC-tandem mass spectrometry. This new cross-link exhibits a UV absorbance maximum at 305 nm and a molecular mass of 451 Da. The proposed structure is 2-amino-5-(3-((4-(2-amino-2-carboxyethyl)-1H-imidazol-1-yl)methyl)-4-(1,2-dihydroxyethyl)-2-formyl-1H-pyrrol-1-yl)pentatonic acid, a cross-link between lysine and histidine with addition of two threose molecules. It was in part deduced and confirmed through synthesis of the analogous compound from n-butylamine, imidazole and d-threose. We assigned the compound the trivial name histidino-threosidine. Systemic incubation revealed that histidino-threosidine can be formed in low amounts from fructose, glyceraldehyde, methylglyoxal, glycolaldehyde, ascorbic acid, and dehydroascorbic acid, but at a much higher yield with degradation products of ascorbic acid, i.e. threose, erythrose, and erythrulose. Bovine lens protein incubated with 10 and 50 mM threose for two weeks yielded 560 and 2840 pmol/mg histidino-threosidine. Histidino-threosidine is to our knowledge the first Maillard reaction product known to involve histidine in a crosslink.  相似文献   

15.
The benzo[b]acronycine derivative S23906-1 has been recently identified as a promising antitumor agent, showing remarkable in vivo activities against a panel of solid tumors. The anticancer activity is attributed to the capacity of the drug to alkylate DNA, selectively at the exocyclic 2-amino group of guanine residues. Hydrolysis of the C-1 and C-2 acetate groups of S23906-1 provides the diol compound S28907-1 which is inactive whereas the intermediate C-2 monoacetate derivative S28687-1 is both highly reactive toward DNA and cytotoxic. The reactivity of this later compound S28687-1 toward two bionucleophiles, DNA and the tripeptide glutathion, has been investigated by mass spectrometry to identify the nature of the (type II) covalent adducts characterized by the loss of the acetate group at position 2. On the basis of NMR and molecular modeling analyses, the reaction mechanism is explained by a transesterification process where the acetate leaving group is transferred from position C-2 to C-1. Altogether, the study validates the reaction scheme of benzo[b]acronycine derivative with its target.  相似文献   

16.
An amino acid was released from the O-specific polysaccharide of Proteus mirabilis O13 by acid hydrolysis and identified as N(epsilon)-[(R)-1-carboxyethyl]-L-lysine by comparison with the authentic sample. An amide of this amino acid with D-galacturonic acid was isolated from the polysaccharide by solvolysis with anhydrous trifluoromethanesulfonic (triflic) acid and characterised by 1H and 13C NMR spectroscopy. These and published data enabled determination of the full structure of the repeating unit of the polysaccharide.  相似文献   

17.
Staphylococcal nuclease H124L is a recombinant protein produced in Escherichia coli whose sequence is identical with that of the nuclease produced by the V8 variant of Staphylococcus aureus. The enzyme-metal ion activator-nucleotide inhibitor ternary complex, nuclease H124L-thymidine 3',5'-bisphosphate-Ca2+, was investigated by two-dimensional (2D) NMR techniques. Efficient overproduction of the enzyme facilitated the production of random fractionally deuterated protein, which proved essential for detailed NMR analysis. 1H NMR spin systems were analyzed by conventional 2D 1H[1H] methods: COSY, relayed COSY, HOHAHA, and NOESY. Assignments obtained by 1H NMR experiments were confirmed and extended by 1H-13C and 1H-15N heteronuclear NMR experiments [Wang, J., Hinck, A. P., Loh, S. N., & Markley, J. L. (1990) Biochemistry (following paper in this issue)]. Spectra of the ternary complexes prepared with protein at natural abundance and at 50% random fractional deuteration provided the information needed for sequence-specific assignments of 121 of the 149 amino acid residues. Short- and intermediate-range NOE connectivities allowed the determination of secondary structural features of the ternary complex: three alpha-helical domains and three antiparallel beta-pleated sheets with several reverse turns. A number of nonsequential long-range HN-HN and H alpha-HN connectivities revealed additional information about the spatial arrangement of these secondary structural elements. The solution structure of this ternary complex shows a close correspondence to the crystal structure of the nuclease wt-thymidine 3',5'-bisphosphate-Ca2+ ternary complex [Cotton, F. A., Hazen, E. E., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555].  相似文献   

18.
Cartilage-inducing factors A and B (CIF-A and CIF-B) from bovine bone have recently been identified as transforming growth factor-beta (TGF-beta) (Seyedin, S.M., Thompson, A. Y., Bentz, H., Rosen, D. M., McPherson, J. M., Conti, A., Siegel, N. R., Galluppi, G. R., and Piez, K. A. (1986) J. Biol. Chem., 261, 5693-5695) and a unique protein homologous to TGF-beta (Seyedin S. M., Segarini, P. R., Rosen, D. M., Thompson, A. Y., Bentz, H., and Graycar, J. (1987) J. Biol. Chem., 262, 1946-1949), respectively. Although the biological activities of TGF-beta and CIF-B are similar, the divergence of CIF-B from the highly conserved amino acid sequence of TGF-beta prompted an investigation of its receptor binding properties. Three classes of cell surface binding components were identified. Class A has exclusive affinity for TGF-beta; class B has greater affinity for CIF-B; and class C has equal affinity for both proteins. A high molecular weight component, the predominant binding species, was further characterized and shown to consist of two components that are either class B or class C. The differential binding properties of TGF-beta and CIF-B to cell surface components suggest that there are biological activities unique to each of the proteins.  相似文献   

19.
The complex of Maclura pomifera agglutinin with the T-antigen disaccharide (beta-d-Gal-(1-->3)-alpha-d-GalNAc-(1-->O)-Me) was investigated by NMR spectroscopy in aqueous solution. Intramolecular transferred nuclear Overhauser enhancement (NOE) effects between the monosaccharide moieties were used to derive the ligand conformation in the lectin-bound state. Ligand protons in contact with the protein were identified by saturation transfer difference experiments and intermolecular transferred NOE effects. It is demonstrated that structural differences exist for the ligand-lectin complex in aqueous solution as compared with the previously published crystal structure (Lee, X., Thompson, A., Zhiming, Z., Ton-that, H., Biesterfeldt, J., Ogata, C., Xu, L., Johnston, R. A. Z. , and Young, N. M. (1998) J. Biol. Chem. 273, 6312-6318). In order to accommodate the O-methyl group of the disaccharide, the amino acid side chain of Tyr-122 has to rotate from its position in the crystal. The NMR data are in accord with two conformational families at the beta-(1-->3)glycosidic linkage in the solution complex with interglycosidic angles phi/psi = 45/-65 degrees and -65/-18 degrees. These differ from the bound conformation of the ligand in the crystal (phi/psi = 39/-8 degrees ) and are not highly populated by the ligand in the free state. The reason for the structural differences at the beta-(1-->3)glycosidic linkage are hydrogen bonds that stabilize the relative orientation of the monosaccharide units in the crystal. Our results demonstrate that the crystallization of a protein-carbohydrate complex can interfere with the delicate process of carbohydrate recognition in solution.  相似文献   

20.
N P Botting  M A Cohen  M Akhtar  D Gani 《Biochemistry》1988,27(8):2956-2959
3-Methylaspartate ammonia-lyase catalyzes the deamination of (2S)-aspartic acid 137 times more slowly than the deamination of (2S,3S)-3-methylaspartic acid but catalyzes the amination of fumaric acid 1.8 times faster than the amination of mesaconic acid [Botting, N.P., Akhtar, M., Cohen, M. A., & Gani, D. (1988) Biochemistry (preceding paper in this issue)]. In order to understand the mechanistic basis for these observations, the deamination reaction was examined kinetically with (2S)-aspartic acid, (2S,3S)-3-methylaspartic acid, (2S,3S)-3-ethylaspartic acid, and the corresponding C-3-deuteriated isotopomers. Comparison of the double-reciprocal plots of the initial reaction velocities for each of the three pairs of substrates revealed that the magnitude of the primary isotope effect on both Vmax and V/K varied with the substituent at C-3 of the substrate. 3-Methylaspartic acid showed the largest isotope effect (1.7 on Vmax and V/K), 3-ethylaspartic acid showed a smaller isotope effect (1.2 on Vmax and V/K), and aspartic acid showed no primary isotope effect at all. These results, which are inconsistent with earlier reports that there is no primary isotope effect for 3-methylaspartic acid [Bright, H. J. (1964) J. Biol. Chem. 239, 2307], suggest that for both 3-methylaspartic acid and 3-ethylaspartic acid elimination occurs via a predominantly concerted mechanism whereas for aspartic acid an E1cb mechanism prevails.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号