首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of matrix metalloproteinase-2 (MMP-2) is regulated stringently on the posttranslational level. MMP-2 efficiently undergoes autolysis into inactive polypeptides in vitro, prompting the hypothesis that MMP-2 autolysis may function as an alternative mechanism for posttranslational control of MMP-2 in vivo. Moreover, MMP-2 binds to intact type I collagen fibrils; however, the functional consequences of this interaction have not been fully elucidated. To test the hypothesis that MMP-2 binding to type I collagen functions as a positive regulator of MMP-2 proteolytic potential, the effect of type I collagen on MMP-2 activity, inhibition by tissue inhibitor of metalloproteinase-2 (TIMP-2), and enzyme stability was examined. Here, we report that purified MMP-2 binds but does not cleave intact type I collagen. The presence of type I collagen affects neither enzymatic activity against a quenched fluorescent peptide substrate nor the kinetics of inhibition by TIMP-2. However, MMP-2 is stabilized from autolysis in the presence of type I collagen, but not by elastin, fibrinogen, or laminin. These data provide biochemical evidence that MMP-2 exosite interactions with type I collagen may function in the posttranslational control of MMP-2 activity by reducing the rate of autolytic inactivation.  相似文献   

2.
Jain A  Karadag A  Fisher LW  Fedarko NS 《Biochemistry》2008,47(38):10162-10170
Bone sialoprotein (BSP) has been shown to induce limited gelatinase activity in latent matrix metalloproteinase-2 (MMP-2) without removal of the propeptide and to restore enzymatic activity to MMP-2 previously inhibited by tissue inhibitor of matrix metalloproteinase-2 (TIMP2). The current study identifies structural domains in human BSP and MMP-2 that contribute to these interactions. The 26 amino acid domain encoded by exon 4 of BSP is shown by a series of binding and activity assays to be involved in the displacement of MMP-2's propeptide from the active site and thereby inducing the protease activity. Binding assays in conjunction with enzyme activity assays demonstrate that both amino- and carboxy-terminal domains of BSP contribute to restoration of activity to TIMP2-inhibited MMP-2, while the MMP-2 hemopexin domain is not required for reactivation.  相似文献   

3.
Bovine pulmonary artery smooth muscle tissue possesses matrix metalloproteinase-2 (72 kDa gelatinase: MMP-2; E.C. 3.4.24.24) as revealed by immunoblot studies of its plasma membrane suspension with polyclonal MMP-2 antibody. In this report, we described the purification and partial characterization of MMP-2 in the plasma membrane fraction of the smooth muscle. MMP-2 has been purified from plasma membrane fraction of bovine pulmonary artery smooth muscle to homogeneity using a combination of purification steps. Heparin sepharose purified preparation of 72 kDa progelatinase is composed of two distinct population of zymogens: a 72 kDa progelatinase tightly complexed with TIMP-2 (an ambient tissue inhibitor of metalloprotease in the smooth muscle plasma membrane), and a native 72 kDa progelatinase free of any detectable TIMP-2. The homogeneity of the native 72 kDa progelatinase form is demonstrated by SDS-PAGE under non-reducing condition, non-denaturing native gel electrophoresis. The purified TIMP-2 free proenzyme electrophoresed as a single band of 72 kDa which could be activated by APMA with the formation of 62 and 45 kDa active species. The proenzyme is activated poorly by trypsin but not by plasmin. The purified 72 kDa progelatinase is stable at aqueous solution and does not spontaneously autoactivate. The purified 72 kDa gelatinase exhibited properties that are typical of MMP-2 obtained from other sources. These are: (i) its activity is dependent on the divalent cation, Ca+2, and is inhibited by EDTA, EGTA and 1:1 0-phenanthroline; (ii) it was inhibited by a, macroglobulin but not by the inhibitors of serine, cysteine, thiol, aspartic proteinases and calpains; (iii) it was found to be inhibited by TIMP-2, the specific inhibitor of MMP-2; (iv) like MMP-2, obtained from other sources, its major substrates were found to be collagens (type IV and V) and gelatins (type I, IV and V). Additionally, the purified MMP-2 degrades Dnp-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg-OH (dinitrophenyl labelled peptide), a well known synthetic substrate for the MMP-2.  相似文献   

4.
5.
Glioma is the most common type of primary brain tumors in the central nervous system(CNS). Migfilin occurs in human glioma and enhances cellular motility via the epidermal growth factor receptor(EGFR)pathway. However, the underlying molecular mechanism is not fully understood. In this study, we found that Migfilin promoted matrix metalloproteinase-2(MMP-2) activity, and restrained the expression of tissue inhibitor of metalloproteinase 2(TIMP2), which is an MMP-2 inhibitor. Functional and structural studies showed that the LIM1 domain of Migfilin was required for Migfilin-mediated TIMP2 expression inhibition and MMP-2 activity, and was also necessary in promoting cell motility. Furthermore, Migfilininduced EGFR phosphorylation was greatly reduced by MMP-2 inhibitor(GM6001) or si RNA, while Migfilin-induced MMP-2 activation was also blocked by the EGFR inhibitor(AG1478) or si RNA. MMP-2 and EGFR inhibitors and their si RNAs can block Migfilin-induced migration and invasion, respectively.These results demonstrated that EGFR and MMP-2 signalings may form a positive feedback loop to enhance Migfilin-induced migration and invasion. Finally, we detected that the expression of Migfilin,EGFR phosphorylation(Tyr1173) and MMP-2 activity had a positive correlation in the clinical glioma sample. Taken together, these results suggest that Migfilin is a critical regulator in cellular motility by driving the EGFR-MMP-2 feedback loop, and may be considered as a potential therapeutic target in glioma.  相似文献   

6.
Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.  相似文献   

7.
Interstitial collagen is degraded by members of the matrix metalloproteinase (MMP) family, including MMP-1. Previous work has shown that the region of MMP-1 coded for by exon 5 is implicated both in substrate specificity and inhibitor selectivity. We have constructed a chimeric enzyme, the exon 5 chimera, consisting primarily of MMP-1, with the region coded for by exon 5 replaced with the equivalent region of MMP-3, a noncollagenolytic MMP. Unlike MMP-3, the exon 5 chimera is capable of cleaving type I collagen, but the activity is only 2.2% of trypsin-activated MMP-1. 'Superactivation' of the chimera has no discernible effect, suggesting that the salt bridge formed in 'superactive' MMP-1 is not present. The kinetics for exon 5 chimera cleavage of two synthetic substrates display an MMP-3 phenotype, however, cleavage of gelatin is slightly impaired as compared to the parent enzymes. The K(iapp) values for the exon 5 chimera complexed with synthetic inhibitors and N-terminal TIMP-2 also show a more MMP-3-like behaviour. However, the k(on) values for N-terminal TIMP-1 and N-terminal TIMP-2 are more comparable to those for MMP-1. These data show that the region of MMP-1 coded for by exon 5 is involved in both substrate specificity and inhibitor selectivity and the structural basis for our findings is discussed.  相似文献   

8.
Leucine-zipper and sterile-alpha motif kinase (ZAK) is the key intra-cellular mediator protein in cardiomyocyte hypertrophy induction by transforming growth factor beta 1 (TGF-β1) which has also been identified as a profibrotic cytokine involved in cardiac fibrosis progression. We hypothesized whether ZAK over-expression causes cardiac scar formation due to the extra-cellular matrix (ECM) degraded enzyme regulation in this paper. Using immuno-histochemical analysis of the human cardiovascular tissue array, we found a positively significant association between ZAK over-expression and myocardial scars. ZAK over-expression in H9c2 cardiomyoblast cells increases the metalloproteinase tissue inhibitor 1/2 (TIMP-1/2) protein level, which reduces matria metalloproteinase-9 (MMP-9) activity and also activates c-JNK N-terminal kinase 1/2 (JNK1/2) and p38 signaling, which induces MMP-2, possibly resulting in cardiac fibrosis. Taken together, ZAK activity inhibition may be a good strategy to prevent the cardiac fibrosis progression.  相似文献   

9.
Previous studies indicated that the Tat protein of human immunodeficiency virus type-1 (HIV-1) is a progression factor for Kaposi's sarcoma (KS). Specifically, extracellular Tat cooperates with basic fibroblast growth factor (bFGF) in promoting KS and endothelial cell growth and locomotion and in inducing KS-like lesions in vivo. Here we show that Tat and bFGF combined increase matrix-metalloproteinase-2 (MMP-2) secretion and activation in endothelial cells in an additive/synergistic manner. These effects are due to the activation of the membrane-type-1-matrix-metalloproteinase and to the induction of the membrane-bound tissue inhibitor of metalloproteinase-2 (TIMP-2) by Tat and bFGF combined, but also to Tat-mediated inhibition of both basal or bFGF-induced TIMP-1 and -2 secretion. Consistent with this, Tat and bFGF promote vascular permeability and edema in vivo that are blocked by a synthetic MMP inhibitor. Finally, high MMP-2 expression is detected in acquired immunodeficiency virus syndrome (AIDS)-KS lesions, and increased levels of MMP-2 are found in plasma from patients with AIDS-KS compared with HIV-uninfected individuals with classic KS, indicating that these mechanisms are operative in AIDS-KS. This suggests a novel pathway by which Tat can increase KS aggressiveness or induce vasculopathy in the setting of HIV-1 infection.  相似文献   

10.
Interleukin-6 (IL-6) increases metalloproteinase-13 (MMP-13) gene expression by increasing phosphorylated c-Jun and by inhibiting serine/threonine phosphatase-2A (PP2A) activity. We investigated the mechanisms by which IL-6 induces c-Jun phosphorylation and PP2A inactivation in Rat-1 fibroblasts. We show that IL-6 increased MMP-13 mRNA, phosphorylated c-Jun, and activator protein 1 (AP1) binding activity without increasing c-Jun-N-terminal kinase (JNK) activity. These effects did not seem to be mediated by ERK, p38 MAP kinase, phosphatidylinositol-3-kinase, calmoduline-dependent protein kinase, protein kinase C (PKC) or protein kinase A since inhibition with specific inhibitors did not abrogate these effects. IL-6 increases PP2A catalytic subunit tyrosine phosphorylation. Inhibition of the tyrosine kinase Jak2, with the specific inhibitor AG490, abrogated this effect. Likewise, this Jak2 inhibitor blocked the effects of IL-6 on c-Jun phosphorylation, AP1 binding activity and metalloproteinase-13 gene expression. We conclude that IL-6 increases MMP-13 gene expression by activation of Jak2, resulting in tyrosine phosphorylation of the catalytic subunit of PP2A, which in turn decreases PP2A activity and prolongs c-Jun phosphorylation.  相似文献   

11.
The extracellular domain of beta-amyloid precursor protein (APP) contains an inhibitor against matrix metalloproteinase-2 (MMP-2, gelatinase A). Our previous study ( Higashi, S. and Miyazaki, K. (2003) J Biol Chem 278, 14020-14028 ) demonstrated that the inhibitor is localized within the ISYGN-DALMP sequence of APP, and a synthetic decapeptide containing this sequence (named APP-derived inhibitory peptide, APP-IP) selectively inhibits the activity of MMP-2. To determine the region of interaction that correlates with the selective inhibition, we constructed various MMP-2 mutants. An MMP-2 mutant, which had the hemopexin-like domain and three fibronectin-like type II domains of MMP-2 deleted, and native MMP-2 showed similar affinities for APP-IP, suggesting that only the catalytic domain of MMP-2 is essential for the interaction. Studies of chimeric proteases, consisting of various parts of the MMP-2 catalytic domain and those of MMP-7 (matrilysin) or MMP-9 (gelatinase B), further revealed that Ala(88) and Gly(94) in the non-prime side and Tyr(145) and Thr(146) in the prime side of the substrate-binding cleft of MMP-2 contribute separately to the selective inhibition. Replacement of the amino acid residue at position 94 of a chimeric MMP mutant affected its interaction with the C-terminal Pro(10) of APP-IP, whereas that of residues 145-148 affected the interaction with Tyr(3) of the inhibitor, suggesting that the N to C direction of APP-IP relative to the substrate-binding cleft of MMP is analogous to that of propeptide in proMMP, and opposite to that of substrate. When the APP-IP sequence was added to the N terminus of the catalytic domain of MMP-2, the activity of the protease was intramolecularly inhibited. We speculate that the direction of interaction makes the active site-bound APP-IP resistant to cleavage, thereby supporting the inhibitory action of the peptide inhibitor.  相似文献   

12.
Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP-14), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because transforming growth factor-beta1 (TGF-beta1) promotes tumor invasion in advanced squamous cell carcinomas, the role of TGF-beta1 in the regulation of MMP activity in a cellular model of invasive oral squamous cell carcinoma was examined. Treatment of oral squamous cell carcinoma cells with TGF-beta1 promoted MMP-dependent cell scattering and collagen invasion, increased expression of MMP-2 and MT1-MMP, and enhanced MMP-2 activation. TGF-beta1 induced concomitant activation of ERK1/2 and p38 MAPK, and kinase inhibition studies revealed a negative regulatory role for ERK1/2 in modulating acquisition of MMP-2 activity. Thus, a reciprocal effect on proMMP-2 activation was observed whereupon blocking ERK1/2 phosphorylation promoted proMMP-2 activation and MT1-MMP activity, whereas inhibiting p38 MAPK activity decreased proteolytic potential. The cellular mechanism for the control of MT1-MMP catalytic activity involved concurrent reciprocal modulation of TIMP-2 expression by ERK1/2 and p38 MAPKs, such that inhibition of ERK1/2 phosphorylation decreased TIMP-2 production, and down-regulation of p38 MAPK activity enhanced TIMP-2 synthesis. Further, p38 MAPK inhibition promoted ERK1/2 phosphorylation, providing additional evidence for cross-talk between MAPK pathways. These observations demonstrate the complex reciprocal effects of ERK1/2 and p38 MAPK in the regulation of MMP activity, which could complicate the use of MAPK-specific inhibitors as therapeutic agents to down-regulate the biologic effects of TGF-beta1 on pericellular collagen degradation and tumor invasion.  相似文献   

13.
Various proteases are involved in cancer progression and metastasis. In particular, gelatinases, matrix metalloproteinase-2 (MMP-2) and MMP-9, have been implicated to play a role in colon cancer progression and metastasis in animal models and patients. In the present review, the clinical relevance and the prognostic value of messenger ribonucleic acid (mRNA) and protein expression and proenzyme activation of MMP-2 and MMP-9 are evaluated in relation to colorectal cancer. Expression of tissue inhibitors of MMPs (TIMPs) in relation with MMP expression in cancer tissues and the relevance of detection of plasma or serum levels of MMP-2 and/or MMP-9 and TIMPs for prognosis are also discussed. Furthermore, involvement of MMP-2 and MMP-9 in experimental models of colorectal cancer is reviewed. In vitro studies have suggested that gelatinase is expressed in cancer cells but animal models indicated that gelatinase expression in non-cancer cells in tumors contributes to cancer progression. In fact, interactions between cancer cells and host tissues have been shown to modulate gelatinase expression in host cells. Inhibition of gelatinases by synthetic MMP inhibitors has been considered to be an attractive approach to block cancer progression. However, despite promising results in animal models, clinical trials with MMP inhibitors have been disappointing so far. To obtain more insight in the (patho)physiological functions of gelatinases, regulation of MMP-2 and MMP-9 expression is discussed. Mitogen activated protein kinase (MAPK) signalling has been shown to be involved in regulation of gelatinase expression in both cancer cells and non-cancer cells. Expression can be triggered by a variety of stimuli including growth factors, cytokines and extracellular matrix (ECM) components. On the other hand, MMP-2 and MMP-9 activity regulates bioavailability and activity of growth factors and cytokines, affects the immune response and is involved in angiogenesis. Because of the multifunctionality of gelatinases, it is unpredictable at what stage of cancer development and in which processes gelatinase activity is involved. Therefore, it is concluded that the use of MMP inhibitors to treat cancer should be considered carefully.  相似文献   

14.
Interaction of human alpha-amylases with inhibitors from wheat flour   总被引:1,自引:0,他引:1  
The interaction of four purified alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) inhibitors with human salivary and pancreatic alpha-amylases was investigated. The inhibitory activity of the four proteins towards salivary alpha-amylase was significantly increased by pre-incubation of the enzyme with inhibitor before adding substrate. This effect was not observed with the inhibition of pancreatic alpha-amylase by inhibitors 1 and 2. Inhibition of both amylases was affected to different degrees by incubating starch with inhibitor prior to the addition of enzyme. Maltose, at concentrations which only slightly affected amylase activity, prevented the inhibition of both enzymes by all four inhibitors. Gel filtration studies on salivary amylase-inhibitor mixtures showed the formation of EI complexes on a mol-to-mol ratio. A similar complex between pancreatic alpha-amylase and inhibitor 4 was observed, though complex formation between pancreatic alpha-amylase and the other inhibitors was not clearly demonstrated.  相似文献   

15.
An inhibitor of the plasma proteinase plasmin (EC 3.4.21.7) was partially purified from washed and lysed human blood platelets by (NH4)2SO4 fractionation and affinity chromatrography on Sepharose-linked purified plasminogen. The material contained none of the known plasma proteinase inhibitors when studied by crossed-immunoelectrophoresis and electroimmunoassay, but inhibited a clot-lysis-time assay and an esterolytic assay that used the synthetic substrate S-2251 (D-Val-Leu-Lys-p-nitroanilide). The inhibitory activity had the same mobility as the alpha 2-plasma proteins on preparative agarose-gel electrophoresis. Titration of the inhibitor preparation by active-site-titrated plasmin demonstrated a dissociation constant of approx. 0.1 nM. The inhibition was complete within 1 min. The inhibitor increased the mobility in agarose-gel electrophoresis of purified activator-free plasmin or 125I-labelled plasmin, as demonstrated by crossed-immunoelectrophoresis against specific immunoglobulins against plasminogen or by radioautography. The results strongly suggest the presence in platelets of a plasmin inhibitor different from the known plasma proteinase inhibitors.  相似文献   

16.
Variations in the matrix metalloproteinase (MMP)-9 gene are related to the presence and severity of atherosclerosis. The aim of this study was to determine the signaling pathways of MMP-9 in endothelial cells subjected to low fluid shear stress. We found that low fluid shear stress significantly increased MMP-9 expression, IkappaBalpha degradation, NF-kappaB DNA-binding activity and phosphorylation of MAPK in cultured human umbilical vein endothelial cells (HUVECs). Inhibition of NF-kappaB resulted in remarkable downregulation of stress-induced MMP-9 expression. Pretreatment of HUVECs with inhibitors of p38 mitogen-activating protein kinase (MAPK) and extracellular signal-regulated kinase1/2 (ERK1/2) also led to significant suppression of stress-induced MMP-9 expression and NF-kappaB DNA-binding activity. Similarly, addition of integrins inhibitor to HUVECs suppressed the stress-induced MMP-9 expression, IkappaBalpha degradation, NF-kappaB DNA-binding activity and the phosphorylation of p38 MAPK, ERK1/2. Our findings demonstrated that the shear stress-induced MMP-9 expression involved integrins-p38 MAPK or ERK1/2-NF-kappaB signaling pathways.  相似文献   

17.
Cobalt(III) Schiff base complexes have been used as potent inhibitors of protein function through the coordination to histidine residues essential for activity. The kinetics and thermodynamics of the binding mechanism of Co(acacen)(NH(3))(2)Cl [Co(acacen); where H(2)acacen?is?bis(acetylacetone)ethylenediimine] enzyme inhibition has been examined through the inactivation of matrix metalloproteinase?2 (MMP-2) protease activity. Co(acacen) is an irreversible inhibitor that exhibits time- and concentration-dependent inactivation of MMP-2. Co(acacen) inhibition of MMP-2 is temperature-dependent, with the inactivation increasing with temperature. Examination of the formation of the transition state for the MMP-2/Co(acacen) complex was determined to have a positive entropy component indicative of greater disorder in the MMP-2/Co(acacen) complex than in the reactants. With further insight into the mechanism of Co(acacen) complexes, Co(III) Schiff base complex protein inactivators can be designed to include features regulating activity and protein specificity. This approach is widely applicable to protein targets that have been identified to have clinical significance, including matrix metalloproteinases. The mechanistic information elucidated here further emphasizes the versatility and utility of Co(III) Schiff base complexes as customizable protein inhibitors.  相似文献   

18.
Non-steroidal anti-inflammatory drugs (NSAIDs) are known to inhibit prostaglandin synthetic enzyme, cyclooxygenases (COXs), as well as to exhibit anti-tumor activity although at much higher concentrations. 15-Hydroxyprostaglandin dehyrogenase (15-PGDH), a key prostaglandin catabolic enzyme, was recently shown to be a tumor suppressor. Effects of NSAIDs on 15-PGDH expression were therefore examined. Flurbiprofen and several other NSAIDs were found to induce 15-PGDH expression in human colon cancer HT29 cells. Flurbiprofen, the most active one, was also shown to induce 15-PGDH expression in other types of cancer cells. Induction of 15-PGDH expression appeared to occur at the stage of mRNA as levels of 15-PGDH mRNA were increased by flurbiprofen in HT29 cells. Levels of 15-PGDH were also found to be regulated at the stage of protein turnover. MEK inhibitors, PD98059 and U-0126, which inhibited ERK phosphorylation were shown to elevate 15-PGDH levels very significantly. These inhibitors did not appear to alter 15-PGDH mRNA levels but down-regulate matrix metalloproteinase-9 (MMP-9). This protease was shown to degrade and inactivate 15-PGDH suggesting that elevation of 15-PGDH levels could be due to inhibition of MMP-9 expression by these inhibitors. Similarly, flurbiprofen was also demonstrated to inhibit ERK activation and to down-regulate MMP-9 expression. Furthermore, flurbiprofen was shown to induce the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), an inhibitor of MMP-9. The turnover of 15-PGDH was found to prolong in the presence of flurbiprofen as compared to that in the absence of this drug. Taken together, these results indicate that flurbiprofen up-regulates 15-PGDH by increasing the expression and decreasing the degradation of 15-PGDH in HT29 cells.  相似文献   

19.
The zinc-dependent gelatinases belong to the family of matrix metalloproteinases (MMPs), enzymes that have been shown to play a key role in angiogenesis and tumor metastasis. These enzymes are capable of hydrolyzing extracellular matrix (ECM) components under physiological conditions. Specific and selective inhibitors aimed at blocking their activity are highly sought for use as potential therapeutic agents. We report herein on a novel mode of inhibition of gelatinase A (MMP-2) by the recently characterized inhibitors 4-(4-phenoxphenylsulfonyl)butane-1,2-dithiol (inhibitor 1) and 5-(4-phenoxphenylsulfonyl) pentane-1,2-dithiol (inhibitor 2). These synthetic inhibitors are selective for MMP-2 and MMP-9. We show that the dithiolate moiety of these inhibitors chelates the catalytic zinc ion of MMP-2 via two sulfur atoms. This mode of binding results in alternation of the coordination number of the metal ion and the induction of conformational changes at the microenvironment of the catalytic zinc ion; a set of events that is likely to be at the root of the potent slow binding inhibition behavior exhibited by these inhibitors. This study demonstrates a distinct approach for the understanding of the structural mechanism governing the molecular interactions between potent inhibitors and catalytic sites of MMPs, which may aid in the design of effective inhibitors.  相似文献   

20.
The culture medium of human arterial smooth muscle cells exhibits an elastinolytic activity with 68 and 64 kDa on elastin substrate gels. The enzymatic activities are inhibited by ethylenediamine tetraacetic acid, a metalloproteinase inhibitor, but not by other inhibitors of serine, cysteine and aspartic proteinases. The proteinase in the culture medium is activatable by 4-aminophenylmercuric acetate and degrades insoluble elastin. Compared to other matrix metalloproteinases (MMP), the activity shows the similar elastinolytic pattern to that by MMP-2 purified from human rheumatoid synovium, while MMP-3 and MMP-9 have different lytic patterns and MMP-1 possesses no elastinolytic activity. An immunoblot analysis demonstrated that the 68-kDa enzyme is MMP-2. An immunofluorescence study illustrates that MMP-2 is localized within the cytoplasm of the smooth muscle cells. These findings suggest that the elastinolytic enzyme secreted by human arterial smooth muscle cells is MMP-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号