首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA toroids that form inside the bacteriophage capsid present different shapes according to whether they are formed by the addition of spermine or polyethylene glycol to the bathing solution. Spermine-DNA toroids present a convex, faceted section with no or minor distortions of the DNA interstrand spacing with respect to those observed in the bulk, whereas polyethylene glycol-induced toroids are flattened to the capsid inner surface and show a crescent-like, nonconvex shape. By modeling the energetics of the DNA toroid using a free-energy functional composed of energy contributions related to the elasticity of the wound DNA, exposed surface DNA energy, and adhesion between the DNA and the capsid, we established that the crescent shape of the toroidal DNA section comes from attractive interactions between DNA and the capsid. Such attractive interactions seem to be specific to the PEG condensation process and are not observed in the case of spermine-induced DNA condensation.  相似文献   

3.
One-electron oxidation of Trolox C (a vitamin E analogue) by peroxidases   总被引:1,自引:0,他引:1  
The oxidation mechanism of Trolox C (a vitamin E analogue) by peroxidases was examined by stopped flow and ESR techniques. The results revealed that during the oxidation of Trolox C, peroxidase Compound II was the catalytic intermediate. The rate constants for the reaction of Compound II with Trolox C, which should be the rate-determining step, were estimated to be 2.1 X 10(4) and 7.2 X 10(3) M-1.s-1 for horseradish peroxidase and lactoperoxidase, respectively, at pH 6.0. The formation of the Trolox C radical was followed by ESR. The time course of the signal was similar to that of the optical absorbance changes at 440 nm, assigned as the peak of the Trolox C radical. The signal exhibited a hyperfine structure characteristic of phenoxyl radicals. From an estimation of the radical concentration in the steady state and the velocity of the radical formation, the dismutation constant was calculated to be 5 X 10(5) M-1.s-1. The concentration of the signal in the steady state was reduced by the addition of GSH. The spectrum changed from that of the Trolox C radical to that of the ascorbate radical when the reaction was carried out in the presence of ascorbate.  相似文献   

4.
Amyloid beta peptide (Abeta) is a 39 to 43 amino-acid-long peptide implicated in Alzheimer's disease. One of its mechanisms of toxicity is related to its redox properties. Therefore we studied its one electron oxidation using azide free radicals produced in gamma and pulse radiolysis, and compared the results with those obtained with the reverse sequence Abeta(40-1). HPLC analysis combined with absorption, fluorescence, Raman spectroscopy, and MALDI-TOF MS were used for product identification. Met35 was shown to be the target in Abeta(1-40); oxidation leads to a major compound that is Abeta with methionine sulfoxide. Similarly, oxidation of fragment Abeta(29-40) also leads to methionine sulfoxide. For Abeta(40-1), Met35 is not reactive and Tyr10 is the target of azide radicals. The major products are peptide dimer linked by dityrosine and trimer. The lowering of the one-electron reduction potential of the MetS+/Met couple, which was proposed, is in agreement with our findings. To our knowledge, this is the first time that such a drastic effect of the primary sequence is observed in a small peptide. In addition, it is also the first experimental demonstration of the sensitivity of the one-electron reduction potential of methionine on neighboring groups.  相似文献   

5.
Howard R. Reese 《Biopolymers》1994,34(10):1349-1358
DNA molecules ranging in size from 1 to 630 kilobase pair and intercalated with either ethidium bromide (EtBr) or propidium iodide (PI) were electrophoresed in 1% agarose at four different electric field strengths. The extent of intercalation of EtBr under the conditions of our electrophoresis experiments was determined by a spectroscopic technique, whereas the extent of intercalation of PI was inferred from previous studies. The effects of the increase in DNA contour length and the concomitant decrease of linear charge density were separated based on our analysis of the mobility data. We conclude that the main factor responsible for the reduced electrophoretic mobility of intercalated DNA is the diminished linear charge density and not the increased contour length. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Hypochlorous acid and its acid–base counterpart, hypochlorite ions, produced under inflammatory conditions, may produce chloramides of glycosaminoglycans, these being significant components of the extracellular matrix (ECM). This may occur through the binding of myeloperoxidase directly to the glycosaminoglycans. The N–Cl group in the chloramides is a potential selective target for both reducing and oxidizing radicals, leading possibly to more efficient and damaging fragmentation of these biopolymers relative to the parent glycosaminoglycans. In this study, the fast reaction techniques of pulse radiolysis and nanosecond laser flash photolysis have been used to generate both oxidizing and reducing radicals to react with the chloramides of hyaluronan (HACl) and heparin (HepCl). The strong reducing formate radicals and hydrated electrons were found to react rapidly with both HACl and HepCl with rate constants of 1–1.7×108 and 0.7–1.2×108 M−1 s−1 for formate radicals and 2.2×109 and 7.2×108 M−1 s−1 for hydrated electrons, respectively. The spectral characteristics of the products of these reactions were identical and were consistent with initial attack at the N–Cl groups, followed by elimination of chloride ions to produce nitrogen-centered radicals, which rearrange subsequently and rapidly to produce C-2 radicals on the glucosamine moiety, supporting an earlier EPR study by M.D. Rees et al. (J. Am. Chem. Soc. 125: 13719–13733; 2003). The oxidizing hydroxyl radicals also reacted rapidly with HACl and HepCl with rate constants of 2.2×108 and 1.6×108 M−1 s−1, with no evidence from these data for any degree of selective attack on the N–Cl group relative to the N–H groups and other sites of attack. The carbonate anion radicals were much slower with HACl and HepCl than hydroxyl radicals (1.0×105 and 8.0×104 M−1 s−1, respectively) but significantly faster than with the parent molecules (3.5×104 and 5.0×104 M−1 s−1, respectively). These findings suggest that these potential in vivo radicals may react in a site-specific manner with the N–Cl group in the glycosaminoglycan chloramides of the ECM, possibly to produce more efficient fragmentation. This is the first study therefore to conclusively demonstrate that reducing radicals react rapidly with glycosaminoglycan chloramides in a site-specific attack at the N–Cl group, probably to produce a 100% efficient biopolymer fragmentation process. Although less reactive, carbonate radicals, which may be produced in vivo via reactions of peroxynitrite with serum levels of carbon dioxide, also appear to react in a highly site-specific manner at the N–Cl group. It is not yet known if such site-specific attacks by this important in vivo species lead to a more efficient fragmentation of the biopolymers than would be expected for attack by the stronger oxidizing species, the hydroxyl radical. It is clear, however, that the N–Cl group formed under inflammatory conditions in the extracellular matrix does present a more likely target for both reactive oxygen species and reducing species than the N–H groups in the parent glycosaminoglycans.  相似文献   

7.
The melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK; 1), which was previously shown to be a potent radical scavenger, was oxidized using the ABTS cation radical [ABTS = 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)]. Several new oxidation products were obtained, which were separated by repeated chromatography and characterized by spectroscopic methods such as mass spectrometry (ESI-MS and ESI-HRMS), 1H-NMR and 13C-NMR, HMBC, HSQC, H,H COSY correlations and IR spectroscopy. The main products were oligomers of 1 (3 dimers, 1 trimer and 2 tetramers). In all cases, the amino group N2 was involved in the reactions. Two of the dimers turned out to be cis (2a) and trans (2b) isomers containing an azo bond. In the other dimer (3a), the nitrogen atom N2 was attached to atom C5 of the second aromatic amine, with loss of the methoxy group. In the trimer (5), one N2 formed a bridge to C5 of unit B, as in the respective dimer, while this one of C had bridged to C6 of B. One of the tetramers (6) was composed of a trimer 5 attached to N2 of a fourth 1 molecule via an azo bond as in 2a/b. In the other tetramer (7), an additional C-C bond between rings B and C in 6 is assumed. Although oligomers of AMK may only attain low in vivo concentrations, the types of reactions observed shed light on the physiologically possible metabolism of AMK once reacted with a free radical. The displacement of a methoxy group, rarely seen in the oxidation of methoxylated biomolecules, underlines the reactivity of AMK (1). Preliminary data show that, in the presence of ABTS cation radicals, AMK (1) can interact with side chains of aromatic amino acids, a finding which may be crucial for understanding to date unidentified protein modification by a melatonin metabolite detected earlier in experiments with radioactively labeled melatonin.  相似文献   

8.
DNA three-way junctions (TWJ) are branched molecules having three ‘arms’. We studied long-distance radical cation migration in these assemblies by incorporating anthraquinone (AQ) groups linked by a covalent tether to one strand of one arm of the TWJ. Excitation of the AQ at 350 nm results in one-electron oxidation of the DNA, which generates a base radical cation. This leads to relatively inefficient (compared with duplex DNA) strand cleavage at guanines following piperidine treatment of the irradiated samples. When the AQ is linked to the 5′-terminus of arm III by a flexible tether, gel electrophoretic analysis shows that strand cleavage occurs at the guanines in all three arms. We also investigated a TWJ in which the anthraquinone is specifically intercalated in arm III. In this case, a different pattern of strand cleavage is detected. We conclude that there are at least two mechanisms for long-distance radical cation migration in TWJs: (i) by inefficient charge hopping through the junction; (ii) by a through-space, cross-arm interaction when the AQ is on a flexible tether.  相似文献   

9.
The Mannose 6-phosphate receptor (MPR’s) proteins are important for transporting lysosomal enzymes from trans-golgi to the pre-lysosomal compartment. These are conserved in the vertebrates from fish to mammals. We have cloned the full length cDNA for the goat MPR 46 protein and compared its sequences to the other known vertebrate MPR 46 proteins. In the present study the full-length cDNA for the goat MPR 46 protein was expressed in MPR deficient cells. The expressed protein was purified on the multivalent phosphomannan gel in the presence of divalent metal ions. The apparent molecular mass of the expressed protein was found to be ∼46 kDa and also exhibits oligomeric nature as observed in the other species, by using an MSC1 antibody (that recognizes the MPR 46 from molluscs to mammals) as well as with a peptide specific antibody corresponding to amino acid residues (218–237) of the cytoplasmic tail of human MPR 46 protein. Furthermore the distribution of the expressed protein was visualized by immunofluorescence using MSC1 and LAMP1 antibody. Additionally in the goat MPR 46 expressing cells, the sorting function of the expressed protein to sort cathepsin D to lysosomes was studied by confocal microscopy using cathepsin D antiserum and LAMP1 antibody. The binding of goat MPR 46 to cathepsin D was shown in far Western blotting and the mannose 6-phosphate dependent binding was shown by co-immunoprecipitation.  相似文献   

10.
Earlier studies have shown that a long-lived Cr(V) species is produced during the reduction of chromate (Cr(VI] by microsomes/NADPH, mitochondria, and other cellular constituents and that this Cr(V) species plays a significant role in the mechanism of Cr(VI) toxicity. The present work indicates that this species is a Cr(V) complex involving the diol moieties of NADPH as the ligand. Additionally, ESR spin trapping investigations show that the hydroxyl (.OH) radical is also generated in the reduction process. Hydrogen peroxide (H2O2) enhances the .OH generation but suppresses the Cr(V)-NADPH complex formation. Catalase decreases the .OH radical generation and enhances the Cr(V)-NADPH formation. Measurements under anaerobic atmosphere show decreased .OH radical generation, indicating that during the cellular Cr(VI) reduction process molecular oxygen is reduced to H2O2, which reacts with the Cr(V)-NADPH complex to generate the .OH radical via a Fenton-like mechanism.  相似文献   

11.
Role of high mobility group (HMG) chromatin proteins in DNA repair   总被引:6,自引:0,他引:6  
Reeves R  Adair JE 《DNA Repair》2005,4(8):926-938
  相似文献   

12.
13.
Thrombin stimulation of [32P]-prelabeled platelets induces a rapid decrease of the radioactivity from phosphatidylinositol-4,5-bisphosphate. No significant change is observed in phosphatidylinositol-4-monophosphate. The initial, thrombin-induced decrease of phosphatidylinositol-4,5-bisphosphate is not inhibited by cytochalasin D or by compounds that interfere with the mobilization of Ca2+ such as 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, the calmodulin-antagonist, trifluoperazine, prostacyclin and cyclic AMP. Our information indicates that the rapid loss of phosphatidylinositol-4,5-bisphosphate is linked to receptor activation and insensitive to Ca2+-mobilization.  相似文献   

14.
Studies were performed to determine the DNA interactions of and the induction of cytotoxic effects by the radical cation (CPZ+.) formed enzymatically from chlorpromazine (CPZ): in the presence of native DNA the lifetime of CPZ+. is markedly increased. The decreased reactivity of CPZ+. in the presence of native DNA and the concomitant increased viscosity of CPZ+.-DNA complexes strongly support the assumption that CPZ+. does form intercalation complexes with DNA. The relative strong bacteriotoxicity of CPZ+. hindered the accurate determination of mutagenesis in various Salmonella indicator strains, but a test for repairable DNA damage in Escherichia coli using various repair-deficient strains indicated that the cytotoxic action of CPZ+. is in part due to DNA alterations which can be excised in wild-type DNA repair-proficient strains. After activation of CPZ with long wavelength UV light, genetic effects are observed in S. typhimurium strain TA98, as well as in the E. coli tester strains. The possible role of CPZ+. in the photosensitization of CPZ is discussed.  相似文献   

15.
Geometric consequences of electron delocalization were studied for all possible adenine tautomers in aqueous solution by means of ab initio methods {PCM(water)//DFT(B3LYP)/6-311+G(d,p)} and compared to those in the gas phase {DFT(B3LYP)/6-311+G(d,p)}. To measure the consequences of any type of resonance conjugation (π-π, n-π, and σ-π), the geometry-based harmonic oscillator model of electron delocalization (HOMED) index, recently extended to the isolated (DFT) and hydrated (PCM//DFT) molecules, was applied to the molecular fragments (imidazole, pyrimidine, 4-aminopyrimidine, and purine) and also to the whole tautomeric system. For individual tautomers, the resonance conjugations and consequently the bond lengths strongly depend on the position of the labile protons. The HOMED indices are larger for tautomers (or their fragments) possessing the labile proton(s) at the N rather than C atom. Solvent interactions with adenine tautomers slightly increase the resonance conjugations. Consequently, they slightly shorten the single bonds and lengthen the double bonds. When going from the gas phase to water solution, the HOMED indices increase (by less than 0.15 units). There is a good relation between the HOMED indices estimated in water solution and those in the gas phase for the neutral and ionized forms of adenine. Subtle effects, being a consequence of intramolecular interactions between the neighboring groups, are so strongly reduced by solvent that the relation between the HOMED indices and the relative energies for the neutral adenine tautomers seems to be better in water solution than in the gas phase.
Figure
The total HOMED indices in water solution correlate well with those in the gas phase for the neutral and charged isomers of adenine  相似文献   

16.
The interaction between a novel aromatic thiolato derivative from the family of DNA-intercalating platinum complexes, phenylthiolato-(2,2',2"-terpyridine)platinum(II)-[PhS(ter py)Pt+], and nucleic acids was studied by using viscosity, equilibrium-dialysis and kinetic measurements. Viscosity measurements with sonicated DNA provide direct evidence for intercalation, and show that at binding ratios below 0.2 molecules per base-pair PhS(terpy)Pt+ causes an increase in contour length of 0.2 nm per bound molecule. However, helix extension diminishes at greater extents of binding, indicating the existence of additional, non-intercalated, externally bound forms of the ligand. The ability of PhS(terpy)Pt+ to aggregate in neutral aqueous buffers at a range of ionic strengths and temperatures was assessed by using optical-absorption methods. Scatchard plots for binding to calf thymus DNA at ionic strength 0.01 (corrected for dimerization) are curvilinear, concave upward, providing further evidence for two modes of binding. The association constant decreases at higher ionic strengths, in accord with the expectations of polyelectrolyte theory, although the number of cations released per bound unipositive ligand molecule is substantially greater than 1. Stopped-flow kinetic measurements confirm the complexity of the binding reaction by revealing multiple bound forms of the ligand whose kinetic processes are both fast and closely coupled. Thermal denaturation of DNA radically alters the shapes of binding isotherms and either has little effect on, or enhances, the affinity of potential binding sites, depending on experimental conditions. Scatchard plots for binding to natural DNA species with differing nucleotide composition show that the ligand has a requirement for a single G X C base-pair at the highest-affinity intercalation sites.  相似文献   

17.
Crystals of 6-oxybenzo(a)pyrene free radical, formed chemically from the hydroxy derivative of the carcinogen benzo(a)pyrene, can be solubilized in aqueous solutions of DNA and of caffeine. ESR spectral evidence indicate that the radicals exist as dispersed monomers associated with DNA and with caffeine. Comparison of NMR spin-lattice and spin-spin relaxation times in the protons of caffeine has given direct evidence that a part of the unpaired electron (at least 10(-4)) is transferred from the radical to the associated caffeine molecule. Simple consideration of Mulliken's charge transfer theory, however, leads to the conclusion that the intermolecular charge transfer is not likely to be a major source of stabilization energy of the complex.  相似文献   

18.
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat ‘individualistic’ impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.  相似文献   

19.
20.
The possible significance of carbon-centered radicals in hydrazine-induced carcinogenesis is explored by studies of the interaction between the 2-phenylethyl radical and DNA. The radical is efficiently generated during oxidation of phenelzine (2-phenylethylhydrazine) promoted by oxyhemoglobin or ferricyanide, as demonstrated by spin-trapping experiments and analysis of the reaction products. In the ferricyanide promoted oxidation, ethylbenzene formation accounts for about 40% of the initial drug concentration, from 5 to 100 mM phenelzine. By contrast, product formation in the presence of oxyhemoglobin depends on the enzyme concentration due to the fact that the prosthetic heme is destroyed during catalytic turnover. Covalent binding of the 2-phenylethyl radical to oxyhemoglobin is demonstrated by experiments with 2-[3H]phenelzine, where tritium incorporation to the protein is inhibited by the spin-trap, alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone. The 2-phenylethyl radical is also able to alkylate DNA as suggested by electrophoretic studies with plasmid DNA, and proved by experiments with 2-[3H]-phenelzine. The carbon-centered radical has a preference for attacking guanine residues as demonstrated by the use of sequencing techniques with 32P-DNA probes. The results indicate that the 2-phenylethyl radical is an important product of phenelzine oxidation and that this species can directly damage protein and DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号