首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Huang H  Gallegos AM  Zhou M  Ball JM  Schroeder F 《Biochemistry》2002,41(40):12149-12162
Previous studies showed that the N-terminal 32 amino acids of sterol carrier protein-2 ((1-32)SCP(2)) comprise an amphipathic alpha-helix essential for SCP(2) binding to membranes [Huang et al. (1999) Biochemistry 38, 13231]. However, it is unclear whether membrane interaction of the (1-32)SCP(2) portion of SCP(2) is in itself sufficient to mediate intermembrane sterol transfer, possibly by altering membrane structure. In this study a fluorescent sterol exchange assay was used to resolve these issues and demonstrated that the SCP(2) N-terminal peptide (1-32)SCP(2) did not by itself enhance intermembrane sterol transfer but potentiated the ability of the SCP(2) protein to stimulate sterol transfer. Compared with SCP(2) acting alone, (1-32)SCP(2) potentiated the sterol transfer activity of SCP(2) by increasing the initial rate of sterol transfer by 2.9-fold and by decreasing the half-time of sterol transfer by 10-fold (from 11.6 to 1.2 min) without altering the size of the transferable fractions. The ability of a series of SCP(2) mutant N-terminal peptides to potentiate SCP(2)-mediated sterol transfer was directly correlated with membrane affinity of the respective peptide. N-Terminal peptide (1-32)SCP(2) did not potentiate intermembrane sterol transfer by binding sterol (dehydroergosterol), altering membrane fluidity (diphenylhexatriene) or membrane permeability (leakage assay). Instead, fluorescence lifetime measurements suggested that SCP(2) and (1-32)SCP(2) bound to membranes and thereby elicited a shift in membrane sterol microenvironment to become more polar. In summary, these data for the first time showed that while the N-terminal membrane binding domain of SCP(2) was itself inactive in mediating intermembrane sterol transfer, it nevertheless potentiated the ability of SCP(2) to enhance sterol transfer.  相似文献   

2.
Although the 20-amino acid presequence present in 15-kDa pro-sterol carrier protein-2 (pro-SCP-2, the precursor of the mature 13-kDa SCP-2) alters the function of SCP-2 in lipid metabolism, the molecular basis for this effect is unresolved. The presequence dramatically altered SCP-2 structure as determined by circular dichroism, mass spectroscopy, and antibody accessibility such that pro-SCP-2 had 3-fold less alpha-helix, 7-fold more beta-structure, 6-fold more reactive C terminus to carboxypeptidase A, 2-fold less binding of anti-SCP-2, and did not enhance sterol transfer from plasma membranes. These differences were not due to protein stability since (i) the same concentration of guanidine hydrochloride was required for 50% unfolding, and (ii) the ligand binding sites displayed the same high affinity (nanomolar K(d) values) in the order: cholesterol straight chain fatty acid > kinked chain fatty acid. Laser scanning confocal microscopy and double immunofluorescence demonstrated that pro-SCP-2 was more efficiently targeted to peroxisomes. Transfection of l-cells or McAR7777 hepatoma cells with cDNA encoding pro-SCP-2 resulted in 45% and 59% of SCP-2, respectively, colocalizing with the peroxisomal marker PMP70. In contrast, l-cells transfected with cDNA encoding SCP-2 exhibited 3-fold lower colocalization of SCP-2 with PMP70. In summary, the data suggest for the first time that the 20-amino acid presequence of pro-SCP-2 alters SCP-2 structure to facilitate peroxisomal targeting mediated by the C-terminal SKL peroxisomal targeting sequence.  相似文献   

3.
Subcellular distribution of Aedes aegypti sterol carrier protein-2 (AeSCP-2) and AeSCP-x was studied using electron microscopy. In both cultured A. aegypti cells and in the larval midgut, AeSCP-2 was detected mostly in the cytosol, with some labeling mitochondria and nucleus, but not in membranous vesicles. The widespread distribution of AeSCP-2 in the midgut epithelium is consistent with its potential lipid transfer function in all phases of cholesterol absorption. In contrast, AeSCP-x was found mostly in the peroxisome. Differences in the subcellular distribution of AeSCP-2 and AeSCP-x suggest that these two members of the SCP-2 gene family are functionally distinct. Overexpression of AeSCP-2 in A. aegypti cells showed increased localization of AeSCP-2 to cytosol, mitochondria, and nucleus. This is the first report on the nuclear distribution of an SCP. Overexpression of AeSCP-2 resulted in increased cholesterol incorporation in cells, suggesting that AeSCP-2 enhances cholesterol uptake.  相似文献   

4.
A mosquito sterol carrier protein-2, AeSCP-2, has been shown to aid in the uptake of cholesterol in mosquito cells. The discovery of chemical inhibitors of AeSCP-2 is reported here. AeSCP-2 inhibitors (SCPIs) belong to several chemotypes of hydrophobic compounds. Those inhibitors competed with cholesterol for AeSCP-2, binding with relatively high binding affinities. In cultured insect cells, SCPIs reduced cholesterol uptake by as much as 30% at 1-5 microM concentrations. SCPIs were potent larvicides to the yellow fever mosquito, Aedes aegypti, and to the tobacco hornworm, Manduca sexta, with 50% lethal doses (LD50s) of 5-21 microM and 0.013-15 ng/mg diet, respectively. The results indicate that sterol carrier protein-2 has functional similarity in two different insect species.  相似文献   

5.
Although plasma membrane domains, such as caveolae, provide an organizing principle for signaling pathways and cholesterol homeostasis in the cell, relatively little is known regarding specific mechanisms, whereby intracellular lipid-binding proteins are targeted to caveolae. Therefore, the interaction between caveolin-1 and sterol carrier protein-2 (SCP-2), a protein that binds and transfers both cholesterol and signaling lipids (e.g., phosphatidylinositides and sphingolipids), was examined by yeast two-hybrid, in vitro binding and fluorescence resonance energy transfer (FRET) analyses. Results of the in vivo and in vitro assays identified for the first time the N-terminal amino acids (aa) 1-32 amphipathic alpha helix of SCP-2 functionally interacted with caveolin-1. This interaction was independent of the classic caveolin-1 scaffolding domain, in which many signaling proteins interact. Instead, SCP-2 bound caveolin-1 through a new domain identified in the N-terminal domain of caveolin-1 between aa 34-40. Modeling studies suggested that electrostatic interactions between the SCP-2 N-terminal aa 1-32 amphipathic alpha-helical domain (cationic, positively charged face) and the caveolin-1 N-terminal aa 33-59 alpha helix (anionic, negatively charged face) may significantly contribute to this interaction. These findings provide new insights on how SCP-2 enhances cholesterol retention within the cell as well as regulates the distribution of signaling lipids, such as phosphoinositides and sphingolipids, at plasma membrane caveolae.  相似文献   

6.
昆虫固醇转运蛋白的结构与功能   总被引:1,自引:0,他引:1  
在昆虫中, 胆固醇不仅是细胞膜的重要成分之一, 也是昆虫蜕皮激素生物合成的前体。由于昆虫体内缺少两种合成胆固醇所必需的关键性酶, 所以昆虫不能自主地从简单的前体化合物从头合成胆固醇, 而必须通过吸收食物中的甾醇转化为胆固醇来满足生长、发育和繁殖的需要。胆固醇在组织和细胞内的运输主要由固醇转运蛋白 (sterol carrier proteins, SCPs) 执行。因此, 对固醇转运蛋白结构与功能的研究对于阐明昆虫中固醇运输具有重要的意义。本文对固醇转运蛋白的基因和蛋白结构、 细胞内表达和定位、 翻译后修饰、 蛋白三维结构、底物特异性和可能的运输途径等方面的研究进展进行了综述, 并对其作为害虫防治分子靶标的可能性进行了初步的讨论。研究发现, 不同物种的SCP蛋白的基因编码形式和蛋白剪切形式不同; 双翅目昆虫埃及伊蚊Aedes aegypti和黑腹果蝇Drosophila melanogaster除了SCP-x基因可编码SCP-x和SCP-2蛋白外, 还有另外的SCP-2和类SCP-2 (SCP-2L)基因编码SCP-2和类SCP-2蛋白; 而鳞翅目昆虫棉贪夜蛾Spodoptera littoralis、 斜纹夜蛾Spodoptera litura和家蚕Bombyx mori中SCP-x 基因的表达和转录方式与脊椎动物的SCP-x 基因类似, 通过转录和翻译后剪切形成SCP-2蛋白。SCP-x和SCP-2蛋白定位于过氧化物酶体。SCP-2蛋白由5个α-螺旋和5个β-折叠组成, 其中α5-螺旋可影响蛋白与底物的结合。SCP-2蛋白以不同的亲和力与固醇、胆固醇衍生物、脂肪酸、脂酰辅酶A和磷脂等化合物结合。超表达斜纹夜蛾SlSCP-x 和SlSCP-2基因可增加细胞对胆固醇的吸收; 而利用RNAi技术抑制幼虫体内SlSCP-x表达, 可导致血淋巴中的胆固醇含量降低, 并导致幼虫生长缓慢, 蜕皮化蛹延迟。  相似文献   

7.
The effect of sterol carrier protein-2 (SCP-2) on dolichol biosynthesis by rat liver microsomes was investigated. cis-Prenyltransferase activity was stimulated 7-fold in the presence of 5 micrograms of purified SCP-2/mg of microsomal protein, which was similar to the increase obtained by adding detergent. The polyisoprenoid pattern obtained in the presence of SCP-2 was the same as that present in rat liver, in contrast to the pattern appearing upon incubation of microsomes with detergent, which gave shorter polyisoprenoids. Like SCP-2, the cytosolic fraction from rat liver also stimulated cis-prenyltransferase. Incubation with cytosol pretreated with anti-SCP-2 showed no stimulatory effect and led to the accumulation of shorter polyisoprenoids. SCP-2 had no appreciable effect on polyprenol alpha-saturase, dolichol kinase, dolichyl phosphate phosphatase, or acyl-CoA:dolichol acyltransferase. The results demonstrate that SCP-2 greatly stimulates and may regulate the condensation reactions mediated by cis-prenyltransferase in the process of dolichol biosynthesis and permits polymerization of the polyisoprenoid to its natural chain length.  相似文献   

8.
9.
Sterol carrier protein-2 (SCP-2) is an intracellular lipid carrier protein that binds cholesterol, phospholipids, fatty acids and other ligands. It has been reported that expression of SCP-2 was increased in brain nerve endings or synaptosomes of chronic ethanol-treated mice and it was shown that cholesterol homeostasis was altered in brain membranes of chronic ethanol-treated animals. Ethanol may interfere with the capacity of SCP-2 to bind cholesterol as well as other lipids. This hypothesis was tested using recombinant SCP-2 and fluorescent-labeled cholesterol, phosphatidylcholine (PC), and stearic acid. The association constants (Ka) of the ligand-SCP-2 complex were in the following order: NBD-cholesterol>NBD-PC>NBD-stearic acid. Ethanol, beginning at a concentration of 25 mM, significantly reduced the affinity of NBD-cholesterol and NBD-PC for SCP-2. Effects of ethanol on the Ka of NBD-stearic acid was significant only at the highest concentration that was examined (200 mM). Ethanol significantly increased the Bmax of NBD-cholesterol for SCP-2 but did not have a significant effect on the Bmax of NBD-PC. Similar results were found for effects of ethanol on the Kas and Bmaxs using pyrene-labeled cholesterol and PC. In conclusion, ethanol beginning at a physiological concentration of 25 mM inhibited binding of cholesterol and PC to SCP-2. However, effects of ethanol on lipid binding to SCP-2 were dependent on the type of lipid. Ethanol in vivo may interfere with lipid binding to SCP-2 and disrupt lipid trafficking within cells.  相似文献   

10.
Peroxisomal beta-oxidation plays an important role in the metabolism of a wide range of substrates, including various fatty acids and the steroid side chain in bile acid synthesis. Two distinct thiolases have been implicated to function in peroxisomal beta-oxidation: the long known 41-kDa beta-ketothiolase identified by Hashimoto and co-workers (Hijikata, M., Ishii, N., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987) J. Biol. Chem. 262, 8151-8158) and the recently discovered 60-kDa SCPx thiolase, that consists of an N-terminal domain with beta-ketothiolase activity and a C-terminal moiety of sterol carrier protein-2 (SCP2, a lipid carrier or transfer protein). Recently, gene targeting of the SCP2/SCPx gene has shown in mice that the SCPx beta-ketothiolase is involved in peroxisomal beta-oxidation of 2-methyl-branched chain fatty acids like pristanic acid. In our present work we have investigated bile acid synthesis in the SCP2/SCPx knockout mice. Specific inhibition of beta-oxidation at the thiolytic cleavage step in bile acid synthesis is supported by our finding of pronounced accumulation in bile and serum from the knockout mice of 3alpha,7alpha, 12alpha-trihydroxy-27-nor-5beta-cholestane-24-one (which is a known bile alcohol derivative of the cholic acid synthetic intermediate 3alpha,7alpha,12alpha-trihydroxy-24-keto-cholestano yl-coenzyme A). Moreover, these mice have elevated concentrations of bile acids with shortened side chains (i.e. 23-norcholic acid and 23-norchenodeoxycholic acid), which may be produced via alpha- rather than beta-oxidation. Our results demonstrate that the SCPx thiolase is critical for beta-oxidation of the steroid side chain in conversion of cholesterol into bile acids.  相似文献   

11.
Sterol carrier protein-2 (SCP-2) is an intracellular protein of Mr 13,096. In vitro studies have shown that it is involved in the transport and metabolism of cholesterol. This protein is believed to participate in these activities by forming a stoichiometric complex with the sterol. Because these activities occur in different intracellular locations, i.e. mitochondria, peroxisomes, and cytosol, it can be predicted that SCP-2 targets to these sites. In this report we show that a mouse cDNA (785 base pairs) encodes a precursor form of SCP-2 containing a N-terminal presequence and an additional C-terminal residue. These additional amino acid residues are found in proteins targeted to the mitochondria and peroxisomes, respectively. These signals are not found in SCP-2 purified from rat liver cytosol which is believed to be a cytosolic form. Northern analysis shows that there are four species of mRNA which hybridize to a SCP-2-specific probe at 1.0, 1.7, 2.2, and 2.9 kilobases. Southern analysis shows that the gene is distributed over a large amount of DNA or that there are multiple genes. We have cloned the cytosolic/peroxisomal form of mouse SCP-2 into the Escherichia coli expression vector pKK233-2 and have expressed and purified recombinant mouse SCP-2, Mr 13,034. The purified recombinant SCP-2 is immunoreactive to rabbit anti-rat SCP-2 antibody. It also has biological activity equivalent to homogeneous rat liver SCP-2 in stimulating the microsomal conversion of 7-dehydrocholesterol to cholesterol and in the esterification of cholesterol by acyl-CoA cholesterol acyltransferase by rat liver microsomes.  相似文献   

12.
The determination of the NMR structure of the sterol carrier protein-2 (SCP2), analysis of backbone (15)N spin relaxation parameters and NMR studies of nitroxide spin-labeled substrate binding are presented as a new basis for investigations of the mode of action of SCP2. The SCP2 fold is formed by a five-stranded beta-sheet and four alpha-helices. Fatty acid binding to a hydrophobic surface area formed by amino acid residues of the first and third helices, and the beta-sheet, which are all located in the polypeptide segment 8-102, was identified with the use of the spin-labeled substrate 16-doxylstearic acid. In the free protein, the lipid-binding site is covered by the C-terminal segment 105-123, suggesting that this polypeptide segment, which carries the peroxisomal targeting signal (PTS1), might be involved in the regulation of ligand binding.  相似文献   

13.
Hepatic sterol carrier protein-2 significantly enhances the microsomal conversion of cholesterol to 7 alpha-hydroxy-cholesterol. In the present work we have attempted to correlate the hepatic content of sterol carrier protein-2 with bile acid formation. We have determined the amount of this protein in a variety of physiological and experimental conditions, in which the rate of bile acid synthesis varies over a wide range, viz. during fetal development, in inbred strains of rats with different rates of bile acid synthesis, and in rats fed diets containing drugs which modify the rate of bile acid synthesis. The outcome of these experiments does not support the idea that sterol carrier protein-2 has any association with bile acid synthesis. From our data we further conclude that hepatic sterol carrier protein-2 is an adaptable protein because its level increases during development from the fetal to the post-weaning stage of the rat and since it can be modulated by oral administration of certain drugs. Furthermore, it is demonstrated that the level of sterol carrier protein-2 varies between six inbred strains of rats.  相似文献   

14.
15.
16.
Mitochondrial cholesterol oxidation rapidly depletes cholesterol from the relatively cholesterol-poor mitochondrial membranes. However, almost nothing is known regarding potential mechanism(s) whereby the mitochondrial cholesterol pool is restored. Since most exogenous cholesterol enters the cell via the lysosomal pathway, this could be a source of mitochondrial cholesterol. In the present study, an in vitro fluorescent sterol transfer assay was used to examine whether the lysosomal membrane could be a putative cholesterol donor to mitochondria. First, it was shown that spontaneous sterol transfer from lysosomal to mitochondrial membranes was very slow (initial rate, 0.316 +/- 0.032 pmol/min). This was due, in part, to the fact that 90% of the lysosomal membrane sterol was not exchangeable, while the remaining 10% also had a relatively long half-time of exchange t(1/2) = 202 +/- 19 min. Second, the intracellular sterol carrier protein-2 (SCP-2) and its precursor (pro-SCP-2) increased the initial rate of sterol transfer from the lysosomal to mitochondrial membrane by 5.2- and 2.0-fold, respectively, but not in the reverse direction. The enhanced sterol transfer was due to a 3.5-fold increase in exchangeable sterol pool size and to induction of a very rapidly (t(1/2) = 4.1 +/- 0.6 min) exchangeable sterol pool. Confocal fluorescence imaging and indirect immunocytochemistry colocalized significant amounts of SCP-2 with the mitochondrial marker enzyme cytochrome oxidase in transfected L-cells overexpressing SCP-2. In summary, SCP-2 and pro-SCP-2 both stimulated molecular sterol transfer from lysosomal to mitochondrial membranes, suggesting a potential mechanism for replenishing mitochondrial cholesterol pools depleted by cholesterol oxidation.  相似文献   

17.
Sterol carrier protein-2 (SCP2) is a small, 123 amino acid, protein postulated to play a role in intracellular transport and metabolism of lipids such as cholesterol, phospholipids, and branched chain fatty acids. While it is thought that interaction of SCP2 with membranes is necessary for lipid transfer, evidence for this possibility and identification of a membrane interaction domain within SCP2 has remained elusive. As shown herein with circular dichroism and a direct binding assay, SCP2 bound to small unilamellar vesicle (SUV) membranes to undergo significant alteration in secondary structure. The SCP2 amphipathic N-terminal 32 amino acids, comprised of two alpha-helical segments, were postulated to represent a putative phospholipid interaction site. This hypothesis was tested with a series of SCP2 N-terminal peptides, circular dichroism, and direct binding studies. The SCP2 N-terminal peptide (1-32)SCP2, primarily random coil in aqueous buffer, adopted alpha-helical structure upon interaction with membranes. The induction of alpha-helical structure in the peptide was maximal when the membranes contained a high mole percent of negatively charged phospholipid and of cholesterol. While deletion of the second alpha-helical segment within this peptide had no effect on formation of the first alpha-helix, it significantly weakened the peptide interaction with membranes. Substitution of Leu(20) with Glu(20) in the N-terminal peptide disrupted the alpha-helix structure and greatly weakened the peptide interaction with membranes. Finally, deletion of the first nine nonhelical amino acids had no effect either on formation of alpha-helix or on peptide binding to membranes. N-Terminal peptide (1-32)SCP2 competed with SCP2 for binding to SUV. These data were consistent with the N-terminus of SCP2 providing a membrane interaction domain that preferentially bound to membranes rich in anionic phospholipid and cholesterol.  相似文献   

18.
Although in vitro studies suggest a role for sterol carrier protein-2 (SCP-2) in cholesterol trafficking and metabolism, the physiological significance of these observations remains unclear. This issue was addressed by examining the response of mice overexpressing physiologically relevant levels of SCP-2 to a cholesterol-rich diet. While neither SCP-2 overexpression nor cholesterol-rich diet altered food consumption, increased weight gain, hepatic lipid, and bile acid accumulation were observed in wild-type mice fed the cholesterol-rich diet. SCP-2 overexpression further exacerbated hepatic lipid accumulation in cholesterol-fed females (cholesterol/cholesteryl esters) and males (cholesterol/cholesteryl esters and triacyglycerol). Primarily in female mice, hepatic cholesterol accumulation induced by SCP-2 overexpression was associated with increased levels of LDL-receptor, HDL-receptor scavenger receptor-B1 (SR-B1) (as well as PDZK1 and/or membrane-associated protein 17 kDa), SCP-2, liver fatty acid binding protein (L-FABP), and 3α-hydroxysteroid dehydrogenase, without alteration of other proteins involved in cholesterol uptake (caveolin), esterification (ACAT2), efflux (ATP binding cassette A-1 receptor, ABCG5/8, and apolipoprotein A1), or oxidation/transport of bile salts (cholesterol 7α-hydroxylase, sterol 27α-hydroxylase, Na+/taurocholate cotransporter, Oatp1a1, and Oatp1a4). The effects of SCP-2 overexpression and cholesterol-rich diet was downregulation of proteins involved in cholesterol transport (L-FABP and SR-B1), cholesterol synthesis (related to sterol regulatory element binding protein 2 and HMG-CoA reductase), and bile acid oxidation/transport (via Oapt1a1, Oatp1a4, and SCP-x). Levels of serum and hepatic bile acids were decreased in cholesterol-fed SCP-2 overexpression mice, especially in females, while the total bile acid pool was minimally affected. Taken together, these findings support an important role for SCP-2 in hepatic cholesterol homeostasis.  相似文献   

19.
20.
A simple and efficient DNA delivery method to introduce extrachromosomal DNA into mosquito embryos would significantly aid functional genomic studies. The conventional method for delivery of DNA into insects is to inject the DNA directly into the embryos. Taking advantage of the unique aspects of mosquito reproductive physiology during vitellogenesis and an in vivo transfection reagent that mediates DNA uptake in cells via endocytosis, we have developed a new method to introduce DNA into mosquito embryos vertically via microinjection of DNA vectors in vitellogenic females without directly manipulating the embryos. Our method was able to introduce inducible gene expression vectors transiently into F0 mosquitoes to perform functional studies in vivo without transgenic lines. The high efficiency of expression knockdown was reproducible with more than 70% of the F0 individuals showed sufficient gene expression suppression (<30% of the controls' levels). At the cohort level, AeSCP-2 expression knockdown in early instar larvae resulted in detectable phenotypes of the expression deficiency such as high mortality, lowered fertility, and distorted sex ratio after induction of AeSCP-2 siRNA expression in vivo. The results further confirmed the important role of AeSCP-2 in the development and reproduction of A. aegypti. In this study, we proved that extrachromosomal transient expression of an inducible gene from a DNA vector vertically delivered via vitellogenic females can be used to manipulate gene expression in F0 generation. This new method will be a simple and efficient tool for in vivo functional genomic studies in mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号