首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electrical resistance breakdown assay provides a novel approach for the quantification of cytotoxic activity of platinum based anticancer drugs. It is a functional assay system for cancer cell invasion that detects nanoscale alterations of an epithelial test barrier prior to microscopic morphometric changes. We measured changes in transepithelial electrical resistance (TEER) of a tight epithelial MDCK-C7 monolayer in response to highly invasive amelanotic melanoma cells (A7-clone) in combination with different platinum complexes (cis-, oxali- and carboplatin). The efficiency of the electrical resistance breakdown assay was compared a standard method for measurement of cytostatic activity, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The MTT-assay utilizes mitochondrial enzymatic activity to draw conclusions from a functional cell metabolism to the number of living cells in a sample. When human melanoma cells were seeded on top of an electrically tight MDCK-C7 monolayer, electrical leakage occurred within 48 h of co-culture. Electrical resistance breakdown was effectively prevented by cisplatin and its analogs (no significant difference between 100 microM cisplatin and corresponding controls with non-invasive cells). The results of the electrical resistance breakdown and MTT-assay were linearly dependent. Significance of both tests was equivalent, but the electrical resistance breakdown assay gave additional functional information. Compared to oxali- and carboplatin, cisplatin was more effective in preventing TEER-breakdown than reducing the number of tumor cells, giving rise to the assumption that cisplatin can reduce tumor cell number as well as invasiveness. In conclusion the electrical resistance breakdown assay provides a sensitive, continuous and cell-based assay system for the quantification of cancer cell invasiveness and evaluation of chemotherapeutics under physiological conditions.  相似文献   

2.
Nine structurally distinct dinuclear platinum complexes have been evaluated in a novel model system for the investigation of renal epithelial toxicity of platinum drugs. The results showed that these compounds are toxic when applied at the basolateral side of renal epithelia, whereas their toxic effects on the apical side are negligible. Such a difference in toxicity of the complexes has been found to result from their poor uptake through the apical membrane, as compared to the basolateral membrane. Toxicity of the compounds on the basolateral side varies depending on their structure. Structure-toxicity relationships for the group of complexes with rigid ligands and for the group of complexes with flexible ligands are discussed. Among the dinuclear complexes with rigid ligands, sterically hindered complexes are less toxic, due to their poor uptake and low reactivity towards glutathione. Within the group of complexes with flexible ligands, cis-configured isomers are more toxic than their trans-counterparts.  相似文献   

3.
Proteolytic cleavage of extracellular matrix (ECM) and disruption of tissue architecture are fundamental features of tumor cell invasion. The proteolytic activity is focused in close proximity to the tumor cells. Here, we describe the possibility to quantify local proteolytic activity in the microenvironment of larger cell populations by the electrical resistance breakdown assay. The assay utilizes the transepithelial electrical resistance (TEER) of an epithelial monolayer as a sensitive indicator of monolayer integrity and permeability. Local destruction of ECM by single tumor cells was demonstrated by a second assay, based on a fluorescent matrix coating on cover slides. Local digestion of the matrix results in a reduction of fluorescence. Primary cells derived from high and low grade brain tumors as well as established cell lines of malignant gliomas and non-neural tumors of different origin (melanoma, cervical carcinoma, and breast carcinoma) were compared. Differences in proteolytic activity between tumor entities were demonstrated in both assays. Primary cells of high grade gliomas and cell lines showed TEER breakdown and local matrix destruction, while low grade brain tumors lacked matrix disintegration and disruption of cell monolayers. Taken together, both assays are capable of demonstrating local proteolytic activity and thus are versatile tools for distinguishing high and low invasive tumor cells with a potential application as diagnostic and prognostic markers in clinical investigations. The advantage of the matrix digestion assay is the requirement of only very low tumor cell numbers, whereas measurement of TEER enables precise quantification of local proteolytic processes in large and even heterogeneous tumor cultures.  相似文献   

4.
We have developed a bilayer microfluidic system with integrated transepithelial electrical resistance (TEER) measurement electrodes to evaluate kidney epithelial cells under physiologically relevant fluid flow conditions. The bioreactor consists of apical and basolateral fluidic chambers connected via a transparent microporous membrane. The top chamber contains microfluidic channels to perfuse the apical surface of the cells. The bottom chamber acts as a reservoir for transport across the cell layer and provides support for the membrane. TEER electrodes were integrated into the device to monitor cell growth and evaluate cell–cell tight junction integrity. Immunofluorescence staining was performed within the microchannels for ZO‐1 tight junction protein and acetylated α‐tubulin (primary cilia) using human renal epithelial cells (HREC) and MDCK cells. HREC were stained for cytoskeletal F‐actin and exhibited disassembly of cytosolic F‐actin stress fibers when exposed to shear stress. TEER was monitored over time under normal culture conditions and after disruption of the tight junctions using low Ca2+ medium. The transport rate of a fluorescently labeled tracer molecule (FITC‐inulin) was measured before and after Ca2+ switch and a decrease in TEER corresponded with a large increase in paracellular inulin transport. This bioreactor design provides an instrumented platform with physiologically meaningful flow conditions to study various epithelial cell transport processes. Biotechnol. Bioeng. 2010;107:707–716. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Platinum complex toxicity in cultured renal epithelia.   总被引:1,自引:0,他引:1  
BACKGROUND: Cisplatin is a potent antitumor drug but its clinical use is limited by nephrotoxic side effects. We have found recently, that nephrotoxicity of platinum complexes is related to basolateral organic cation transport. In this study, effects of cell culture conditions on platinum complex toxicity and organic cation transport were investigated by an in vitro system that utilizes the high TransEpithelial Electrical Resistance (TEER) of the C7-clone of the MDCK-(Madin-Darby-Canine-Kidney) cells. METHODS: TEER and caspase-3 activity of cells in microfilter membrane cups were measured after exposure of apical or basolateral membranes to 100 microM cis-, oxali-, or carboplatin. Caspase-3 activity after platinum complex exposure and uptake of the cation ASP+ (4-(4-(diethylamino)styryl)-N-methylpyridinium) of cells on filter membranes and impermeable supports (e.g. culture flasks) were compared. Atomic Force Microscopy (AFM) was used to depict morphometric differences between both culture conditions. RESULTS: In cells on filter membranes, cis-, oxali- and carboplatin induced loss of epithelial monolayer integrity by apoptosis via activation of caspase-3 to different extents. Basolateral application of platinum complexes enhanced toxicity dramatically and uptake of ASP+ from the basolateral side was higher than from the apical medium compartment. Intracellular accumulation of ASP+ was less distinct in cells grown on impermeable supports. Only cisplatin, the most lipophilic investigated complex, induced activation of caspase-3 in these cells. AFM disclosed more prominent cell-cell contacts in cells grown on filter membranes. CONCLUSION: We conclude that toxicity of hydrophilic substances can be underestimated in cells grown on solid supports, if basolateral transport mechanisms are involved. We suggest that unhindered access to basolateral transporters is responsible for higher levels of organic cation uptake and apoptosis in cells on filter membranes, even though more prominent cell-cell contacts indicate a better barrier function.  相似文献   

6.
Infectious agents such as lipopolysaccharides (LPS) challenge the functional properties of the alveolar‐capillary barrier (ACB) in the lung. In this study, we analyse the site‐specific effects of LPS on the ACB and reveal the effects on the individual cell types and the ACB as a functional unit. Monocultures of H441 epithelial cells and co‐cultures of H441 with endothelial cells cultured on Transwells® were treated with LPS from the apical or basolateral compartment. Barrier properties were analysed by the transepithelial electrical resistance (TEER), by transport assays, and immunostaining and assessment of tight junctional molecules at protein level. Furthermore, pro‐inflammatory cytokines and immune‐modulatory molecules were evaluated by ELISA and semiquantitative real‐time PCR. Liquid chromatography–mass spectrometry‐based proteomics (LS‐MS) was used to identify proteins and effector molecules secreted by endothelial cells in response to LPS. In co‐cultures treated with LPS from the basolateral compartment, we noticed a significant reduction of TEER, increased permeability and induction of pro‐inflammatory cytokines. Conversely, apical treatment did not affect the barrier. No changes were noticed in H441 monoculture upon LPS treatment. However, LPS resulted in an increased expression of pro‐inflammatory cytokines such as IL‐6 in OEC and in turn induced the reduction of TEER and an increase in SP‐A expression in H441 monoculture, and H441/OEC co‐cultures after LPS treatment from basolateral compartment. LS‐MS‐based proteomics revealed factors associated with LPS‐mediated lung injury such as ICAM‐1, VCAM‐1, Angiopoietin 2, complement factors and cathepsin S, emphasizing the role of epithelial–endothelial crosstalk in the ACB in ALI/ARDS.  相似文献   

7.
The surface epithelial cells of the stomach represent a major component of the gastric barrier. A cell culture model of the gastric epithelial cell surface would prove useful for biopharmaceutical screening of new chemical entities and dosage forms. Primary cultures of guinea pig gastric mucous epithelial cells were grown on filter inserts (Transwells) for 3 days. Tight-junction formation, assessed by transepithelial electrical resistance (TEER) and permeability of mannitol and fluorescein, was enhanced when collagen IV rather than collagen I was used to coat the polycarbonate filter. TEER for cells grown on collagen IV was close to that obtained with intact guinea pig gastric epithelium in vitro. Differentiation was assessed by incorporation of [3H]glucosamine into glycoprotein and by activity of NADPH oxidase, which produces superoxide. Both of these measures were greater for cells grown on filters coated with collagen I than for cells grown on plastic culture plates, but no major difference was found between cells grown on collagens I and IV. The proportion of cells, which stained positively for mucin with periodic acid Schiff reagent, was greater than 95% for all culture conditions. Monolayers grown on membranes coated with collagen IV exhibited apically polarized secretion of mucin and superoxide, and were resistant to acidification of the apical medium to pH 3.0 for 30 min. A screen of nonsteroidal anti-inflammatory drugs revealed a novel effect of diclofenac and niflumic acid in reversibly reducing permeability by the paracellular route. In conclusion, the mucous cell preparation grown on collagen IV represents a good model of the gastric surface epithelium suitable for screening procedures.  相似文献   

8.

Background and Aims

Deoxynivalenol (DON) is a Fusarium derived mycotoxin, often occurring on cereals used for human and animal nutrition. The intestine, as prominent barrier for nutritional toxins, has to handle the mycotoxin from the mucosa protected luminal side (apical exposure), as well as already absorbed toxin, reaching the cells from basolateral side via the blood stream. In the present study, the impact of the direction of DON exposure on epithelial cell behaviour and intestinal barrier integrity was elucidated.

Methods

A non-transformed intestinal porcine epithelial cell line (IPEC-J2), cultured in membrane inserts, serving as a polarised in vitro model to determine the effects of deoxynivalenol (DON) on cellular viability and tight junction integrity.

Results

Application of DON in concentrations up to 4000 ng/mL for 24, 48 and 72 hours on the basolateral side of membrane cultured polarised IPEC-J2 cells resulted in a breakdown of the integrity of cell connections measured by transepithelial electrical resistance (TEER), as well as a reduced expression of the tight junction proteins ZO-1 and claudin 3. Epithelial cell number decreased and nuclei size was enlarged after 72 h incubation of 4000 ng/mL DON from basolateral. Although necrosis or caspase 3 mediated apoptosis was not detectable after basolateral DON application, cell cycle analysis revealed a significant increase in DNA fragmentation, decrease in G0/G1 phase and slight increase in G2/M phase after 72 hours incubation with DON 2000 ng/mL.

Conclusions

Severity of impact of the mycotoxin deoxynivalenol on the intestinal epithelial barrier is dependent on route of application. The epithelium appears to be rather resistant towards apical (luminal) DON application whereas the same toxin dose from basolateral severely undermines barrier integrity.  相似文献   

9.
10.
Current experimental models of esophageal epithelium in vitro suffer from either poor differentiation or complicated culture systems. We have established a model to study stratified squamous epithelium in vitro, which is very similar to esophageal epithelium in vivo. A stratified squamous multilayer epithelium was formed by seeding primary normal human bronchial epithelial (NHBE) cells onto collagen- and fibronectin-coated trans-well inserts and then cultivating the cells under air-liquid interface (ALI) conditions in the presence of growth factors and low levels of all-trans-retinoic acid. Trans-epithelial electrical resistance (TEER) measurements revealed the presence of a tight barrier, previously only achievable with esophageal biopsies mounted in Ussing chambers. Molecular markers for desmosomes, cornified envelope, tight junctions, and mature esophageal epithelium were upregulated in the differentiating culture in parallel with functional properties, such as decreased permeability and acid resistance and restoration. Acid exposure resulted in a decrease in TEER, but following 1-h recovery the TEER values were fully restored. Treatment with all-trans-retinoic acid decreased TEER and inhibited the recovery after acid challenge. PPAR-delta agonist treatment increased TEER, and this temporary increase in TEER was consistent with an increase in involucrin mRNA. Global gene expression analysis showed that ALI-differentiated NHBE cells had expression profiles more similar to epithelial biopsies from the esophageal tissue of healthy volunteers than to any other cell line. With respect to morphology, molecular markers, barrier properties, and acid resistance, this model presents a new way to investigate barrier properties and the possible effects of different agents on human esophagus-like epithelium.  相似文献   

11.
Experimental models for esophageal epithelium in vitro either suffer from poor differentiation or complicated culture systems. An air-liquid interface system with normal human bronchial epithelial cells can serve as a model of esophageal-like squamous epithelial cell layers. Here, we explore the influence of bile acids on barrier function and tight junction (TJ) proteins. The cells were treated with taurocholic acid (TCA), glycocholic acid (GCA), or deoxycholic acid (DCA) at different pH values, or with pepsin. Barrier function was measured by transepithelial electrical resistance (TEER) and the diffusion of paracellular tracers (permeability). The expression of TJ proteins, including claudin-1 and claudin-4, was examined by Western blotting of 1% Nonidet P-40-soluble and -insoluble fractions. TCA and GCA dose-dependently decreased TEER and increased paracellular permeability at pH 3 after 1 h. TCA (4 mM) or GCA (4 mM) did not change TEER and permeability at pH 7.4 or pH 4. The combination of TCA and GCA at pH 3 significantly decreased TEER and increased permeability at lower concentrations (2 mM). Pepsin (4 mg/ml, pH 3) did not have any effect on barrier function. DCA significantly decreased the TEER and increased permeability at pH 6, a weakly acidic condition. TCA (4 mM) and GCA (4 mM) significantly decreased the insoluble fractions of claudin-1 and claudin-4 at pH 3. In conclusion, acidic bile salts disrupted the squamous epithelial barrier function partly by modulating the amounts of claudin-1 and claudin-4. These results provide new insights for understanding the role of TJ proteins in esophagitis.  相似文献   

12.
This study examined the effects of different-sized nanoparticles on potential cytotoxicity in intestinal epithelia. Three sizes of hematite nanoparticles were used for the study at a 10?ppm concentration: 17, 53, and, 100?nm. Results indicate that, of the hematite nanoparticles tested, 17?nm was more toxic to the epithelial integrity than 53 or 100?nm. In addition, the epithelial integrity was affected by disruption of epithelial structures such as apical microvilli, and by disruption of the cell-cell junctions leading to reduction in transepithelial electrical resistance measurements (TEER). The drop in TEER was caused by disruption of the adhering junctions not by cell death, as determined by immunocytochemistry, and by using a cell viability assay. Epithelial integrity was also affected at the molecular level as shown by differential expression of genes related to cell junction maintenance, which was assessed by microarray analysis. In conclusion, the 17- and 100-nm hematite nanoparticles caused significant structural changes in the epithelium but not the 53?nm nanoparticles. Also, different-sized hematite nanoparticles each had different effects both at the cellular level and genetic level.  相似文献   

13.
Proliferation of epithelial tissues is controlled by polarized distribution of signaling receptors including the EGF receptor (EGFR). In kidney, EGFRs are segregated from soluble ligands present in apical fluid of nephrons by selective targeting to basolateral membranes. We have shown previously that the epithelial‐specific clathrin adaptor AP1B mediates basolateral EGFR sorting in established epithelia. Here we show that protein kinase C (PKC)‐dependent phosphorylation of Thr654 regulates EGFR polarity as epithelial cells form new cell–cell junctional complexes. The AP1B‐dependent pathway does not override a PKC‐resistant T654A mutation, and conversely AP1B‐defective EGFRs sort basolaterally by a PKC‐dependent mechanism, in polarizing cells. Surprisingly, EGFR mutations that interfere with these different sorting pathways also produce very distinct phenotypes in three‐dimensional organotypic cultures. Thus EGFRs execute different functions depending on the basolateral sorting route. Many renal disorders have defects in cell polarity and the notion that apically mislocalized EGFRs promote proliferation is still an attractive model to explain many aspects of polycystic kidney disease. Our data suggest EGFR also integrates various aspects of polarity by switching between different basolateral sorting programs in developing epithelial cells. Fundamental knowledge of basic mechanisms governing EGFR sorting therefore provides new insights into pathogenesis and advances drug discovery for these renal disorders.  相似文献   

14.
The apical and basolateral surfaces of airway epithelial cells demonstrate directional responses to pathogen exposure in vivo. Thus, ideal in vitro models for examining cellular responses to respiratory pathogens polarize, forming apical and basolateral surfaces. One such model is differentiated normal human bronchial epithelial cells (NHBE). However, this system requires lung tissue samples, expertise isolating and culturing epithelial cells from tissue, and time to generate an air-liquid interface culture.Calu-3 cells, derived from a human bronchial adenocarcinoma, are an alternative model for examining the response of proximal airway epithelial cells to respiratory insult1, pharmacological compounds2-6, and bacterial7-9 and viral pathogens, including influenza virus, rhinovirus and severe acute respiratory syndrome - associated coronavirus10-14. Recently, we demonstrated that Calu-3 cells are susceptible to respiratory syncytial virus (RSV) infection in a manner consistent with NHBE15,16 . Here, we detail the establishment of a polarized, liquid-covered culture (LCC) of Calu-3 cells, focusing on the technical details of growing and culturing Calu-3 cells, maintaining cells that have been cultured into LCC, and we present the method for performing respiratory virus infection of polarized Calu-3 cells.To consistently obtain polarized Calu-3 LCC, Calu-3 cells must be carefully subcultured before culturing in Transwell inserts. Calu-3 monolayer cultures should remain below 90% confluence, should be subcultured fewer than 10 times from frozen stock, and should regularly be supplied with fresh medium. Once cultured in Transwells, Calu-3 LCC must be handled with care. Irregular media changes and mechanical or physical disruption of the cell layers or plates negatively impact polarization for several hours or days. Polarization is monitored by evaluating trans-epithelial electrical resistance (TEER) and is verified by evaluating the passive equilibration of sodium fluorescein between the apical and basolateral compartments17,18 . Once TEER plateaus at or above 1,000 Ω×cm2, Calu-3 LCC are ready to use to examine cellular responses to respiratory pathogens.  相似文献   

15.
Recently, we established a protocol for the cultivation of primary porcine oviduct epithelial cells (POEC), which promoted tissue-like morphology for a prolonged culture period. The present study focuses on developing this model into a comprehensive, standardized culture system, as a candidate tool for reproductive toxicity testing and basic research. We cultivated POEC isolated from 25 animals in our culture system for both 3 and 6 weeks and systematically analyzed effects of medium conditioning, supplementation with standardized sera, and culture duration in both freshly isolated and cryopreserved cells. The differentiation status was evaluated via histomorphometry, transepithelial electrical resistance (TEER) measurement, and expression analyses. The culture system possessed high reproducibility, more than 95% of cultures achieved a fully differentiated phenotype. Cells recapitulated in vivo–like morphology and ultrastructure from 3 to 6 weeks. Cryopreservation of the cells prior to cultivation did not affect culture quality of POEC. Employment of conditioned medium ensured optimal promotion of POEC differentiation, and different standardized sera induced fully differentiated phenotypes. Consistent TEER establishment indicated the presence and maintenance of cell type–specific intercellular junctions. The functionality of POEC was proven by consistent mucin secretion and stable expression of selected markers over the whole culture duration. We conclude that POEC are suitable for experiments from 3 weeks up to at least 6 weeks of culture. Therefore, this culture system could be used for in vitro estrous cycle simulation and long-term investigation of toxic effects on oviduct epithelium.  相似文献   

16.
The barrier functions in epithelial and endothelial cells seem to be very important for maintaining normal biological homeostasis. However, it is unclear whether or how bile acids affect the epithelial barrier. We examined the bile acid-induced disruption of the epithelial barrier. We measured the transepithelial electrical resistance (TEER) of Caco-2 cells as a marker of disruption of the epithelial barrier. Reactive oxygen species (ROS) generation was also measured. Cholic acid (CA) decreased the TEER and increased intracellular ROS generation. PLA2 (phospholipase A2), COX (cyclooxygenase), PKC (protein kinase), ERK 1/2 (extracellular signal-regulated kinase 1/2), PI 3 K (phosphatidylinositol 3-kinase), p38 MAPK (p38 mitogen-activated protein kinase), MLCK (myosin light-chain kinase), NADH dehydrogenase, and XO (xanthine oxidase) inhibitors or ROS scavengers prevented the CA-induced TEER decrease. PLA2, COX, PKC, NADH dehydrogenase, and XO inhibitors prevented the CA-induced ROS generation but not ERK 1/2, PI 3 K, p38 MAPK, and MLCK inhibitors. If the cells were treated with ROS generators such as superoxide dismutase, the TEER decreased. ERK 1/2, PI 3 K, p38 MAPK, and MLCK inhibitors prevent these ROS generators from inducing the TEER decrease. These results suggest that ROS play an important role. In addition, PLA2, COX, PKC, NADH dehydrogenase, and XO are located upstream of the ROS generation, but ERK 1/2, PI 3 K, p38 MAPK, and MLCK are downstream during the signaling of CA-induced TEER alterations.  相似文献   

17.
Zinc supplementation is used to reduce diarrhea incidence in piglets and it has been shown in vitro that the antisecretory effects are maximal after basolateral zinc application. To examine whether the application site and dose of zinc also influence passive ion permeability and viability, porcine (IPEC‐J2) and human (Caco‐2) intestinal epithelial cells were treated with increasing zinc concentrations (0–200 μM) at either the apical or basolateral side. Transepithelial electrical resistance and viability decreased and expression of metallothionein and the efflux zinc transporter 1 increased most prominently when zinc was added in high concentrations at the basolateral side of IPEC‐J2 cells. Zinc transporter 4, a zinc importer, was not affected. Heat shock protein 70 mRNA expression increased only after basolateral addition of 200 μM zinc in IPEC‐J2 cells. Thus, zinc can elicit toxic effects especially when added at the basolateral side, with IPEC‐J2 cells being more susceptible than Caco‐2 cells.  相似文献   

18.
We have previously found a transepithelial electrical resistance (TEER)-decreasing protein derived from Flammulina velutipes, which was revealed to be identical to flammutoxin (FTX) that is known as a hemolytic pore-forming protein. This protein induced a rapid decrease in TEER and parallel increase in paracellular permeability in the intestinal epithelial Caco-2 cell monolayer without any cytotoxicity. An immunoblotting analysis revealed that the FTX-induced decrease in TEER was accompanied by the formation of a high-molecular-weight complex on the surface of Caco-2 cells. Intracellular Ca(2+) imaging showed that exposure to FTX caused a rapid Ca(2+) influx. It was observed by electron microscopy that FTX induced swelling of microvilli and expansion of the cellular surface. Staining with fluorescent phalloidin showed a marked change to filamentous actin in the FTX-treated cells.These results suggest that TEER reduction could sensitively detect small membrane pore formation by FTX in the intestinal epithelium which causes a morphological alteration and disruption of the paracellular barrier function.  相似文献   

19.
We investigated whether or not polarized renal epithelial cells produce antibacterial factors, which aid in host defense at the cell surface of renal epithelium. A model of polarized Madin-Darby canine kidney (MDCK) epithelial cells grown on filters was used to test for the presence of apically or basolaterally secreted factors on the growth of non-virulent (XL1-Blue) and uropathogenic (J96) strains of Escherichia coli (E. coli). Growth of both XL1-Blue and J96 strains of E. coli in medium on the apical and basolateral surface of MDCK cells was inhibited as compared to bacterial growth in medium not exposed to MDCK cells. The inhibition of bacterial growth was similar in both apical and basolateral surface medium. Pretreatment of MDCK cells with hepatocyte growth factor (HGF) blunted the inhibition of XL1-Blue and J96 growth in apical and basolateral surface medium as compared to growth in medium on the surfaces of untreated MDCK cells. Immunofluorescent analysis demonstrated the presence of beta-defensin isoforms 1-3 in MDCK cells, with isoform 1 being the most prevalent form observed. HGF treatment reduced the amount of immunoreactive beta-defensin-1 in MDCK cells. These data demonstrate that polarized renal epithelium produce antibacterial factors. The renotropic growth factor HGF inhibits these antibacterial factors. beta-defensins may contribute to this antibacterial activity and play an important role in renal epithelial resistance to bacterial infections.  相似文献   

20.
Understanding the regulation of airway epithelial barrier function is a new frontier in asthma and respiratory viral infections. Despite recent progress, little is known about how respiratory syncytial virus (RSV) acts at mucosal sites, and very little is known about its ability to influence airway epithelial barrier function. Here, we studied the effect of RSV infection on the airway epithelial barrier using model epithelia. 16HBE14o- bronchial epithelial cells were grown on Transwell inserts and infected with RSV strain A2. We analyzed (i) epithelial apical junction complex (AJC) function, measuring transepithelial electrical resistance (TEER) and permeability to fluorescein isothiocyanate (FITC)-conjugated dextran, and (ii) AJC structure using immunofluorescent staining. Cells were pretreated or not with protein kinase D (PKD) inhibitors. UV-irradiated RSV served as a negative control. RSV infection led to a significant reduction in TEER and increase in permeability. Additionally it caused disruption of the AJC and remodeling of the apical actin cytoskeleton. Pretreatment with two structurally unrelated PKD inhibitors markedly attenuated RSV-induced effects. RSV induced phosphorylation of the actin binding protein cortactin in a PKD-dependent manner. UV-inactivated RSV had no effect on AJC function or structure. Our results suggest that RSV-induced airway epithelial barrier disruption involves PKD-dependent actin cytoskeletal remodeling, possibly dependent on cortactin activation. Defining the mechanisms by which RSV disrupts epithelial structure and function should enhance our understanding of the association between respiratory viral infections, airway inflammation, and allergen sensitization. Impaired barrier function may open a potential new therapeutic target for RSV-mediated lung diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号