首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Weak to severe deficit of GATC sequences in the DNA of enterobacteriophages appears to be correlated with their undermethylation during growth indam + (GATC ade-methylase) bacteria. This observation is corroborated by the sequence analysis showing no evidence for site-specific mutagenicity of 6meAde. The MutH protein of the methyl-directed mismatch repair system recognizes and cleaves the undermethylated GATC sequences in the course of mismatch repair. To enquire whether the MutH function of the methyldirected mismatch repair system participates in counterselection of GATC sequences in enterobacteriophages, we have studied the yield of bacteriophage X174 containing either 0, 1, or 2 GATC sequences, in wild type,dam, andmut (H, L, S, U) Escherichia coli. Following transfection with unmethylated DNA containing two GATC sequences, a net decrease in the yield of infective particles was observed in all bacterialmutH + dam strains, whereas no detectable decrease was observed in bacteria infected by DNA without GATC sequence. This effect of the MutH function is maximum in wild type andmutL andmutS bacteria whereas the effect is not significant inmutU bacteria, suggesting an interaction of the, helicase II with the MutH protein.However, indam + bacteria, the presence of GATC sequences leads to an increased yield of infective particles. The effect of GATC sequence and its Dam methylation system on phage yield inmutH bacteria reveals that methylated GATC sequences are advantageous to the phage. These results suggest that the methyl-directed mismatch repair system, and in particular its MutH protein, may have participated in severe counterselection of GATC sequences from enterobacteriophages, presumably, by DNA cleavage or by interfering with DNA replication or packaging when GATC sequences are undermethylated. Coevolution of the Dam and MutH proteins could then account for the loss of GATC sequences from DNA of bacteriophages growing indam + hosts.  相似文献   

2.
Summary Postreplicative methylation of adenine inEscherichia coli DNA to produce G6m ATC (where6mA is 6-methyladenine) has been associated with preferential daughter-strand repair and possibly regulation of replication. An analysis was undertaken to determine if these, or other, as yet unknown roles of GATC, have had an effect on the frequency of GATC inE. coli or bacteriophage DNA. It was first ascertained that the most accurate predictions of GATC frequency were based on the observed frequencies of GAT and ATC, which would be expected since these predictors take into account preferences in codon usage. The predicted frequencies were compared with observed GATC frequencies in all available bacterial and phage nucleotide sequences. The frequency of GATC was close to the predicted frequency in most genes ofE. coli and its RNA bacteriophages and in the genes of nonenteric bacteria and their bacteriophages. However, for DNA enterobacteriophages the observed frequency of DNA enterobacteriophages the observed frequency of GATC was generally significantly lower than predicted when assessed by the chi square test. No elevation in the rate of mutation of6mA in GATC relative to other bases was found when pairs of DNA sequences from closely related phages or pairs of homologous genes from enterobacteria were compared, nor was any preferred pathway for mutation of6mA evident in theE. coli DNA bacteriophages. This situation contrasts with that of 5-methylcytosine, which is hypermutable, with a preferred pathway to thymine. Thus, the low level of GATC in enterobacteriophages is probably due not to6mA hypermutability, but to selection against GATC in order to bypass a GATC-mediated host function.  相似文献   

3.
Summary High molecular weight genomic DNA isolated from the archaebacterium Methanococcus voltae by alkaline-SDS lysis was not effectively digested with the restriction enzyme Sau3AI, which recognizes the base sequence GATC. Mc. voltae DNA was also resistant to digestion by MboI and BamHI which recognize sites containing the same GATC sequence. Examination of a Mc. voltae genomic library prepared in Escherichia coli JM83 with a pUC vector revealed that the 5–10 kb inserts were still resistant to Sau3AI digestion, indicating a likely lack of the GATC sequence in Mc. voltae DNA.  相似文献   

4.
Summary Deoxyadenosine methylation (dam) of the numerous GATC sequences present in theEscherichia coli origin of chromosomal replication (oriC) has been shown to be important both in vivo and in vitro for efficient initiation of DNA synthesis. Recent in vivo data suggest that initiation is only inefficient when these sequences are hemimethylated. This raises the interesting possibility that initiation may be inefficient because it only takes place on one strand of the template, i.e., replication is asymmetric on hemimethylated DNA. We tested this possibility by a novel and rapid approach which relies on the specificities of the restriction endonucleasesMboI,MboII andDpnI. Although we show that replication takes place equally well on both strands of methylated and hemimethylatedoriC DNA templates, the method should be applicable to the analysis of replication symmetry on most DNA templates which contain methylated deoxyadenosine GATC sequences as part ofMboII restriction sites.  相似文献   

5.
This study focused on finding a novel sensitive method to determine the methylation modification at DNA dam (GATC) sites in Escherichia coli. A new plasmid which contained three GATC sites recognized by restriction enzyme BclI and one GAATTC site recognized by EcoRI was transformed into E. coli stains AB1157(dam +) and GM2929(dam ) respectively. Then the plasmid DNA was digested by restriction enzyme BclI(T*GATCA), which was sensitive to methylation. The results showed that the plasmid derived from AB1157 was not digested while that from GM2929 was, for the methylation level of the former was high while the latter was low. So by detecting the methylation of plasmid transferred into the strain, we could determine whether methylaion existed at DNA dam (GATC) site in E. coli. This method was effective and rapid; moreover, the digested fragments were not dispersive. It also made a basis for the detection of whether methylation occurred in mode beings by low-energy ion beam. The article is published in the original.  相似文献   

6.
7.
Summary The involvement of GATC sites in directing mismatch correction for the elimination of replication errors in Escherichia coli was investigated in vivo by analyzing mutation rates for a gene carried on a series of related plasmids that contain 2, 1 and 0 such sites. This gene encoding chloramphenicol acetyl transferase (Cat protein) was inactivated by a point mutation. In vivo mutations restoring resistance to chloramphenicol were scored in mismatch repair proficient (mut +) and deficient (mutHLS-) strains. In mut + cells, reduction of GATC sites from 2 to 0 increased mutation rates approximately 10-fold. Removal of the GATC site distal to the cat - mutation increased the rate of mutation less than 2-fold, indicating that mismatch repair can proceed normally with a single site. The mutation rate increased 3-fold after removal of the GATC site proximal to the mutation. In the absence of a GATC site, mutL- and mutS- strains exhibited a 2- to 3-fold increased mutation rate as compared to isogenic mutH- and mut + strains. This indicates that 50%–70% of replication errors can be corrected in a mutLS-dependent way in the absence of any GATC site to target mismatch correction to newly synthesized DNA strands. Other strand targeting signals, possibly single strand discontinuities, might be used in mutLS-dependent repair  相似文献   

8.
9.
10.
Summary Two-dimensional gel electrophoresis, at high and low temperatures, and gel mobilities of circularly permuted DNA segments showed a large bending locus about 50 bp downstream from the right border of the 245 by oriC box, a minimal essential region of autonomous replication on the Escherichia coli chromosome. Bending was strongly enhanced by Dam methylation. In DNA from a Dam strain, the mobility anomaly arising from altered conformation was much reduced, but was raised to the original level by methylation in vivo or in vitro. Enhancement of the mobility anomaly was also observed by hybrid formation of the Dam strand with the Dam+ strand. Near the bending center, GATC, the target of Dam methylase, occurs seven times arranged essentially on the same face of the helix with 10.5 by per turn. We concluded that small bends at each Dam site added up to the large bending detectable by gel electrophoresis.  相似文献   

11.
In Escherichia coli, the origin of DNA replication, oriC, becomes transiently hemimethylated at the GATC sequences immediately after initiation of replication and this hemimethylated state is prolonged because of its sequestration by a fraction of outer membrane. This sequestration is dependent on a hemimethylated oriC binding protein such as SeqA. We previously isolated a clone of phage λgtll called hobH, producing a LacZ fusion protein which recognizes hemimethylated oriC DNA. Very recently, Thaller et al. (FEMS Microbiol. Lett. 146 (1997)191–198)found that the same DNA segment encodes a non-specific acid phosphatase, and named the gene aphA. We show here that the interruption of the aphA reading frame by kanamycin resistance gene insertion, abolishes acid phosphatase (NAP) activity. Interestingly, in the membrane of the null mutant, the amount of SeqA protein is about six times higher than that in the parental strain, suggesting the existence of a regulatory mechanism between SeqA and NAP expression.  相似文献   

12.
We conducted a novel non-visual screen for cuticular wax mutants in Arabidopsis thaliana (L.) Heynh. Using gas chromatography we screened over 1,200 ethyl methane sulfonate (EMS)-mutagenized lines for alterations in the major A. thaliana wild-type stem cuticular chemicals. Five lines showed distinct differences from the wild type and were further analyzed by gas chromatography and scanning electron microscopy. The five mutants were mapped to specific chromosome locations and tested for allelism with other wax mutant loci mapping to the same region. Toward this end, the mapping of the cuticular wax (cer) mutants cer10 to cer20 was conducted to allow more efficient allelism tests with newly identified lines. From these five lines, we have identified three mutants defining novel genes that have been designated CER22, CER23, and CER24. Detailed stem and leaf chemistry has allowed us to place these novel mutants in specific steps of the cuticular wax biosynthetic pathway and to make hypotheses about the function of their gene products.Abbreviations EMS Ethyl methane sulfonate - SEM Scanning electron microscopy - SSLP Simple sequence length polymorphism - WT Wild type  相似文献   

13.
As part of our analysis of the role of a uniquely clustered set of dam methylation sites (the motif GATC) within the origin of DNA replication in Escherichia coli, we have studied the effect of GATCs in various methylation states on the intrinsic curvature of DNA. We have designed a set of DNA linkers and used commercially available linkers containing GATC motifs. The linkers were ligated and the electrophoretic mobility of the resulting multimers in different states of methylation was tested relative to reference fragments. We report that properly phased GATCs in certain sequence environments modulate DNA curvature and that these effects may be enhanced by N6-adenine methylation of the GATCs. These structural alterations may in turn affect DNA-protein interactions, especially those involving proteins that rely on both primary sequence and structure for recognition. We present an example, where introduction of a GATC within an integration host factor (IHF) binding site, which does not alter the consensus sequence, reduces the binding affinity of the protein for the modified site. Received: 16 December 1997 / Accepted: 24 February 1998  相似文献   

14.
DNA replication in Escherichia coli is initiated by DnaA binding to oriC, the replication origin. During the process of assembly of the replication factory, the DnaA is released back into the cytoplasm, where it is competent to reinitiate replication. Premature reinitiation is prevented by binding SeqA to newly formed GATC sites near the replication origin. Resolution of the resulting SeqA cluster is one aspect of timing for reinitiation. A Markov model accounting for the competition between SeqA binding and methylation for one or several GATC sites relates the timing to reaction rates, and consequently to the concentrations of SeqA and methylase. A model is proposed for segregation, the motion of the two daughter DNAs into opposite poles of the cell before septation. This model assumes that the binding of SeqA and its subsequent clustering results in loops from both daughter nucleoids attached to the SeqA cluster at the GATC sites. As desequestration occurs, the cluster is divided in two, one associated with each daughter. As the loops of DNA uncoil, the two subclusters migrate apart due to the Brownian ratchet effect of the DNA loop.  相似文献   

15.
16.
Candida dubliniensis, yeast closely related to Candida albicans, is a new pathogen associated mainly with infections of immunocompromised hosts. In this study, we report the first isolation of three isolates of C. dubliniensis in Slovakia. The first selection of both C. albicans and C. dubliniensis from the other Candida species was done on the basis of specific green color of primoculture grown on CHROMagar Candida. The presumptive identification was completed by supplemental tests: germ-tube formation, production of chlamydospores, ability or inability to grow at 42 and 45,°C and by commercial set API 20C AUX. Parallely, the discrimination between both species was performed by PCR assay using primers specific for Candida dubliniensis  相似文献   

17.
18.
19.
Xanthomonas oryzae pv. oryzae is the pathogen that causes bacterial leaf blight in rice. Bacterial leaf blight is the main cause for severe rice underproduction in many countries. However, with conventional methods it is difficult to quickly and reliably distinguish this pathogen from other closely related pathogenic bacteria, especially X. oryzae pv. oryzicola, the causal organism of bacterial leaf streak in rice. We have developed a novel and highly sensitive real-time method for the identification of this specific bacteria based on a TaqMan probe. This probe is designed to recognize the sequence of a putative siderophore receptor gene cds specific to X. oryzae pv. oryzae, and can be identified from either a bacterial culture or naturally infected rice seeds and leaves in only 2 h. The sensitivity of the method is 100 times higher than that of the current polymerase chain reaction (PCR) gel electrophoresis method for diagnosis.  相似文献   

20.
A selection scheme was devised to isolate Paracoccus denitrificans mutants with increased recipient qualities in transfer experiments, using broad host range plasmids. In some of the mutants obtained, a DNA modifying activity that prevents the activity of the restriction endonucleases BamHI and BglII on isolated P. denitrificans DNA had simultaneously been lost. From a detailed analysis of the restriction properties of the enzymes SAU3 AI, MboI and DpnI, it was concluded that a subset of GATC sequences in P. denitrificans DNA may be methylated at an unusual position. It was concluded that P. denitrificans possesses at least one potent host-dependent restriction/modification system which affects conjugation. In addition to the class of restriction-defective mutants, at least one other class of enhanced transfer mutants with unknown defect(s) was isolated. Strains, in which the two mutant classes were combined, exhibited transfer frequencies which were significantly higher than strains containing either mutation alone. Such double mutant strains appeared to be well suited for future experiments like complementation analysis, transposon mutagenesis and gene replacement by homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号