首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic engineering of isoprenoids   总被引:5,自引:0,他引:5  
The metabolic engineering of natural products has begun to prosper in the past few years due to genomic research and the discovery of biosynthetic genes. While the biosynthetic pathways and genes for some isoprenoids have been known for many years, new pathways have been found and known pathways have been further investigated. In this article, we review the recent advances in metabolic engineering of isoprenoids, focusing on the molecular genetics that affects pathway engineering the most. Examples in mono- sequi-, and diterpenoid synthesis as well as carotenoid production are discussed.  相似文献   

2.
Pathway engineering is to engineer biosynthetic pathways for compounds of interests in heterologous organisms such as microbes and higher plants, which has also been one of the most important fields in metabolic engineering and synthetic biology. This review focuses on pathway engineering researches for the production of functional isoprenoids containing monoterpenes, sesquiterpenes, diterpenes, and triterpenes as well as carotenoids and for the elucidation of relevant biosynthesis genes and enzymes, which have been performed in the last two years. As microbial hosts, Escherichia coli and Saccharomyces cerevisiae have often been employed, since they, specifically the former, are fully amenable to genetic manipulations with extensive molecular resources. Various crops have also been used as the hosts for engineering pathways of functional isoprenoids of the plant origin, particularly carotenoids.  相似文献   

3.
Lu S  Li L 《植物学报(英文版)》2008,50(7):778-785
Carotenoids are Indispensable to plants and play a critical role in human nutrition and health. Significant progress has been made in our understanding of carotenoid metabolism in plants. The biosynthetic pathway has been extensively studied.Nearly all the genes encoding the biosynthetic enzymes have been isolated and characterized from various organisms. In recent years, there is an increasing body of work on the signaling pathways and plastid development, which might provide global control of carotenoid biosynthesis and accumulation. Herein, we will highlight recent progress on the biosynthesis,regulation, and metabolic engineering of carotenoids in plants, as well as the future research towards elucidating the regulatory mechanisms and metabolic network that control carotenoid metabolism.  相似文献   

4.
萜类生物合成的基因操作   总被引:7,自引:0,他引:7  
萜类是一组结构迥异的化合物家族,其中很多具有较大的应用价值,如青蒿素和紫杉醇等,它们在多种微生物和植物中合成,但其天然产量低。萜类代谢工程通过DNA重组技术改造萜类合成细胞中的代谢途径,以提高萜类最终产量或在不含萜类的生物中合成萜类,为促进有用萜类合成提供了新的机会。以萜类化合物生物合成途径的基因转移与表达为切入点,综述了目前在微生物及植物中应用代谢工程提高萜类产量的研究进展。  相似文献   

5.
作为桉叶油的主要成分,桉叶素是具有多种生物活性的单萜化合物,被广泛应用于药品、食品及化妆品等领域。桉叶油主要从桉树叶提取,该过程耗费大量人力及自然资源,且容易污染环境。近年来,随着微生物代谢工程与合成生物学的快速发展,加上越来越多萜类生物合成途径得到解析,为桉叶素的绿色生产提供了新的途径。对桉叶素的生物合成途径、桉叶素合酶的结构与功能及近年来桉叶素的微生物合成进行了综述,并对利用微生物代谢工程合成桉叶素等单萜化合物的瓶颈问题及解决方案进行了探讨和归纳,为构建高产桉叶素等单萜微生物工程菌株提供参考。  相似文献   

6.
Significant progress has recently been made concerning the engineering of deoxysugar biosynthesis. The biosynthetic gene clusters of several deoxysugars from various polyketides and aminoglycosides-producing microorganisms have been cloned and studied. This review introduces the biosynthetic pathways of several deoxysugars and the generation of novel hybrid macrolide antibiotics via the coexpression of deoxysugar biosynthetic gene cassettes and the substrateflexible glycosyltransferases in a host organism as well as the production of TDP-deoxysugar derivatives via one-pot enzymatic reactions with the identified enzymes. These recent developments in the engineering of deoxysugars biosynthesis may pave the way to create novel secondary metabolites with potential biological activities.  相似文献   

7.
Aminocoumarin antibiotics are natural products of soil-dwelling bacteria called Streptomycetes. They are potent inhibitors of DNA gyrase, an essential bacterial enzyme and validated drug target, and thus have attracted considerable interest as potential templates for drug development. To date, aminocoumarins have not seen widespread clinical application on account of their poor pharmacological properties. Through studying the structures and mechanisms of enzymes from their biosynthetic pathways we will be better informed to redesign these compounds through rational pathway engineering. Novobiocin, the simplest compound, requires at least seventeen gene products to convert primary metabolites into the mature antibiotic. We have solved the crystal structures of four diverse biosynthetic enzymes from the novobiocin pathway, and used these as three-dimensional frameworks for the interpretation of functional and mechanistic data, and to speculate about how they might have evolved. The structure determinations have ranged from the routine to the challenging, necessitating a variety of different approaches.  相似文献   

8.
Biosynthesis and engineering of isoprenoid small molecules   总被引:9,自引:0,他引:9  
Isoprenoid secondary metabolites are a rich source of commercial products that have not been fully explored. At present, there are isoprenoid products used in cancer therapy, the treatment of infectious diseases, and crop protection. All isoprenoids share universal prenyl diphosphate precursors synthesized via two distinct pathways. From these universal precursors, the biosynthetic pathways to specific isoprenoids diverge resulting in a staggering array of products. Taking advantage of this diversity has been the focus of much effort in metabolic engineering heterologous hosts. In addition, the engineering of the mevalonate pathway has increased levels of the universal precursors available for heterologous production. Finally, we will describe the efforts to produce to commercial terpenoids, paclitaxel and artemisinin.  相似文献   

9.
10.
谷胱甘肽生物合成及代谢相关酶的研究进展   总被引:1,自引:0,他引:1  
谷胱甘肽是广泛存在于生物体内的一个含有γ-肽键的生物活性三肽,其中游离的巯基是其活性中心。在生物体内谷胱甘肽主要是由GSH I和GSH II两个酶依次催化合成,而GSH I和GSH II的进化过程复杂,由此衍生出多条生物合成途径,其代谢过程在不同生物体内也复杂多样。本文主要综述了谷胱甘肽生物合成及代谢相关酶的研究进展和利用基因工程手段提高胞内谷胱甘肽含量的策略。  相似文献   

11.
Kanamycin is one of the most widely used antibiotics, yet its biosynthetic pathway remains unclear. Current proposals suggest that the kanamycin biosynthetic products are linearly related via single enzymatic transformations. To explore this system, we have reconstructed the entire biosynthetic pathway through the heterologous expression of combinations of putative biosynthetic genes from Streptomyces kanamyceticus in the non-aminoglycoside-producing Streptomyces venezuelae. Unexpectedly, we discovered that the biosynthetic pathway contains an early branch point, governed by the substrate promiscuity of a glycosyltransferase, that leads to the formation of two parallel pathways in which early intermediates are further modified. Glycosyltransferase exchange can alter flux through these two parallel pathways, and the addition of other biosynthetic enzymes can be used to synthesize known and new highly active antibiotics. These results complete our understanding of kanamycin biosynthesis and demonstrate the potential of pathway engineering for direct in vivo production of clinically useful antibiotics and more robust aminoglycosides.  相似文献   

12.
番茄红素是一种重要的类胡萝卜素,具有许多生物功能和生物活性,尤其在保护人类健康方面起着重要的作用。随着番茄红素生物合成途径的阐明及其相关基因的克隆,运用基因工程手段调控番茄红素的合成已经成为可能。本文首先综述了番茄红素生物合成途径及合成途径中相关基因的克隆,然后对近年来构建的番茄红素基因工程菌进行了全面的总结,包括:运用DNA重组技术使异源微生物大肠杆菌、酵母等生产番茄红素,以及通过过表达特定基因从而提高霉菌等产番茄红素的量,最后分析了改造过程中存在的主要问题,并展望了未来的研究方向。  相似文献   

13.
Although the cytosolic isoprenoid biosynthetic pathway, mavolonate pathway, in plants has been known for many years, a new plastidial 1-deoxyxylulose-5-phosphate (DXP) pathway was identified in the past few years and its related intermediates, enzymes, and genes have been characterized quite recently.With a deep insight into the biosynthetic pathway of isoprenoids, investigations into the metabolic engineering of isoprenoid biosynthesis have started to prosper. In the present article, recent advances in the discoveries and regulatory roles of new genes and enzymes in the plastidial isoprenoid biosynthesis path way are reviewed and examples of the metabolic engineering of cytosolic and plastidial isoprenoids biosnthesis are discussed.  相似文献   

14.
Eicosapentaenoic acid (EPA) is an ω3 polyunsaturated fatty acid which has been demonstrated to play important roles in a number of aspects of human health. EPA is traditionally obtained from marine fish oils. However, the shrinking fish populations are making the sustainability of these sources questionable. Consequently, alternative sources of EPA are being sought, especially from marine microalgae, bacteria, and fungi. These microorganisms contain relatively large amounts of high-quality EPA and they are the primary producers of this important fatty acid. There are two distinct pathways for EPA de novo biosynthesis in microbial systems: the desaturation and elongation pathway and the polyketide pathway. Genes involved in the biosynthetic pathways have been identified from different microorganisms and characterized in depth. In addition, numerous strategies have been developed for commercial production of EPA by microbial fermentation, among which strain improvements by genetic engineering could provide high-yield producers of EPA. In this review, we summarize recent efforts and experiences devoted to metabolic engineering of various microorganisms that lead to efficient biocatalysts for the production of EPA, as well as the key limitations and challenges. The combination of traditional biochemistry and molecular biology with new systems biology and synthetic biology tools will provide a better view of EPA biosynthesis and a greater potential of microbial production. Continued advances in metabolic engineering will help to improve the final titer, productivity, and yield of EPA.  相似文献   

15.
With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed.  相似文献   

16.
L-Ascorbic acid (AsA) is a vital antioxidant compound that plays a critical role in the cellular metabolism of plants and animals. Research on plant AsA metabolism experienced a significant resurgence after 1998 following the identification of AsA-deficient Arabidopsis mutants and the elucidation of a biosynthetic pathway accepted by the overwhelming majority of the plant science community. The identification and cloning of novel biosynthetic genes and the ensuing metabolic engineering of plant AsA content has however revealed a more complex picture. Additional biosynthetic routes have been identified and unexpected biochemical phenotypes were observed upon expression of animal AsA biosynthetic genes. The isolation of novel AsA conjugates from plant tissues and the evidence for long distance transport of AsA in plants have provided additional facets to its functionality. Although some progress has been made regarding the impact of AsA recycling on pool size, we still do not have a clear picture of the biochemistry of AsA degradation. This communication comprehensively reviews new developments in the AsA metabolic system and prompts directions for future research.  相似文献   

17.
Microorganisms and plants synthesize a diverse array of natural products, many of which have proven indispensable to human health and well-being. Although many thousands of these have been characterized, the space of possible natural products--those that could be made biosynthetically--remains largely unexplored. For decades, this space has largely been the domain of chemists, who have synthesized scores of natural product analogs and have found many with improved or novel functions. New natural products have also been made in recombinant organisms, via engineered biosynthetic pathways. Recently, methods inspired by natural evolution have begun to be applied to the search for new natural products. These methods force pathways to evolve in convenient laboratory organisms, where the products of new pathways can be identified and characterized in high-throughput screening programs. Carotenoid biosynthetic pathways have served as a convenient experimental system with which to demonstrate these ideas. Researchers have mixed, matched, and mutated carotenoid biosynthetic enzymes and screened libraries of these "evolved" pathways for the emergence of new carotenoid products. This has led to dozens of new pathway products not previously known to be made by the assembled enzymes. These new products include whole families of carotenoids built from backbones not found in nature. This review details the strategies and specific methods that have been employed to generate new carotenoid biosynthetic pathways in the laboratory. The potential application of laboratory evolution to other biosynthetic pathways is also discussed.  相似文献   

18.
Stacking transgenes in forest trees   总被引:4,自引:0,他引:4  
Huge potential exists for improving plant raw materials and foodstuffs via metabolic engineering. To date, progress has mostly been limited to modulating the expression of single genes of well-studied pathways, such as the lignin biosynthetic pathway, in model species. However, a recent report illustrates a new level of sophistication in metabolic engineering by overexpressing one lignin enzyme while simultaneously suppressing the expression of another lignin gene in a tree, aspen. This novel approach to multi-gene manipulation has succeeded in concurrently improving several wood-quality traits.  相似文献   

19.
The aromatic amino acid biosynthesis pathway, together with its downstream branches, represents one of the most commercially valuable biosynthetic pathways, producing a diverse range of complex molecules with many useful bioactive properties. Aromatic compounds are crucial components for major commercial segments, from polymers to foods, nutraceuticals, and pharmaceuticals, and the demand for such products has been projected to continue to increase at national and global levels. Compared to direct plant extraction and chemical synthesis, microbial production holds promise not only for much shorter cultivation periods and robustly higher yields, but also for enabling further derivatization to improve compound efficacy by tailoring new enzymatic steps. This review summarizes the biosynthetic pathways for a large repertoire of commercially valuable products that are derived from the aromatic amino acid biosynthesis pathway, and it highlights both generic strategies and specific solutions to overcome certain unique problems to enhance the productivities of microbial hosts.  相似文献   

20.
Details of the recently elucidated biosynthetic pathways of caffeine and related purine alkaloids are reviewed. The main caffeine biosynthetic pathway is a sequence consisting of xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine. Genes encoding N-methyltransferases involved in three of these four reactions have been isolated and the molecular structure of N-methyltransferases investigated. Pathways for the catabolism of caffeine have also been studied, although there are currently no reports of enzymatic and genetic studies having been successfully carried out. Metabolism of purine alkaloids in species including Camellia, Coffea, Theobroma and Ilex plants is summarised, and evidence for the involvement of caffeine in chemical defense and allelopathy is discussed. Finally, information is presented on metabolic engineering that has produced coffee seedlings with reduced caffeine content, and transgenic caffeine-producing tobacco plants with enhanced disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号