首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Expression of trace amine-associated receptors in the Grueneberg ganglion   总被引:2,自引:0,他引:2  
The Grueneberg ganglion (GG) in the vestibule of the anterior nasal cavity is considered as an olfactory subcompartment based on expression of the olfactory marker protein (OMP) and axonal projection to the olfactory bulb. Searching for olfactory receptors present in the GG, it has been observed recently that V2r83, a member of the V2R class of olfactory receptors, is expressed in numerous cells in the GG of mice. However, no other olfactory receptors have been found to be present in a considerable number of GG neurons so far. Here, we report that GG neurons express trace amine-associated receptors (TAARs) that have most recently been described as a novel class of olfactory receptors. It was observed that several TAAR subtypes are expressed by defined subpopulations of GG neurons distinct from the V2r83-positive cells. Analyzing the time course of TAAR expression during pre- and postnatal development revealed that TAARs are expressed by a substantial portion of GG neurons in late embryonic and neonatal stages, whereas in juveniles and adults, the number of TAAR-positive cells in the GG was significantly decreased.  相似文献   

2.
During critical phases of mouse development, axons from olfactory sensory neurons grow out of the nasal neuroepithelium and navigate through the connective mesenchyme tissue towards their targets in the developing telencephalic vesicle. Between embryonic days E11 and E16, populations of cells are located in the mesenchyme which express distinct olfactory receptor genes along with the olfactory marker protein (OMP); thus they express markers characteristic for mature olfactory sensory neurons. These extraepithelial cells are positioned along the axon tracts, and each population expressing a given receptor gene is specifically associated with the axons of those olfactory sensory neurons with the same receptor type. The data suggest that they either might be guide posts for the outgrowing axons or migrate along the axons into the brain.  相似文献   

3.
Although the generation of new neurons in the adult nervous system ('adult neurogenesis') has been studied intensively in recent years, little is known about this phenomenon in non-mammalian vertebrates. Here, we examined the generation, migration, and differentiation of new neurons and glial cells in the Mozambique tilapia (Oreochromis mossambicus), a representative of one of the largest vertebrate taxonomic orders, the perciform fish. The vast majority of new cells in the brain are born in specific proliferation zones of the olfactory bulb; the dorsal and ventral telencephalon; the periventricular nucleus of the posterior tuberculum, optic tectum, and nucleus recessi lateralis of the diencephalon; and the valvula cerebelli, corpus cerebelli, and lobus caudalis of the cerebellum. As shown in the olfactory bulb and the lateral part of the valvula cerebelli, some of the young cells migrate from their site of origin to specific target areas. Labeling of mitotic cells with the thymidine analog 5-bromo-2'-deoxyuridine, combined with immunostaining against the neuron-specific marker protein Hu or against the astroglial marker glial fibrillary acidic protein demonstrated differentiation of the adult-born cells into both neurons and glia. Taken together, the present investigation supports the hypothesis that adult neurogenesis is an evolutionarily conserved vertebrate trait.  相似文献   

4.
Olfactory marker protein (OMP) is a unique marker of mature olfactory neurons, which specifically express olfactory receptor genes. Widespread ectopic expression of olfactory receptor genes in numerous tissues outside olfactory system has also been reported, although the functional implication of this phenomenon remains unknown. We analyzed the presence of OMP in two rat tissues with ectopic expression of olfactory receptor genes (testis and circumvallate papillae of tongue) using immunohistochemistry. In testis, immunoreactivity against OMP was not detected. In circumvallate papillae of tongue, immunoreactivity was specifically localized to taste bud cells.  相似文献   

5.
The vertebrate olfactory epithelium provides an excellent model system to study the regulatory mechanisms of neurogenesis and neuronal differentiation due to its unique ability to generate new sensory neurons throughout life. The replacement of olfactory sensory neurons is stimulated when damage occurs in the olfactory epithelium. In this study, transgenic mice, with a transgene containing human diphtheria toxin receptor under the control of the olfactory marker protein promoter (OMP-DTR), were generated in which the mature olfactory sensory neurons could be specifically ablated when exposed to diphtheria toxin. Following diphtheria toxin induced neuronal ablation, we observed increased numbers of newly generated growth associated protein 43 (GAP43)-positive immature olfactory sensory neurons. OMP-positive neurons were continuously produced from the newly generated GAP43-positive cells. The expression of the signal transduction components adenylyl cyclase type III and the G-protein α subunit Gα olf was sensitive to diphtheria toxin exposure and their levels decreased dramatically preceding the disappearance of the OMP-positive sensory neurons. These data validate the hypothesis that OMP-DTR mice can be used as a tool to ablate the mature olfactory sensory neurons in a controlled fashion and to study the regulatory mechanisms of the neuronal replacement.  相似文献   

6.
S K Pixley 《Neuron》1992,8(6):1191-1204
Olfactory receptor neurons (ORNs) are replaced and differentiate in adult animals, but differentiation in dissociated cell culture has not been demonstrated. To test whether contact with the CNS regulates maturation, neonatal rat olfactory cells were grown on a culture substrate or on CNS astrocytes. Mature ORNs, immunopositive for olfactory marker protein (OMP), disappeared rapidly from both systems. Neurons positive for neuron-specific tubulin (immature and mature) disappeared from substrate-only cultures, but remained abundant in the cocultures. OMP-positive neurons reappeared after 10 days in vitro. Pulse labeling with [3H]thymidine showed extensive neurogenesis of both immature and mature olfactory neurons. This demonstrates, in vitro, both division and differentiation of olfactory progenitor cells.  相似文献   

7.
The functional activity of the neural cell adhesion molecule N-CAM can be modulated by posttranslational modifications such as glycosylation. For instance, the long polysialic acid side chains of N-CAM alter the adhesion properties of the protein backbone. In the present study, we identified two novel carbohydrates present on N-CAM, NOC-3 and NOC-4. Both carbohydrates were detected on N-CAM glycoforms expressed by subpopulations of primary sensory olfactory neurons in the rat olfactory system. Based on the expression of NOC-3 and NOC-4 and the olfactory marker protein (OMP), four independent subpopulations of primary sensory olfactory neurons were characterized. These neurons expressed: both NOC-3 and NOC-4 but not OMP; both NOC-4 and OMP but not NOC-3; NOC-3, NOC-4, and OMP together; and OMP alone. The NOC-3- and NOC-4-expressing neurons were widely dispersed in the olfactory neuroepithelium lining the nasal cavity. The axons of NOC-4 expressing neurons innervated all glomeruli in the olfactory bulb, whereas the NOC-3 expressing axons terminated in a discrete subset of glomeruli scattered throughout the whole olfactory bulb. We propose that both NOC-3 and NOC-4 are part of a chemical code of olfactory neurons which is used in establishing the topography of connections between the olfactory neuroepithelium and the olfactory bulb. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 659–670, 1997  相似文献   

8.
The nerve fiber layer of the opossum olfactory bulb, formed by axons originating from bipolar neurons in the olfactory epithelium, and glomeruli are intensely immunoreactive for olfactory marker protein. The surrounding extra-glomerular neuropil contains numerous periglomerular neurons immunoreactive for either tyrosine hydroxylase or corticotropin releasing factor. Dendrites of both types of immunoreactive neurons extend into the intraglomerular neuropil. CRF-immunoreactive neurons are fewer in number than TH-immunoreactive neurons and are observed primarily in the periglomerular region. Occasional, scattered TH-immunoreactive neurons are seen in the deeper layers of the olfactory bulb.  相似文献   

9.
A neuron-specific protein, the olfactory marker protein (OMP), has been sequenced. This was achieved by gas phase sequencing of peptides isolated by HPLC following chemical and enzymatic cleavages of the intact rat protein. The amino terminus of the intact protein is acetylated. This has been determined by fast atom bombardment mass spectrometry of the amino terminal dodecapeptide isolated following BrCN cleavage of the OMP. Comparison of the sequence reported here with over 3000 protein sequences stored in the NBRF protein data base indicates no significant homology with any previously sequenced protein. This, coupled with the occurrence of OMP only in mature olfactory neurons of many vertebrate species, suggests that this protein has a olfactory neurons of many vertebrate species, suggests that this protein has a unique function in the metabolism of these neurons.  相似文献   

10.
The nervous cells in the brain and the peripheral nerves are isolated from the external environment by the blood-brain, blood-cerebrospinal fluid and blood-nerve barriers. The glucose transporter GLUT1 mediates the specific transfer of glucose across these barriers. The olfactory system is unique in that its sensory cells, olfactory receptor neurons, are embedded in the nasal olfactory epithelium and send their axons directly to the olfactory bulb of the brain. Only the apical parts of the olfactory receptor neurons are exposed to the lumen, and these serve as sensors for smell. Immunohistochemical examination showed that the tight junction protein occludin was present in the junctions of the olfactory epithelium. Endothelial cells in the blood vessels in the lamina propria of the olfactory mucosa were also positive for occludin. These observations suggest that the olfactory system is guarded from both the external environment and the blood. GLUT1 was abundant in these occludin-positive endothelial cells, suggesting that GLUT1 may serve in nourishing the cells of the olfactory system. Taken together, GLUT1 and occludin may serve as part of the machinery for the specific transfer of glucose in the olfactory system while preventing the non-specific entry of substances.  相似文献   

11.
Although the function of the adult olfactory system has been thoroughly studied, the molecular mechanisms regulating the initial formation of the olfactory nerve, the first cranial nerve, remain poorly defined. Here, we provide evidence that both modulated Notch and bone morphogenetic protein (BMP) signaling affect the generation of neurons in the olfactory epithelium and reduce the number of migratory neurons, so called epithelioid cells. We show that this reduction of epithelial and migratory neurons is followed by a subsequent failure or complete absence of olfactory nerve formation. These data provide new insights into the early generation of neurons in the olfactory epithelium and the initial formation of the olfactory nerve tract. Our results present a novel mechanism in which BMP signals negatively affect Notch activity in a dominant manner in the olfactory epithelium, thereby regulating neurogenesis and explain why a balance of BMP and Notch activity is critical for the generation of neurons and proper development of the olfactory nerve.  相似文献   

12.
By immunocytochemistry, we have identified two novel cell types, olfactory and supporting cells of lamb olfactory epithelium, expressing S-100 beta beta protein. S-100 immune reaction product was observed on ciliary and plasma membranes, on axonemes and in the cytoplasm adjacent to plasma membranes and to basal bodies of olfactory vesicles. A brief treatment of olfactory mucosae with Triton X-100 before fixation is necessary for detection of S-100 beta beta protein within olfactory vesicles. In the absence of such a treatment, the immune reaction product is restricted to ciliary and plasma membranes. On the other hand, irrespective of pre-treatment of olfactory mucosae, S-100 beta immune reaction product in supporting cells is restricted to microvillar and plasma membranes. The anti-S-100 beta antiserum used in these studies does not bind to basal cells of the olfactory epithelium or to cells of the olfactory glands, whereas it binds to Schwann cells of the olfactory nerve. An anti-S-100 alpha antiserum does not bind to cellular elements of the olfactory mucosa, Schwann cells, or axons of the olfactory nerve. The present data provide, for the first time, evidence for the presence of S-100 beta beta protein in mammalian neurons (olfactory cells).  相似文献   

13.
The vomeronasal cavity in adult humans   总被引:3,自引:0,他引:3  
We observed the surface of the anterior part of the nasal septum of living subjects using an endoscope. In approximately 13% of 1842 patients without pathology of the septum, the vomeronasal pit was clearly observed on each side of the septum, and in 26% it was observed only on one side. The remaining observations indicated either the presence of putative pits or no visible evidence of a pit. However, repetitive observations on 764 subjects depicted changes over time, from nothing visible to well-defined pits and vice versa. Based on 130 subjects observed at least four times, we estimate that approximately 73% of the population exhibits at least one clearly defined pit on some days. By computer tomography, the vomeronasal cavities were located at the base of the most anterior part of the nasal septum. Histological studies indicated that the vomeronasal cavities consisted of a pit generally connected to a duct extending in a posterior direction under the nasal mucosa. Many glands were present around the duct, which contained mucus. There was no sign of the pumping elements found in other mammalian species. Most cells in the vomeronasal epithelium expressed keratin, a protein not expressed by olfactory neurons. Vomeronasal epithelial cells were not stained by an antibody against the olfactory marker protein, a protein expressed in vomeronasal receptor neurons of other mammals. Moreover, an antibody against protein S100, expressed in Schwann cells, failed to reveal the existence of vomeronasal nerve bundles that would indicate a neural connection with the brain. Positive staining was obtained with the same antibodies on specimens of human olfactory epithelium. The lack of neurons and vomeronasal nerve bundles, together with the results of other studies, suggests that the vomeronasal epithelium, unlike in other mammals, is not a sensory organ in adult humans.  相似文献   

14.
Expression of cGMP signaling elements in the Grueneberg ganglion   总被引:1,自引:0,他引:1  
The Grueneberg ganglion (GG) is a cluster of neurons localized to the vestibule of the anterior nasal cavity. Based on axonal projections to the olfactory bulb of the brain, as well as expression of olfactory receptors and the olfactory marker protein, it is considered a chemosensory subsystem. Recently, it was observed that in mice, GG neurons respond to cool ambient temperatures. In mammals, coolness-induced responses in highly specialized neuronal cells are supposed to rely on the ion channel TRPM8, whereas in thermosensory neurons of the nematode worm Caenorhabditis elegans, detection of environmental temperature is mainly mediated by cyclic guanosine monophosphate (cGMP) pathways, in which cGMP is generated by transmembrane guanylyl cyclases. To unravel the molecular mechanisms underlying coolness-induced responses in GG neurons, potential expression of TRPM8 in the murine GG was investigated; however, no evidence was found that this ion channel is present in the GG. By contrast, a substantial number of GG neurons was observed to express the transmembrane guanylyl cyclase subtype GC-G. In the nose, GC-G expression appears to be confined to the GG since it was not detectable in other nasal compartments. In the GG, coolness-stimulated responses are only observed in neurons characterized by the expression of the olfactory receptor V2r83. Interestingly, expression of GC-G in the GG was found in this V2r83-positive subpopulation but not in other GG neurons. In addition to GC-G, V2r83-positive GG cells also co-express the phosphodiesterase PDE2A. Thus, in summary, coolness-sensitive V2r83-expressing GG neurons are endowed with a cGMP cascade which might underlie thermosensitivity of these cells, similar to the cGMP pathway mediating thermosensation in neurons of C. elegans. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. J. Fleischer and K. Mamasuew contributed equally to this work.  相似文献   

15.
The olfactory marker protein (OMP) is expressed in mature chemosensory neurons in the nasal neuroepithelium. Here, we report the identification of a novel population of OMP-expressing neurons located bilaterally in the anterior/dorsal region of each nasal cavity at the septum. These cells are clearly separated from the regio olfactoria, harboring the olfactory sensory neurons. During mouse development, the arrangement of the anterior OMP-cells undergoes considerable change. They appear at about stage E13 and are localized in the nasal epithelium during early stages; by epithelial budding, ganglion-shaped clusters are formed in the mesenchyme during the perinatal phase, and a filiform layer directly underneath the nasal epithelium is established in adults. The anterior OMP-cells extend long axonal processes which form bundles and project towards the brain. The data suggest that the newly discovered group of OMP-cells in the anterior region of the nasal cavity may serve a distinct sensory function.  相似文献   

16.
嗅上皮接收和传导气味信号是嗅觉系统的重要组成部分。嗅上皮的损伤在通常情况下可自发恢复,但特定疾病或衰老造成的嗅上皮损伤会引起嗅觉功能减退和嗅觉障碍。嗅上皮主要由基底细胞、支持细胞以及嗅感觉神经元组成。为了在体外建立包含多种细胞类型的嗅上皮类器官,本研究采用3D细胞培养技术,通过筛选小分子药物,构建了包含多种细胞类型的嗅上皮类器官模型,包含水平基底样细胞、球形基底样细胞、支持样细胞和嗅感觉神经元样细胞多种细胞类型。类器官培养体系中多种生长因子和小分子化合物在细胞增殖速度、细胞组成以及不同细胞类型标志基因的表达水平等方面对类器官产生影响。Wnt信号通路激活剂CHIR-99021能够提高嗅上皮类器官的成克隆率和增殖速度且有利于提高嗅上皮类器官中嗅感觉神经元样细胞标志基因的表达水平;培养体系的任一因子均能提高类器官中cKit阳性的球形基底样细胞克隆比例;表皮生长因子(epidermal growth factor,EGF)和维生素C均有利于类器官中水平基底样细胞标志基因的表达。本研究建立的嗅上皮类器官系统模拟了嗅上皮干细胞分化产生多种嗅上皮细胞类型的过程,为研究嗅上皮组织损伤再生、嗅觉障碍病理...  相似文献   

17.
Lectin-binding histochemistry was used to investigate the distribution and the changes of the glycoconjugate saccharidic moieties in the olfactory epithelium of human fetuses ranging from 8 to 12 weeks of gestation. It was found that the basal cells, the sustentacular cells and the olfactory neurons exhibit differences in oligosaccharide cellular content and distribution. Differences in lectin binding was also demonstrated at the dendrite, cell body and axon of the receptor cells. From the 11th week onwards, Ulex europaeus agglutinin I was found to be a marker of the olfactory neurons.  相似文献   

18.
AdipoR1 and AdipoR2 are receptors for the adipocyte-derived hormone adiponectin, which is an important regulator of glucose and lipid metabolism, and which has also been implicated in the control of food intake and energy homeostasis. In the present study, we have demonstrated that AdipoR1 is expressed in mature sensory neurons of the olfactory mucosa of mice, in a pattern reminiscent of the olfactory marker protein. AdipoR1 expression levels in the olfactory mucosa have been observed to increase gradually during late embryogenesis until adulthood. No local expression of adiponectin has been detected in nasal tissues, indicating that serum adiponectin is the ligand for AdipoR1 in olfactory sensory neurons. As the serum adiponectin concentration is regulated depending on adipose tissue mass, with a reduction of adiponectin levels being seen in obesity, AdipoR1 function in the olfactory epithelium seems to be directly linked to the nutritional status of the body, suggesting a potential modulatory role for AdipoR1 in the adjustment of the olfactory system to energy balance requirements. This work was supported by the Forschungsfonds ZEM Tübingen/Hohenheim. Nicole Hass is recipient of a Peter und Traudl Engelhorn Stiftung scholarship.  相似文献   

19.
Development of olfactory receptor neuron populations was studied using the previously described monoclonal antibody (Mab) 2B8 which binds to cell surface glycoproteins of presumptive olfactory receptor neurons. In order to definitively demonstrate that the cells recognized were olfactory receptor neurons and to better characterize these cells during development, a well-established receptor cell marker, olfactory marker protein (OMP), was studied at the same time as the 2B8 antigens in double-label immunofluorescence analyses of olfactory structures in rats from Day 13 of gestation (E13) to the early postnatal period. Olfactory epithelium cryostat sections of E13 rats showed binding of the 2B8 Mab to bipolar cells in caudal regions of the nasal cavity. The 2B8 Mab also recognized a large number of cells in the vomeronasal organ (VNO) at this stage. No specific binding of anti-OMP was seen until E15. At this time approximately half of the 2B8 reactive cells also expressed OMP. By birth, greater than 90% of the 2B8 reactive cells expressed OMP. The percentage of total fluorescent labeled cells which are double labeled remained relatively constant at 23-33% as the total number of cells increased between E15 and 2 days postnatal. 2B8 immunoreactivity can be found in the olfactory nerve layer of the olfactory bulb and the presumptive accessory olfactory bulb at E15. In double-label experiments the 2B8 Mab did not bind to all anti-OMP-labeled glomeruli of postnatal to adult rats. In summary, the 2B8 Mab recognizes cells early during development and appears to recognize a subclass of olfactory receptor cells and their axon terminals. Developmental changes in the electrophoretic profile of the olfactory 2B8 antigens were also studied. In the olfactory epithelium a single band at Mr of 200,000 was seen at E19. After birth three bands at 220,000, 180,000 and 110,000 were observed but in adults only two bands of Mr 215,000 and 163,000 were detected. During olfactory bulb development the Mr of the two major 2B8 reactive bands did not change but remained the same as the two major bands seen in the adult olfactory epithelium. The olfactory bulb band at Mr of 215,000 showed a 3 to 4-fold increase and the band at 163,000 showed a 10-fold increase in specific activity from birth to adulthood.  相似文献   

20.
Functional and Molecular Characterization of Individual Olfactory Neurons   总被引:3,自引:1,他引:2  
Abstract: To gain an understanding of the olfactory signal transduction process, individual chemosensory neurons have been assessed for odor-induced Ca2+ responses and the molecular elements of transduction cascades using Ca2+ imaging technique in combination with single-cell RT-PCR approaches. It has been demonstrated that responsiveness of cells to cyclic AMP or inositol trisphosphate odorants was blocked by specific adenylyl cyclase inhibitors or phospholipase C inhibitors, respectively. Using specific primers in single-cell RT-PCR analysis, olfactory marker protein, two G protein subtypes (Golf and Go), and adenylyl cyclase (subtype III) and a phospholipase C (phospholipase Cβ2-related subtype) were identified. For a subpopulation of sensory neurons it was demonstrated that both transduction cascades coexist and are active in the same cell. These data support the notion that two second messenger pathways are active in olfactory sensory neurons and emphasize the concept of dual transduction cascades in olfaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号