首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
抗冻蛋白结构基因片段的克隆   总被引:2,自引:0,他引:2  
李荣萍  李晶 《生物技术》1996,6(1):10-11
为了研究和开发利用抗冻蛋白或多肽,木文通过聚合酶链式反应(PCR)合成了抗冻蛋白110bp的结构基因片段,然后将该基因片段克隆到大肠杆菌质粒载体P(Bluescript)Ⅱks+/-上,获得了重组质粒,经酶切证明,获得的重组质粒中含有抗冻蛋白结构基因片段,以供该基因在大肠杆菌或酵母中表达抗冻蛋白。  相似文献   

3.
目的:建立一种简便、高效,可一步完成多个片段连接,从而构建含同源臂的载体的方法。方法:按照酶切后可产生前后片段相匹配的粘性末端接头的原则设计PCR引物,在目的片段两端均引入BsaⅠ酶切位点。以G160基因为例,PCR扩增打靶用左右同源臂片段、示踪基因CMV-EGFP片段、载体骨架pMD19-T等4个片段,纯化后一起加入一个反应管中,并加入BsaⅠ限制性内切酶和T7DNA连接酶及相应缓冲液,进行酶切、酶连接共10~50个循环反应,一步构建含同源臂载体的质粒;产物经高温处理后,直接转化感受态细胞,并进行重组子PCR鉴定;对pMD19-T载体进行优化,突变载体上的BsaⅠ酶切位点,把示踪基因CMV-EGFP片段引入pHSG298-T载体,再选择不同的G160基因同源臂片段组合对构建系统进行验证。结果:重组质粒酶切和PCR结果表明,应用一步法可成功连接多个片段来构建含同源臂及示踪基因的克隆载体;用优化后的pMD19-T-O载体体系,在2d内即完成了6种各含4个片段的载体的构建。结论:多个基因片段一步无缝连接的方法简便、易行、可靠,不仅可快速构建某类载体系统,还可对基因进行精确的点突变,该系统可用于快速构建基因打靶载体。  相似文献   

4.
为构建鸭肠炎病毒(DEV)核衣壳蛋白(NP)基因酵母双杂交诱饵载体,采用PCR技术扩增出DEV-NP基因,克隆至酵母双杂交诱饵质粒pGBKT7中,以PCR检测、限制性酶切和序列测定等方法进行鉴定;然后采用PEG/LiA.法将阳性质粒pGBKT7-NP转化酵母Y2HGold,在不同营养缺失型培养基进行自激活检测,结果显示,经PCR检测和EcoR I/BamH I双酶切,可见到与预期相一致的目的片段;测序表明该片段含DEV NP基因全部序列;转化Y2HGold酵母菌后,在SD/-Trp/X-a-Gal 固体培养基上长出蓝色菌落,而在SD/-Trp/X-a-GaUAbA固体培养基上未见有菌落生长.无自激活作用的诱饵载体pGBKT7NP的成功构建,为DEV NP宿主结合蛋白的筛选莫定了基础.  相似文献   

5.
In vivo recombinational cloning in yeast is a very efficient method. Until now, this method has been limited to experiments with yeast vectors because most animal, insect, and bacterial vectors lack yeast replication origins. We developed a new system to apply yeast-based in vivo cloning to vectors lacking yeast replication origins. Many cloning vectors are derived from the plasmid pBR322 and have a similar backbone that contains the ampicillin resistance gene and pBR322-derived replication origin for Escherichia coli. We constructed a helper plasmid pSUO that allows the in vivo conversion of a pBR322-derived vector to a yeast/E. coli shuttle vector through the use of this backbone sequence. The DNA fragment to be cloned is PCR-amplified with the addition of 40 bp of homology to a pBR322-derived vector. Cotransformation of linearized pSU0, the pBR322-derived vector, and a PCR-amplified DNA fragment, results in the conversion of the pBR322-derived vector into a yeast/E. coli shuttle vector carrying the DNA fragment of interest. Furthermore, this method is applicable to multifragment cloning, which is useful for the creation of fusion genes. Our method provides an alternative to traditional cloning methods.  相似文献   

6.
L Naumovski  E C Friedberg 《Gene》1983,22(2-3):203-209
We have constructed a plasmid vector (pNF2) which is a derivative of the multicopy yeast cloning vehicle YEp24. This derivative contains a single BamHI site flanked immediately on each side by SalI sites. The latter site was selected because it appears to be infrequent in yeast nuclear DNA. Thus, DNA fragments produced by partial digestion with enzymes (such as Sau3A) that cut at frequent intervals and leave single-stranded ends that have sequence homology with BamHI sites, can be conveniently subcloned into this site. Such fragments can then be excised intact by digestion with SalI enzyme. Plasmid pNF2 also contains the kanamycin-resistance (kanR) gene derived from Tn903 and confers resistance in yeast to the antibiotic G418. pNF2 was converted into an integrating vector (pNF3) by deleting a 2.2-kb EcoRI fragment containing a sequence that determines autonomous replication in yeast. Further deletion of a HindIII fragment containing the yeast URA3 gene converts the plasmid into one containing only pBR322 sequences plus the kanR gene (pNF4).  相似文献   

7.
The gene for the U6 small nuclear RNA (snRNA) in the fission yeast Schizosaccharomyces pombe is interrupted by an intron whose structure is similar to those found in messenger RNA precursors (pre-mRNAs) (1). This is the only known example of a split snRNA gene from any organism--animal, plant, or yeast. To address the uniqueness of the S. pombe U6 gene, we have investigated the structures of the U6 genes from five Schizosaccharomyces strains and three other fungi. A fragment of the U6 coding sequence was amplified from the genomic DNA of each strain by the polymerase chain reaction (PCR). The sizes of the PCR products indicated that all of the fission yeast strains possess intron-containing U6 genes; whereas, the U6 genes from the other fungi appeared to be uninterrupted. The sequences of the Schizosaccharomyces U6 gene fragments revealed that each had an intron of approximately 50 base pairs in precisely the same position. In addition to the splice sites and putative branch point regions, a sequence immediately upstream of the branch point consensus was found to be conserved in all of the Schizosaccharomyces U6 genes. This sequence matches the consensus for the B box of eukaryotic tRNA promoters. These results raise the interesting possibility that synthesis of U6 RNA in fission yeast might involve the use of internal promoter elements similar to those found in other genes transcribed by RNA polymerase III.  相似文献   

8.
An inducible expression vector for both fission and budding yeast   总被引:4,自引:0,他引:4  
D Picard  M Schena  K R Yamamoto 《Gene》1990,86(2):257-261
We have developed a vector system for inducible gene expression in both fission yeast (Schizosaccharomyces pombe) and budding yeast (Saccharomyces cerevisiae). The autonomously replicating expression vector contains multiple glucocorticoid response elements, rendering a linked promoter inducible 20-70-fold by glucocorticoid hormones in the presence of the mammalian glucocorticoid receptor. A polylinker with several unique cloning sites allows insertion of cDNAs of interest. Glucocorticoids are gratuitous signalling molecules in yeast, exerting little or no effect on the expression of genes other than those fused to the regulated promoter.  相似文献   

9.
Yeast DNA topoisomerase II is encoded by a single-copy, essential gene   总被引:40,自引:0,他引:40  
T Goto  J C Wang 《Cell》1984,36(4):1073-1080
The gene TOP2 encoding yeast topoisomerase II has been cloned by immunological screening of a yeast genomic library constructed in the phage lambda expression vector, lambda gt11. The ends of the message encoded by the cloned DNA fragment were delimited by the Berk and Sharp procedure (S1 nuclease mapping) for the 5' end and mapping of the polyA tail portion of a cDNA fragment for the 3' end. The predicted size of the message agrees with the length of the message as determined by Northern blot hybridization analysis. The identity of the gene was confirmed by expressing the gene in E. coli from the E. coli promoter lac UV5 to give catalytically active yeast DNA topoisomerase II. Disruption of one copy of the gene in a diploid yeast creates a recessive lethal mutation, indicating that the single DNA topoisomerase II gene of yeast has an essential function.  相似文献   

10.
Here, we describe a protocol for the selective isolation of any genomic fragment or gene of interest up to 250 kb in size from complex genomes as a circular yeast artificial chromosome (YAC). The method is based on transformation-associated recombination (TAR) in the yeast Saccharomyces cerevisiae between genomic DNA and a linearized TAR cloning vector containing targeting sequences homologous to a region of interest. Recombination between the vector and homologous sequences in the co-transformed mammalian DNA results in the establishment of a YAC that is able to propagate, segregate and be selected for in yeast. Yield of gene-positive clones varies from 1% to 5%. The entire procedure takes 2 weeks to complete once the TAR vector is constructed and genomic DNA is prepared. The TAR cloning method has a broad application in functional and comparative genomics, long-range haplotyping and characterization of chromosomal rearrangements, including copy number variations.  相似文献   

11.
Yeast artificial chromosomes (YACs) provide a powerful tool for the isolation and mapping of large regions of mammalian chromosomes. We developed a rapid and efficient method for the isolation of DNA fragments representing the extreme ends of YAC clones by the insertion of a rescue plasmid into the YAC vector by homologous recombination. Two rescue vectors were constructed containing a yeast LYS2 selectable gene, a bacterial origin of replication, an antibiotic resistance gene, a polylinker containing multiple restriction sites, and a fragment homologous to one arm of the pYAC4 vector. The 'end-cloning' procedure involves transformation of the rescue vector into yeast cells carrying a YAC clone, followed by preparation of yeast DNA and transformation into bacterial cells. The resulting plasmids carry end-specific DNA fragments up to 20 kb in length, which are suitable for use as hybridization probes, as templates for direct DNA sequencing, and as probes for mapping by fluorescence in situ hybridization. These vectors are suitable for the rescue of end-clones from any YAC constructed using a pYAC-derived vector. We demonstrate the utility of these plasmids by rescuing YAC-end fragments from a human YAC library.  相似文献   

12.
Saccharomyces cerevisiae is one of the most im- portant heterologous expression systems. The stability and copy number of expression plasmid in the host are the important factors to affect the expression levels of foreign genes[1―3]. pHC11 is a yeast episomal plasmid constructed by our laboratory[4]. It contains the entire sequence of the 2μ plasmid without disrupting its coding elements and other functional regions. The stability and copy number of pHC11 are relatively high. Making use of…  相似文献   

13.
Cloning and expression of a yeast protein tyrosine phosphatase.   总被引:6,自引:0,他引:6  
To study the regulation of tyrosine phosphorylation/dephosphorylation in Saccharomyces cerevisiae, a protein tyrosine phosphatase (PTPase) was cloned by the polymerase chain reaction (PCR). Conserved amino acid sequences within the mammalian PTPases were used to design primers which generated a yeast PCR fragment. The sequence of the PCR fragment encoded a protein with homology to the mammalian PTPases. The PCR fragment was used to identify the yeast PTP1 gene which has an open reading frame encoding a 335-amino acid residue protein. This yeast PTPase shows 26% sequence identity to the rat PTPase, although highly conserved residues within the mammalian enzymes are invariant in the yeast protein. The yeast PTP1 is physicallt linked to the 5'-end of a heat shock gene SSB1. This yeast PTP1 gene was expressed in Escherichia coli and obtained in a highly purified form by a single affinity chromatography step. The recombinant yeast PTPase hydrolyzed phosphotyrosine containing substrates approximately 1000 times faster than a phosphoserine containing substrate. Gene disruption of yeast PTP1 has no visible effect on vegetative growth.  相似文献   

14.
The D-xylose isomerase (EC 5.3.1.5) gene from Escherichia coli was cloned and isolated by complementation of an isomerase-deficient E. coli strain. The insert containing the gene was restriction mapped and further subcloning located the gene in a 1.6-kb Bg/II fragment. This fragment was sequenced by the chain termination method, and showed the gene to be 1002 bp in size. The Bg/II fragment was cloned into a yeast expression vector utilising the CYCl yeast promoter. This construct allowed expression in E. coli grown on xylose but not glucose suggesting that the yeast promoter is responding to the E. coli catabolite repression system. No expression was detected in yeast from this construct and this is discussed in terms of the upstream region in the E. coli insert with suggestions of how improved constructs may permit achievement of the goal of a xylose-fermenting yeast.  相似文献   

15.
16.
O Chisaka  S Iwai  E Ohtsuka  K Matsubara 《Gene》1986,45(1):19-25
Using dodecadeoxynucleotides as primers for DNA synthesis and 3'-o-chlorophenyl-phosphorylated dodecadeoxynucleotides as "stoppers" for chain elongation, pre-defined regions of a gene previously cloned in M13 single-stranded (ss) DNA phage were converted into double-stranded (ds) DNA utilizing the action of the Klenow fragment of Escherichia coli DNA polymerase I (PolIk). The resulting ds DNA was freed from the ss region by S1 nuclease treatment. This method can be used to obtain DNA fragments of any size with pre-defined 5' and 3' ends. About 15% of the input ss DNA template molecules are converted into ds DNA fragments. This technique was used to synthesize several DNA fragments from different portions of the hepatitis B virus surface antigen (HBsAg) gene. The products were then ligated into a yeast plasmid vector that carries the E. coli lacZ gene which is located downstream from the yeast acid-phosphatase promotor. Using this system, several fragments of HBsAg were produced in the form of beta-galactosidase fused protein.  相似文献   

17.
目的:利用Red重组系统敲除肠出血性大肠杆菌O157∶H7的毒力基因espA、espB、espD,构建3株突变株。方法:以肠出血性大肠杆菌O157∶H7为模板,PCR扩增基因两翼的同源序列;将PCR产物插入pEASY-T1载体并测序,将测序正确的上、下游同源序列分步酶切,构建于pUC19-kan质粒上,经PCR获得两端同源序列中间嵌合卡那霉素抗性基因标记的线性片段,利用质粒pKD46介导的重组技术,敲除espA、espB、espD基因,之后转入pCP20质粒以去除抗性标记,最后测定突变株及野生菌株的生长曲线。结果:敲除了肠出血性大肠杆菌O157∶H7的毒力基因espA、es pB、espD,获得3株突变株,突变株与野生株的生长曲线相近。结论:为进一步研究espA、espB、espD基因在肠出血性大肠杆菌O157∶H7致病过程中的作用奠定了基础。  相似文献   

18.
Plasmid construction by homologous recombination in yeast   总被引:82,自引:0,他引:82  
H Ma  S Kunes  P J Schatz  D Botstein 《Gene》1987,58(2-3):201-216
We describe a convenient method for constructing new plasmids that relies on interchanging parts of plasmids by homologous recombination in Saccharomyces cerevisiae. A circular recombinant plasmid of a desired structure is regenerated after transformation of yeast with a linearized plasmid and a DNA restriction fragment containing appropriate homology to serve as a substrate for recombinational repair. The free ends of the input DNA molecules need not be homologous in order for efficient recombination between internal homologous regions to occur. The method is particularly useful for incorporating into or removing from plasmids selectable markers, centromere or replication elements, or particular alleles of a gene of interest. Plasmids constructed in yeast can subsequently be recovered in an Escherichia coli host. Using this method, we have constructed an extended series of new yeast centromere, episomal and replicating (YCp, YEp, and YRp) plasmids containing, in various combinations, the selectable yeast markers LEU2, HIS3, LYS2, URA3 and TRP1.  相似文献   

19.
呼延霆  薛小平  宋凯  汪桦  杨慧  王伟 《生物工程学报》2009,25(10):1579-1585
本研究旨在构建可表达汉坦病毒(HTNV)糖蛋白G2的重组腺病毒。应用PCR方法扩增G2编码基因,经T/A克隆、测序鉴定后再亚克隆到腺病毒shuttle载体pAd5-CMV中并用磷酸钙沉淀法分别将携带G2编码基因的重组腺病毒shuttle载体与携带报告基因eGFP的腺病毒骨架质粒共转染HEK293细胞,包装、扩增、纯化后得到携带HTNV糖蛋白G2编码基因的重组腺病毒;用重组腺病毒感染Hela细胞并收获蛋白,间接免疫荧光、Western blotting检测蛋白表达。经酶切鉴定表明已成功构建了携带G2基因的重组腺病毒载体;RT-PCR鉴定表明目的基因能够在感染重组腺病毒的Hela细胞中转录;荧光显微镜观察重组腺病毒感染的Hela细胞,可见报告基因eGFP的表达;间接免疫荧光法和Western blotting均证实表达产物可被抗G2单克隆抗体所识别,表明糖蛋白G2在感染细胞中得到了表达。本研究成功构建了可表达HTNV包膜糖蛋白G2的重组腺病毒,转染宿主细胞可稳定表达目的蛋白,为HTNV糖蛋白G2的结晶、结构解析研究以及新型汉坦病毒疫苗的研制奠定了基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号