首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A rapid and convenient method has been utilized to investigate glucose oxidation during growth of chick embryo heart cells in tissue culture. Primary isolates of chick embryo heart cells showed exponential growth when plated at low densities and exhibited density-inhibited growth as cultures became confluent. The density-dependent growth inhibition of chick embryo heart cells is associated with a marked decrease in the specific activity of glucose oxidation to CO2. This decrease in glucose oxidation was observed as density increased as either a function of time in culture or as related to initial plating density. The decrease in 14CO2 production associated with density-dependent inhibition of growth is due to a marked decrease in activity of the pentose phosphate pathway.  相似文献   

2.
Gluconobacter oxydans oxidizes glucose via alternative pathways: one involves the non-phosphorylative, direct oxidation route to gluconic acid and ketogluconic acids, and the second requires an initial phosphorylation and then oxidation via the pentose phosphate pathway enzymes. During growth of G. oxydans in glucose-containing media, the activity of this pathway is strongly influenced by (1) the pH value of the environment and (2) the actual concentration of glucose present in the culture. At pH values below 3.5 the activity of the pentose phosphate pathway was completely inhibited resulting in an increased requirement of the organism for nutrient substances, and a poor cell yield. At pH 5.5 a triphasic growth response was observed when G. oxydans was grown in a defined medium. Above a threshold value of 5–15 mM glucose, oxidation of both glucose and gluconate by the pentose phosphate pathway enzymes was repressed, causing a rapid accumulation of gluconic acid in the culture medium. When growing under these conditions, a low affinity for the oxidation of glucose was found (K s=13 mM). Below this threshold glucose concentration, pentose phosphate pathway enzymes were synthesized and glucose was actively assimilated via this pathway. It was shown that de novo enzyme synthesis was necessary for increased pentose phosphate pathway activity and that assimilation of gluconate by washed cell suspensions was inhibited by glucose.  相似文献   

3.
Gluconobacter oxydans was grown successively in glucose and nitrogen-limited chemostat cultures. Construction of mass balances of organisms growing at increasing dilution rates in glucose-limited cultures, at pH 5.5, revealed a major shift from extensive glucose metabolism via the pentose phosphate pathway to the direct pathway of glucose oxidation yielding gluconic acid. Thus, whereas carbon dioxide production from glucose accounted for 49.4% of the carbon input at a dilution rate (D)=0.05 h-1, it accounted for only 1.3% at D=0.26 h-1. This decline in pentose phosphate pathway activity resulted in decreasing molar growth yields on glucose. At dilution rates of 0.05 h-1 and 0.26 h-1 molar growth yields of 19.5 g/mol and 3.2 g/mol, respectively, were obtained. Increase of the steady state glucose concentration in nitrogen-limited chemostat cultures maintained at a constant dilution rate also resulted in a decreased flow of carbon through the pentose phosphate pathway. Above a threshold value of 15–20 mM glucose in the culture, pentose phosphate pathway activity almost completely inhibited. In G. oxydans the coupling between energy generation and growth was very inefficient; yield values obtained at various dilution rates varied between 0.8–3.4 g/cells synthesized per 0.5 mol of oxygen consumed.  相似文献   

4.
Monolayer cultures of fetal rat myocardial cells can be utilized to examine substrate preferences and interactions. The specific activity of glucose oxidation by myocardial cell cultures was high in sparse cultures but decreased with increased cell density. In contrast, palmitate oxidation was independent of initial cell density. Palmitate inhibited glucose oxidation by 50% in rat heart cultures. Glucose had only a slight sparing effect on palmitate oxidation. This suggests that fetal and newborn rat myocardial cells in culture preferentially oxidize palmitate similar to adult heart. The sparing effect of palmitate on glucose oxidation is accounted for by inhibition of the glycolytic-aerobic pathway and not by inhibition of the pentose phosphate pathway. Data on oxidation of 14C-pyruvate specifically labelled suggest that palmitate or a product of its oxidation such as acetyl-CoA may be acting directly to inhibit the pyruvate dehydrogenase complex. Palmitate oxidation per mg of cell protein was constant from 15 days gestational age to 2 days postnatal age. The observed differences between cultured cells and the intact heart may relate to decreased aerobic metabolism in monolayer cell culture and suggest that the increase in fatty acid oxidation observed in vivo is controlled by the oxygen environment of the cell. These studies show that heart cells in monolayer culture can be utilized to obtain metabolic information similar to an adult organ perfusion model.  相似文献   

5.
The interaction between kinetin and naphthaleneacetic acid (NAA)in regulating growth of potato tissue cultures has been usedto examine the extent of synchrony between changes in DNA synthesisand pathway participation of glucose catabolism. A series ofexperiments confirmed that kinetin added to the medium stimulatedglucose catabolism via the pentose phosphate pathway when itinduced DNA synthesis. A similar trend was found for the levelof NADP and NAD kinase activity in cultured explants. Thesefindings and relevant data suggest that kinetin added to a mediumcontaining the standard addition of NAA promoted DNA synthesisas well as glucose oxidation by increasing the availabilityof NADP in the cultured explants. (Received September 13, 1976; )  相似文献   

6.
Summary Bicarbonate in the culture medium is essential for DNA synthesis of primary cultured rat hepatocytes stimulated by epidermal growth factor (EGF). When primary cultured hepatocytes in supplemented Leibovitz L15 medium were placed in a 100% air incubator, no increase in DNA synthesis was observed even after stimulation by EGF. However, when these cells were cultured with NaHCO3 and EGF and placed in a 5% CO2:95% air incubator, a stimulus of DNA synthesis more than 10-fold greater than in cultures in air only was seen, and many mitotic figures could be identified. Furthermore, NaHCO3 added to supplemented DMEM/F12 medium enhanced the DNA synthesis of primary cultured rat hepatocytes in this medium. The ideal pH of the medium for DNA synthesis of cultured hepatocytes was in the range of 7.6 to 8.0. A dose response of NaHCO3 in several media showed that DNA synthesis of the cells increased as the concentration of NaHCO3 increased and that 25 to 30 mM NaHCO3 in the medium was optimal for the replication of DNA by primary cultured rat hepatocytes. The investigations described in this study were supported in part by grants CA-07175, CA-22484, and CA-45700 from the National Cancer Institute, Bethesda, MD.  相似文献   

7.
The influence of temperature on glucose metabolism of a psychotrophic strain of Bacillus cereus was investigated. The pH of the growth medium and spore-forming frequencies of B. cereus varied when grown at 32, 20, or 7 C. Radiorespirometric analyses revealed that vegetative cells of B. cereus metabolized glucose by simultaneous operation of the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. As the growth temperature decreased, glucose was metabolized with increased participation of the pentose phosphate pathway. The shift of cells grown at a higher temperature to a lower temperature increased the relative participation of the pentose phosphate pathway, whereas the shift of cells grown at low temperatures to a higher temperature had the opposite effect. Cells of late logarithmic phase grown at 20 and 7 C oxidized acetate by the tricarboxylic acid cycle reaction. However, cells grown at 32 C failed to oxidize acetate to CO2 to any appreciable extent. The extracellular products resulting from the metabolism of glucose decreased as the growth temperature was lowered. Organic acids were the major extracellular products of cultures grown at 32 and 20 C. Acetic acid, lactic acid, and pyruvic acid together accounted for 86.1 and 78.9% of extracellular radioactivity, respectively, at the two temperatures. The relative ratio of these three acids varied between the temperatures. Little or no acid accumulated at 7 C.  相似文献   

8.
The influence of temperature on glucose metabolism of a psychotrophic strain of Bacillus cereus was investigated. The pH of the growth medium and spore-forming frequencies of B. cereus varied when grown at 32, 20, or 7 C. Radiorespirometric analyses revealed that vegetative cells of B. cereus metabolized glucose by simultaneous operation of the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. As the growth temperature decreased, glucose was metabolized with increased participation of the pentose phosphate pathway. The shift of cells grown at a higher temperature to a lower temperature increased the relative participation of the pentose phosphate pathway, whereas the shift of cells grown at low temperatures to a higher temperature had the opposite effect. Cells of late logarithmic phase grown at 20 and 7 C oxidized acetate by the tricarboxylic acid cycle reaction. However, cells grown at 32 C failed to oxidize acetate to CO2 to any appreciable extent. The extracellular products resulting from the metabolism of glucose decreased as the growth temperature was lowered. Organic acids were the major extracellular products of cultures grown at 32 and 20 C. Acetic acid, lactic acid, and pyruvic acid together accounted for 86.1 and 78.9% of extracellular radioactivity, respectively, at the two temperatures. The relative ratio of these three acids varied between the temperatures. Little or no acid accumulated at 7 C.  相似文献   

9.
Abstract: The oxidation of differentially labelled glucose, pyruvate and glutamate in brain slices from rats aged 20 days to 26 months has been studied and the partition of the glucose used into the glycolytic-tricarboxylic acid cycle pathway, the pentose phosphate pathway and the glutamate-GABA shunt has been calculated. Over the time range 4 to 26 months, there is an approximately 20% decrease in the production of CO2 via the glycolytic-tricarboxylic acid cycle route, as there is in the rate of glucose phosphorylation. The glutamate-GABA pathway falls by about 50% over this same time span. The broad activity of the pentose phosphate pathway falls rapidly and cannot be detected in the brains of rats aged 18 months or more, whereas the fully stimulated pathway, i.e. in the presence of the artificial electron acceptor phen-azine methosulphate, declines only marginally over this period, falling sharply only after 23 months. The pentose phosphate pathway is stimulated by the presence of 5-hy-droxytryptamine and this stimulation appears to increase with age.  相似文献   

10.
An assay for reduced and oxidized glutathione was adapted to isolated rat epididymal adipocytes in order to correlate pentose phosphate cycle activity and glutathione metabolism. In collagenase-digested adipocytes the [GSH/GSSG] molar ratio was in excess of 100. Cells incubated for 1 hr with low glucose concentrations (0.28–0.55 mm) had higher GSH contents (3.2 μg/106 cells) than in the absence of glucose (2.3 μg/106 cells). The glutathione oxidant diamide caused a dose-related decrease in intracellular GSH, an increase in GSSG released into the medium, but no detectable change in the low intracellular GSSG content. The intracellular content of GSH and amount of GSSG released into the medium were therefore taken to reflect the glutathione status of the adipocytes most closely. Addition of H2O2 to a concentration of 60 μm to adipocytes caused to decline within 5 min in GSH content, which was less severe and more rapid to recover in the presence of 1.1 mm glucose, suggesting that the concomitant stimulation of glucose C-1 oxidation induced by the peroxide in the presence of glucose provided NADPH for regeneration of GSH. Further evidence for tight coupling between adipocyte [GSH/GSSG] ratios and pentose phosphate cycle activity was that (i) lowering intracellular GSH to 35–60% of control values by agents as diverse in action as t-butyl hydroperoxide, diamide, or the sulfhydryl blocker N-ethylmaleimide resulted in optimal stimulation of glucose C-1 oxidation and fractional pentose phosphate cycle activity, and (ii) incubating adipocytes directly with 2.5 mm GSSG resulted in a slight increase in glucose C-1 oxidation and when 0.5 mm NADP+ was also added a synergistic effect on pentose phosphate cycle activity was found. On the other hand, electron acceptors such as methylene blue did not lower cellular GSH content, but did stimulate the pentose phosphate cycle, confirming a site of action independent of glutathione metabolism. The results show that (i) glucose metabolism by the pentose phosphate cycle contributes to regeneration of GSH and that (ii) glutathione metabolism either directly or via coupled changes in [NADPH/NADP+] ratios may play a significant role in short-term control of the pentose phosphate cycle.  相似文献   

11.
Exposure of rat pheochromocytoma PC12 cells to 0.1 mM 6-aminonicotinamide (6AN) for 24 hours resulted in a 500-fold increase in 6-phosphogluconate indicating active metabolism of glucose via the oxidative enzymes of the pentose phosphate pathway. Amounts of 6-phosphogluconate that accumulated in 6AN-treated cells at 24 hours were significantly increased by treatment of the cells with nerve growth factor (NGF) (100 ng 7S/ml) suggesting that metabolism of glucose via the pentose pathway at this time was enhanced by NGF. This stimulation of metabolism via the pentose pathway is probably a late response to NGF because initial rates of 6-phosphogluconate accumulation in 6AN-treated cells were the same in the presence and absence of NGF. Moreover, amounts of14CO2 generated from 1-[14CO2]glucose during the initial six hour incubation period were the same in control and NGF-treated cells. Specific activities of hexose phosphates labeled from 1-[14CO2]glucose were also the same in control and NGF-treated cells. The observation that 6AN inhibited metabolism via the pentose phosphate pathway but failed to inhibit NGF-stimulated neurite outgrowth suggests that NADPH required for lipid biosynthesis accompanying NGF-stimulated neurite outgrowth from PC12 cells can be derived from sources other than, or in addition to, the oxidative enzymes of the pentose phosphate pathway.Special Issue dedicated to Dr. O. H. Lowry.  相似文献   

12.
The activity of the pentose phosphate pathway in isolated liver cells   总被引:2,自引:0,他引:2  
Isolated liver cells have been used to assess the relative contribution of the pentose phosphate pathway to glucose metabolism. The incorporation of carbon from specifically labelled glucose into 14CO2 by isolated cells gave values (μg.atoms/g.cells/hr) of: C-1, 7.9; C-6, 1.3; C-U, 3.4. The corresponding figures for liver slices were: C-1, 2.3; C-6, 1.6; C-U, 3.0. The most striking difference was the 3.5-fold increase in the oxidation of C-1 of glucose. Isolated cells retain more than 50% of ATP and have a content of intermediates of the glycolytic pathway closely similar to freeze-clamped liver. The relative importance of the pentose phosphate pathway in isolated liver cells, approximately 16% of glucose catabolised, is consistent with the enzyme profile of liver and the reductive synthetic reactions of the tissue.  相似文献   

13.
The biosynthesis of chelidonic acid was studied in cell suspension cultures of Leucojum aestivum. Cell cultures were supplied with [U-13C]glucose, [l-13C]glucose or [U-13Cs]ribose/ribulose in standard medium containing unlabeled glucose. 13C labeling patterns of amino acids obtained by hydrolysis of biomass were determined by NMR spectroscopy and compared to the labeling pattern of chelidonic acid. The data document the incorporation of a contiguous 4-carbon fragment derived from the pentose phosphate pool into chelidonic acid. This suggests a biosynthetic pathway involving the condensation of phosphoenolpyruvate with a pentose phosphate followed by dehydration, dehydrogenation, ring closure and decarboxylation conducive to the loss of C-5 of the pentose precursor.  相似文献   

14.
Autotrophic growth yields of four strains of Sulfolobus using tetrathionate as sole energy substrate fell in the range 6.2–7.8 g dry weight (mol tetrathionate oxidized)-1. Autotrophic organisms lacked ribulose 1,5-bis-phosphate carboxylase, but contained pyruvate and phosphoenolpyruvate carboxylases. S. brierleyi and strains B6-2 and LM exhibited mixotrophic growth, with tetrathionate oxidation, CO2-fixation and organic substrate assimilation occurring concurrently, using media containing glucose or acetate. Yeast extract or succinate supported heterotrophic growth and showed strain-dependent repression of one or both of tetrathionate oxidation and CO2-fixation resulting in biphasic growth. All four carbon atoms of succinate were assimilated to cell-carbon during growth. Acetate was the major source of cell-carbon during mixotrophic growth. These observations are not inconsistent with the possibility of a reductive carboxylic acid cycle in these organisms. Radiorespirometric analysis of glucose oxidation indicated CO2 release to occur by means of an Entner-Doudoroff pathway (followed by pyruvate decarboxylation) and oxidative pentose phosphate pathway reactions. There was little evidence from the glucose radiorespirometry of the large-scale use of an oxidative tricarboxylic acid cycle for terminal oxidation of acetate derived from pyruvate. These results demonstrate the considerable metabolic versatility of Sulfolobus strains and show that there is significant variation among them.Abbreviations PIPES Piperazine-N,N-bis (2-ethane sulphonic acid)  相似文献   

15.
The catabolism of specifically14C-labelled glucose during the root formation and its inhibition by kinetin and ethionine in the etiolated pea stem sections were studied. The formation of root meristematic foci in the pericycle region of sections was accompanied by the decrease of the C6/C1 ratio. Such a result and activation of pentose phosphate cycle, which was also checked by another method, suggested increased participation of pentose phosphate cycle in glucose oxidation. The above mentioned changes were also found after the prevention of root formation by ethionine and, therefore, do not seem to be specific for the meristematic foci formation. The growth of newly formed roots was closely connected with the rise of C6/C1 values. The increase of CO2 release from the first carbon atom of glucose molecule was recorded after the inhibition of root formation by ethionine. The rise of C6/C1 values and decrease of pentose phosphate cycle activity was observed after the treatment of pea stem sections by kinetin in the first 64 hours after sectioning. In this case root formation was prevented and the growth of lateral buds was stimulated. The secondary xylem formation which took place later was accompanied by the activation of the pentose phosphate cycle. These phenomena are discussed in relation to cell division and biosynthesis of lignin-precursors.  相似文献   

16.
The metabolism of [1-14C]- and [6-14C]glucose, [1-14]ribose, [1-14C]- and [U-14C]alanine, and [1-14C]- and [5-14C]glutamate by the promastigotes of Leishmania braziliensis panamensis was investigated in cells resuspended in Hanks' balanced salt solution supplemented with ribose, alanine, or glutamate. The ratio of 14CO2 produced from [1-14C]glucose to that from [6-14C]glucose ranged from about two to six, indicating appreciable carbon flow through the pentose phosphate pathway. A functional pentose phosphate pathway was further demonstrated by the production of 14CO2 from [1-14C]ribose although the rate of ribose oxidation was much lower than the rate of glucose oxidation. The rate of 14CO2 production from [1-14C]glucose was almost linear with time of incubation, whereas that of [6-14C]glucose accelerated, consistent with an increasing rate of flux through the Embden-Meyerhof pathway during incubation. Increasing the assay temperature from 26°C to 34°C had no appreciable effect on the rates or time courses of oxidation of either [1-14C]- or [6-14C]glucose or of [1-14C]ribose. Both alanine and glutamate were oxidized by L. b. panamensis, and at rates comparable to or appreciably greater than the rate of oxidation of glucose. The ratios of 14CO2 produced from [1-14C]- to [U-14C]alanine and from [1-14C]- to [5-14C]glutamate indicated that these compounds were metabolized via a functioning tricarboxylic acid cycle and that most of the label that entered the tricarboxylic acid cycle was oxidized to carbon dioxide. Heating the cultures for 6 or 12 h at 34°C, which converts the promastigotes into an ellipsoidally shaped intermediate form, decreased the rates of oxidation of glucose, alanine, and glutamate. The oxidation of glutamate decreased by about 50% and 70% after a 6-h or 12-h heat treatment, respectively. Returning the heated cultures to 26°C initiated a reversion to the promastigote form and recovery of the rate of glucose oxidation, but glutamate oxidation did not return to control levels by 19 h at 26°C.  相似文献   

17.
d-Glucose catabolism of a phosphofructokinase-deficient yeast Rhodotorula gracilis has been studied. By using d-glucose specifically 14C-labelled at different positions and measuring the distribution of the label in various fractions of cell metabolism, the following results were found. 1. The pentose phosphate pathway, being the main pathway of d-glucose catabolism, simultaneously converts glucose molecules into pentose phosphates oxidatively by using two NADP-linked dehydrogenases and via the non-oxidative transketolase–transaldolase pathway. 2. From the correlation of the 14CO2 liberation and the d-glucose consumption and from the fact that the pentose phosphate moiety in nucleic acids is almost equally labelled from d-[1-14C]- and d-[6-14C]-glucose, it is concluded that of the glucose utilized about 80% undergoes transformation via the non-oxidative pentose phosphate pathway. Only about 20% of glucose is directly decarboxylated to pentose phosphate. 3. For further degradation it is postulated that the pentose phosphates are split into C2 fragments and glyceraldehyde 3-phosphates. 4. All three loci of oxidative decarboxylation appear to be effective in Rh. gracilis, the oxidative part of the pentose phosphate pathway, the decarboxylation of pyruvate in the later part of the glycolytic pathway as well as the oxidation in the tricarboxylic acid cycle. 5. d-Glucose molecules taken up are only partially oxidized to CO2: about four-fifths of each glucose molecule metabolized is incorporated into cell constituents. 6. The quantitative interrelations of the fluxes of d-glucose subunits along the catabolic pathways have been estimated and are discussed.  相似文献   

18.
Pathways of glucose catabolism, potentially operational in six strains of obligately aerobic, acidophilic bacteria, including Acidiphilium cryptum strain Lhet2, were investigated by short-term radiorespirometry and enzyme assays. Short-term radiorespirometry was conducted at pH 3.0 with specifically labeled [14C]glucose. The high rate and yield of C-1 oxidized to CO2 indicated that the Entner-Doudoroff, pentose phosphate, or both pathways were operational in all strains. Apparent nonequivalent yields of CO2 from C-1 and estimated CO2 from C-4 (C-1 > C-4) were suggestive of simultaneous glucose catabolism by both pathways in all strains tested. Variation in the relative contribution of the two pathways of glucose catabolism appears to account for observed strain differences. Calculation of the actual percent pathway participation was not feasible. Enzyme assays were completed with crude extracts of glucose-grown cells to substantiate the results obtained by radiorespirometry. The key enzymes of the pentose phosphate pathway (6-phosphogluconate dehydrogenase) and the Entner-Doudoroff pathway (2-keto-3-deoxy-6-phosphogluconate aldolase and 6-phosphogluconate dehydrase) were present in all strains examined (PW2, Lhet2, KLB, OP, and QBP). However, none of the strains exhibited detectable levels of the key enzyme of the Embden-Meyerhof-Parnas pathway, 6-phosphofructokinase. All strains contained glucose-6-phosphate dehydrogenase and fructose bisphosphate aldolase. The results of the enzyme study supported the contention that the pentose phosphate and Entner-Doudoroff pathways are operational for glucose catabolism in the acidophilic heterotrophs, and that the Embden-Meyerhof-Parnas pathway is apparently absent.  相似文献   

19.
Aerobic thermoacidophilic chemolithotrophic bacteria Sulfobacillus thermosulfidooxidans1269Tand Sulfobacillus thermosulfidooxidanssubsp. asporogenes41 were shown to be resistant to stress factors, including high concentrations of Zn2+(0.8 M) and supraoptimal concentrations of H+(pH 1.2). The growth and biomass gain rates decreased, but bacteria retained their functions. The activity of nearly all enzymes involved in carbon metabolism decreased. Glucose was primarily metabolized via the Entner–Doudoroff pathway. The activity of tricarboxylic acid cycle enzymes decreased compared to that in cells grown under normal conditions. After saturation of the growth medium with 5 vol % CO2, sulfobacteria utilized glucose by the Embden–Meyerhof and pentose phosphate pathways under mixotrophic conditions.  相似文献   

20.
The distribution of the glycolytic enzymes, phosphofructokinase, aldolase, triosephosphate isomerase, phosphoglycerate kinase, pyruvate kinase, and the oxidative pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, was determined in the leaf tissues of two C3-plants, pea and leek, and two C4-plants, maize and sorghum. All enzymes examined were found in epidermal tissue. In pea, maize, and sorghum leaves, the specific activities of these enzymes were usually higher in the nonphotosynthetic epidermal tissue than in the photosynthetic tissues of the leaves. In leek leaves, which were etiolated, specific activities were similar in both epidermal and mesophyll tissue. The distribution of the rate limiting enzymes of glycolysis and the oxidative pentose phosphate pathways probably reflects the capacity of each tissue to generate NADH, NADPH, and ATP from the oxidation of glucose. This capacity appears to be greater in leaf tissues unable to generate reducing equivalents and ATP by photosynthesis, that is, in epidermal tissues and etiolated mesophyll tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号