首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The withdrawal effect of spironolactone treatment on natriuresis was studied in relation to atrial natriuretic peptide (ANP) in five patients with primary aldosteronism due to adenoma. The patients had been treated with spironolactone for 2-3 months before they were admitted. After admission, blood pressure, body weight, and urinary excretion of sodium were measured daily. Venous samples were obtained twice a week for measurements of plasma levels of ANP, plasma renin activity (PRA), and plasma concentrations of aldosterone (PAC), cortisol, and deoxycorticosterone. The study was performed for 7 days during the treatment with spironolactone and for 18 days after stopping the administration. Plasma volume was determined two times, during the control period and on the 13th day after stopping spironolactone. Urinary sodium excretion decreased initially and returned to the control levels successively. Body weight and plasma volume increased, and blood pressure rose steadily. PRA and the plasma concentrations of cortisol and deoxycorticosterone decreased significantly (P less than 0.05); however, high levels of PAC did not alter significantly. Plasma ANP levels increased significantly (P less than 0.05) from 26 +/- 4 pg/ml during the control period to 195 +/- 47 pg/ml on the 13th day after stopping spironolactone. The data of the urinary sodium excretion showed the escape from sodium-retaining effect of aldosterone, and this escape could be explained by the increase in plasma ANP. Furthermore, ANP might contribute to the decrease in cortisol and deoxycorticosterone in plasma because of the direct inhibitory action of ANP on steroidogenesis.  相似文献   

2.
T K Lee  B S Hsieh 《Prostaglandins》1986,32(6):847-855
In 12 of 76 stroke patients complicated by the syndrome of inappropriate secretion of antidiuretic hormone (SIADH), a significant increase in urinary prostaglandin E (PGE) (p less than 0.005), and a significant positive relationship between the plasma arginine vasopressin (AVR) level and urinary PGE excretion were observed (r = 0.72, p less than 0.05). The experimental results are consistent with the view that renal PGE acts as a modulator of ADH. Nowadays acetylsalicylic acid (ASA), an inhibitor of prostaglandin biosynthesis, is widely used in ischemic stroke, it was felt necessary to study the effect of this drug on urinary PGE excretion. Therefore various daily doses of ASA were given orally for 3 days to patients with ischemic stroke. PGE values in 24-hour urine samples were measured every day for 3 days before administration of the drug and for 3 days during ASA administration. In 10 patients who took 75 mg of ASA, the decrease in urinary PGE excretion was not statistically significant. On the other hand when ASA was administered 300 mg once in 19 patients or 300 mg 4 times in 11 cases, urinary PGE excretion decreased significantly (p less than 0.05 and p less than 0.05 respectively). In another group of 8 patients who were observed before, during and after the ASA administration, a daily oral dose of 300 mg for 3 days caused a significant decrease in urinary PGE excretion during these 3 days (p less than 0.05). The urinary PGE excretion returned to the control level within 3 days after cessation of the ASA administration.  相似文献   

3.
Since renal prostaglandins may contribute to natriuresis induced by endogenous atrial natriuretic factor (ANF), acute volume expansion (AVL), a known stimulus of ANF and prostaglandins, was induced in 8 healthy women in order to test whether the consequent sodium and water diuresis is altered by prostaglandin inhibition. AVL (i.v. infusion of a 2 liter 5% glucose solution in 1 h) was infused after placebo and after inhibition of prostaglandins with diclofenac (200 mg/day orally for 4 days), in a double blind randomized cross-over fashion. Urinary eicosanoids (PGE2, PGF2 alpha, 6-ketoPGF1 alpha, TXB2--RIA), plasma ANF (RIA) and urinary electrolytes were determined before, during and after AVL under both placebo and diclofenac regimes. During placebo, AVL induced sustained increases in plasma ANF (174% at peak, p less than 0.001 ANOVA), excretion of the four eicosanoids (149%-1172%, p less than 0.005-0.001), urinary volume (UV, 815%, p less than 0.001), natriuresis (UNa, 98%, p less than 0.005) and in kaliuresis (UK, 90%, p less than 0.001). Cyclooxygenase inhibition resulted in a reduction of over 70% in both baseline values and AVL-induced increase of eicosanoids. It did not alter either baseline levels or AVL-stimulated ANF, UV, UNa and UK in relation to placebo. The present results suggest that the diuretic and natriuretic activity of ANF is not mediated by renal PGs in humans.  相似文献   

4.
A woman with tachycardia associated with polyuria was investigated. Electrophysiological analysis showed that the tachycardia was an atrioventricular nodal re-entrant tachycardia. Programmed stimulation was then used to provoke and sustain the tachycardia for 40 minutes. Polyuria, with an appreciable increase in free water clearance, was observed. This was associated with reduction in plasma and urinary arginine vasopressin concentrations. Appreciable natriuresis also developed. These results support the hypothesis that the polyuria with increased free water clearance and the natriuresis occurring during sustained tachycardia in man are due to inhibition of secretion of vasopressin and the release of natriuretic factor.  相似文献   

5.
The present study examines hormonal and renal responses to acute volume expansion in normal man, with particular emphasis on the atrial natriuretic peptide (ANP)--cyclic GMP coupling. Two liters of isotonic saline were infused into eight normotensive male subjects over a 1-h period. Plasma and urinary measurements were made before, during, and up to 300 min after the start of the saline infusion. With the initial increase in urinary sodium excretion there were increases in plasma ANP and plasma cyclic GMP, which reached maximum levels at 15 min after the end of the saline infusion. Urinary cyclic GMP increased gradually during saline infusion up to approximately 60 min after the end of the infusion. Plasma ANP and plasma and urinary cyclic GMP excretion gradually declined thereafter. By contrast, urinary sodium excretion remained elevated up to the end of the observation period. The saline infusion was associated with marked reductions in plasma renin activity and aldosterone, which persisted up to the end of the study. These results suggest a coupling between the increases in plasma ANP, the production of cyclic GMP, and urinary sodium excretion, in particular during the initial renal response to acute volume expansion. However, other mechanisms including the suppression of the renin--angiotensin--aldosterone system may become increasingly important in the later natriuretic response to acute volume expansion.  相似文献   

6.
Anesthetized beagle dogs received increasing doses of continuous infusions of a 26-amino-acid synthetic atrial natriuretic factor (ANF). Urinary sodium excretion rose in a dose-dependent manner to a maximum level similar to that seen after hydrochlorothiazide administration. Mean arterial blood pressure decreased, but only modestly, and not in a dose-dependent fashion. Dogs chronically retaining NaCl secondary to constriction of the thoracic inferior vena cava showed only modestly enhanced natriuresis when infused with similar levels of ANF. When ANF was infused directly into the renal artery of anesthetized beagles, a dose-dependent natriuresis and calciuresis were observed with maximal fractional sodium excretion averaging approximately 8%. Although glomerular filtration tended to increase, the average dose-related changes were not significant. Cyclic GMP excretion was increased during intra-renal-arterial infusion of ANF. Excretion of cyclic GMP by both the infused and noninfused kidneys was equal, which suggests that urinary cyclic GMP was not nephrogenous but derived from the elevated circulating levels. These and other data from rats dissociate changes in urinary cyclic GMP excretion and sodium excretion.  相似文献   

7.
The response of plasma atrial natriuretic peptide (ANP) and urinary cGMP excretion to central hypervolemia induced by water immersion was assessed twice in five healthy male subjects, once while immersed in water to the neck for 3 h and again on a control day. Plasma ANP and urinary cGMP were measured by radioimmunoassay. Compared with the control day, overall change in plasma ANP on the immersion day was significant (p less than 0.05). In response to water immersion, plasma ANP increased from a base-line level of 13.2 +/- 3.1 (mean +/- SEM) to 24.2 +/- 5.5 pg/mL by 0.5 h of immersion and was sustained at that level throughout the immersion period. Plasma ANP returned to the base-line level at 1 h postimmersion. Urinary cGMP excretion increased significantly by 1 h of immersion and was sustained at that level throughout water immersion and 1 h postimmersion (p less than 0.05). During water immersion urine flow, urinary sodium and potassium excretion, free water clearance, and osmolar clearance increased while plasma renin activity, serum aldosterone, and blood pressure fell; all changes were significant (p less than 0.05). Creatinine clearance and hematocrit did not show any significant changes. These data suggest that an increase in plasma ANP may contribute to the natriuretic and diuretic response to central hypervolemia, and that the measurement of urinary cGMP may be a valuable marker of ANP biological responsiveness.  相似文献   

8.
The degree of water transport via aquaporin-2 (AQP2) water channels in renal collecting duct principal cells is reflected by the level of the urinary excretion of AQP2 (u-AQP2). In rats, the AQP2 expression varies with sodium intake. In humans, the effect of sodium intake on u-AQP2 and the underlying mechanisms have not previously been studied. We measured the effect of 4 days of high sodium (HS) intake (300 mmol sodium/day; 17.5 g salt/day) and 4 days of low sodium (LS) intake (30 mmol sodium/day; 1.8 g salt/day) on u-AQP2, fractional sodium excretion (FE(Na)), free water clearance (C(H2O)), urinary excretion of PGE(2) (u-PGE(2)) and cAMP (u-cAMP), and plasma concentrations of vasopressin (AVP), renin (PRC), ANG II, aldosterone (Aldo), atrial natriuretic peptide (ANP), and brain natriuretic peptide (BNP) in a randomized, crossover study of 21 healthy subjects, during 24-h urine collection and after hypertonic saline infusion. The 24-h urinary sodium excretion was significantly higher during HS intake (213 vs. 41 mmol/24 h). ANP and BNP were significantly lower and PRC, ANG II, and Aldo were significantly higher during LS intake. AVP, u-cAMP, and u-PGE(2) were similar during HS and LS intake, but u-AQP2 was significantly higher during HS intake. The increases in AVP and u-AQP2 in response to hypertonic saline infusion were similar during HS and LS intake. In conclusion, u-AQP2 was increased during HS intake, indicating that water transport via AQP2 was increased. The effect was mediated by an unknown AVP-independent mechanism.  相似文献   

9.
Increased plasma atrial natriuretic peptide (ANP) levels and impaired ANP action have been reported in patients with diabetes or insulin resistance. The aim of this study was to assess the interaction between insulin and ANP in type 2 diabetes. In 12 normotensive, normoalbuminuric type 2 diabetics, we infused insulin at a high (6.6 pmol/min/kg) or, on a different day, at a low rate (0.6 pmol/min/kg) during 4 hours of isoglycemia under isovolumic, isoosmolar conditions. The normal response was established in 12 healthy volunteers using an identical protocol. Despite higher baseline ANP levels (17.7 +/- 2.8 vs. 10.8 +/- 1.8 pg/ml, p = 0.04), urinary sodium excretion was similar in diabetics and controls (113 +/- 8.5 vs. 102 +/- 8.8 mEq/24 hours, p = ns). In both groups, hyperinsulinemia caused a decrease in blood volume (0.33 +/- 0.10 l, p < 0.01), diastolic blood pressure (6 %, p < 0.02), and natriuresis. However, plasma ANP decreased in controls (from 12.7 +/- 1.9 to 8.6 +/- 1.4 pg/ml, p = 0.01) but not in type 2 diabetics (15.1 +/- 2.7 vs. 17.2 +/- 3.8 pg/ml, p = ns). We conclude that ANP release is resistant to volume stimulation in type 2 diabetic patients, and natriuresis is resistant to ANP action. This dual disruption of ANP control may play a role in blood pressure regulation in diabetes.  相似文献   

10.
Uroguanylin is a small-molecular-weight peptide that activates membrane-bound receptor-guanylate cyclases in the intestine, kidney, and other epithelia. Uroguanylin has been shown to participate in the regulation of salt and water homeostasis in mammals via cGMP-mediated processes, bearing a distinct similarity to the action of the atriopeptins, which play a defined role in natriuresis and act as prognostic indicators of severe congestive heart failure (CHF). The objectives of this study were to measure the urinary levels of uroguanylin and the circulating plasma levels of atrial natriuretic peptide (ANP) in healthy individuals (n = 53) and patients with CHF (n = 16). Urinary excretion of uroguanylin was assessed by a cGMP accumulation bioassay employing human T84 intestinal cells. In individuals without CHF, the concentration of uroguanylin bioactivity was 1.31 +/- 0.27 nmol cGMP/ml urine and 1.73 +/- 0.25 micromol cGMP/24-h urine collection. The urinary bioactivity of uroguanylin in males (1.74 +/- 0.55 nmol cGMP/ml urine; n = 27) tended to be higher than the excretion levels in females (0.94 +/- 0.16 nmol cGMP/ml urine; n = 26) over a 24-h period but did not achieve statistical significance. Both male and female groups showed 24-h temporal diurnal variations with the highest uroguanylin levels observed between the hours of 8:00 AM and 2:00 PM. The circulating level of ANP was 12.1 +/- 1.6 pg/ml plasma and did not significantly vary with respect to male/female population or diurnal variation. In patients with CHF, the concentration of plasma ANP and urinary uroguanylin bioactivity increased substantially (7.5-fold and 70-fold, respectively, both P 相似文献   

11.
We investigated the effects of sodium depletion and orthostasis on the plasma concentration and urinary excretion of vasopressin (AVP) in eight normal female subjects. After 4 days on a sodium controlled diet (130 mEq/day), the subjects were placed on a low sodium diet (30 mEq/day) for 3 days and 120 mg of furosemide was administered orally on the first day of the low sodium regimen. Sodium depletion in the present study reduced body weight by 1.6 kg and increased hematocrit by 3.5%. A significant (p less than 0.05) increase in plasma AVP and a significant (p less than 0.05) decrease in 24-h urinary excretion of AVP were observed during sodium depletion. One-hour ambulation significantly increased plasma AVP in both control and sodium depleted phases (p less than 0.01). The percent change in plasma AVP tended to correlate with that in mean blood pressure in the control phase (r = 0.69, 0.05 less than p less than 0.1), and significantly correlated in the sodium depleted phase (r = 0.86, p less than 0.01). The present results suggest that AVP may play an important role in the maintenance of blood pressure during orthostasis in the sodium depleted state.  相似文献   

12.
The levels of immunoreactive brain natriuretic peptide (ir-BNP) and immunoreactive atrial natriuretic peptide (ir-ANP) were evaluated by radioimmunoassay in both the atrium, ventricle and plasma of adriamycin-induced nephrotic rats and control rats. There was no difference in right and left atrial concentrations of ir-BNP, however, a higher right atrial concentration of ir-ANP was observed in nephrotic rats than in controls (p less than 0.01). The ventricular ir-BNP and ir-ANP were increased in nephrotic rats compared to controls (BNP: p less than 0.001, ANP: p less than 0.001). Cardiac BNPs were composed of pro-BNP (gamma-BNP) and its C-terminal 45-amino-acid peptide (BNP-45). The ratio of BNP-45/gamma-BNP in nephrotic rats was higher than that of controls in both atria and in the ventricle. Plasma ir-BNP and ir-ANP were significantly higher in nephrotic rats than in controls (BNP: p less than 0.001, ANP: p less than 0.001), and each level was negatively correlated with urinary sodium excretion in nephrotic rats (BNP: r = -0.84, p less than 0.001, ANP: r = -0.88, p less than 0.001). These results suggest that production and secretion of both BNP and ANP are concomitantly stimulated by a decreased renal ability to eliminate sodium and water, but this secretion is insufficient to induce effective natriuresis in nephrotic rats.  相似文献   

13.
To explore the mechanisms for the natriuretic effects of a neutral endopeptidase inhibitor, candoxatril, the concentration of atrial natriuretic peptide (ANP) and its molecular forms in the urine of Dahl salt-sensitive (S) rats were examined. Candoxatril-induced natriuresis (+120%, p less than 0.05) was associated with a marked increase in the urinary ANP excretion (+1200%, p less than 0.05). Analysis by Sephadex G-50 gel filtration revealed that molecular weight of the major fraction of immunoreactive (ir-) ANP in the plasma of candoxatril-treated Dahl S rats was 3K, whereas that in the urine was 2.5 K. Further analysis by reverse phase high performance liquid chromatography showed that ir-ANP in the plasma of Dahl S rats was alpha-rANP (1-28), while that in the urine from rats treated with candoxatril was alpha-rANP (1-25). These results indicate that candoxatril inhibits the complete degradation of ANP in the kidney, thereby increasing the amount of biologically active ANP reaching the distal nephron and contributing to natriuresis.  相似文献   

14.
Atrial natriuretic peptide (ANP) is released from the cardiac atria in response to acute volume loads; when infused acutely ANP causes diuresis and natriuresis. Cyclic GMP (cGMP) appears to be the second messenger for ANP in the kidney. The role that ANP plays in the long-term regulation of salt and water balance is unclear, however, since resistance to ANP's natriuretic and diuretic activity develops during prolonged administration. The purpose of the present study is to examine the relationship between the rate of cGMP excretion in response to ANP and the development of resistance to ANP's diuretic and natriuretic activity. Following a 30-min baseline period of infusion of Ringer's solution conscious rats received ANP at 15 micrograms/kg/hr (n = 6) or Ringer's alone (n = 5) for 240 min. ANP-infused rats had a significant diuresis and natriuresis during the first hour of infusion; urinary cGMP excretion also increased compared to baseline. By 120 min after initiating the infusion in ANP-rats urinary volume and sodium excretion had declined to values not significantly different from those of baseline or control. In contrast, urinary cGMP excretion remained elevated for the duration of the ANP infusion, whether compared to baseline values or the control group. Resistance to the diuretic and natriuretic activity of ANP is not a result of mechanisms that involve cGMP generation.  相似文献   

15.
Endogenous Digitalis-Like Factor (DLF) is a putative hypothalamic Na+,K+-ATPase inhibitor that mediates natriuresis in response to intravascular volume expansion or sodium loading. The precise structure of this substance remains unknown; however, it cross-reacts with antibody to digoxin. Using a radioimmunoassay, we measured DLF concentrations in 26 normal subjects: mean value of this factor was 0.512 ng digoxin-equivalents/ml +/- 0.038 SEM; DLF correlated significantly with serum sodium levels (r = 0.59 - p less than 0.01) and daily urinary sodium excretion (r = 0.48 - p less than 0.05). Our results confirm that endogenous digitalis-like factor has a physiological role as regulator of natriuresis, in response to plasma sodium concentrations.  相似文献   

16.
Substantial volume expansion in conscious rats induces a strong natriuresis, cyclic GMP excretion, increase in cyclic GMP in plasma and kidney tissue, decrease in plasma renin activity and plasma aldosterone concentration. These effects are directly related to an increase in plasma levels of atrial natriuretic peptides. The renal response and the changes in plasma and kidney cyclic GMP, plasma renin activity and aldosterone could be totally blocked by simultaneous administration of monoclonal antibodies directed against ANP. From this study it seems to be clear that the rise in cyclic GMP and the inhibition of the renin-aldosterone system is not a direct effect of volume expansion but is specifically mediated by the released ANP. The great importance of ANP in acute volume expansion made us wonder about the role of ANP in chronic volume expansion and under basal conditions without volume loading. Chronic volume loading was induced pharmacologically by the sodium retaining vasodilatator minoxidil. Under both chronic volume expansion and basal conditions the neutralization of the circulation ANP by antibody administration leads to reduced plasma cyclic GMP levels. No alterations in urinary sodium excretion, plasma renin activity and plasma aldosterone concentration could be observed: In conclusion, the monoclonal antibody directed against ANP is a useful tool for the investigation of the physiological role of endogenous ANP.  相似文献   

17.
The relative importance of systemic volume, concentration, and pressure signals in sodium homeostasis was investigated by intravenous infusion of isotonic (IsoLoad) or hypertonic (HyperLoad) saline at a rate (1 micromol Na(+) x kg(-1) x s(-1)), similar to the rate of postprandial sodium absorption. IsoLoad decreased plasma vasopressin (-35%) and plasma ANG II (-77%) and increased renal sodium excretion (95-fold), arterial blood pressure (DeltaBP; +6 mmHg), and heart rate (HR; +36%). HyperLoad caused similar changes in plasma ANG II and sodium excretion, but augmented vasopressin (12-fold) and doubled DeltaBP (+12 mm Hg) without changing HR. IsoLoad during vasopressin clamping (constant vasopressin infusion) caused comparable natriuresis at augmented DeltaBP (+14 mm Hg), but constant HR. Thus vasopressin abolished the Bainbridge reflex. IsoLoad during normotensive angiotensin clamping (enalaprilate plus constant angiotensin infusion) caused marginal natriuresis (9% of unclamped response) despite augmented DeltaBP (+14 mm Hg). Cessation of angiotensin infusion during IsoLoad immediately decreased BP (-13 mm Hg) and increased glomerular filtration rate by 20% and sodium excretion by 45-fold. The results suggest that fading of ANG II is the cause of acute "volume-expansion" natriuresis, that physiological ANG II deviations override the effects of modest systemic blood pressure changes, and that endocrine rather than hemodynamic mechanisms are the pivot of normal sodium homeostasis.  相似文献   

18.
We have previously found that chronic infusion of atrial natriuretic peptide (ANP) decreased mean arterial pressure (MAP) by 16% in two-kidney, one-clip (2K-1C) hypertensive rats, and we hypothesized that natriuresis might be modified through the pressure-natriuresis mechanism. We therefore decided to evaluate sodium balance in 2K-1C rats infused with ANP (0.5 micrograms/h for 4 days). The ANP infusion to the 2K-1C rats induced a significant decrease in MAP from 171 +/- 3 to a minimum value of 147 +/- 6 mm Hg after 2 days of treatment (p less than 0.001). Sodium excretion fell from 2,536 +/- 60 to 2,047 +/- 86 (p less than 0.001) and 2,211 +/- 96 mu Eq/24 h (p less than 0.05) by days 1 and 2 of ANP administration. Furthermore, fractional excretion of sodium intake decreased from 99.1 +/- 1.5 to 81.1 +/- 2.9 (p less than 0.001), 84.1 +/- 2.6 (p less than 0.05) and 85.9 +/- 5.15% (p less than 0.05) by days 1, 2 and 3 of ANP infusion, respectively, returning to basal values thereafter. The administration of vehicle (0.9% NaCl) did not induce any significant change in 2K-1C hypertensive rats. The infusion of either vehicle or the same dose of ANP to normotensive rats (0.5 micrograms/h, for 4 days) did not modify sodium balance throughout the experiment. These results strongly suggest that the ANP-induced decrease in MAP might be responsible for the transitory sodium retention observed in 2K-1C hypertensive rats during the administration of the peptide.  相似文献   

19.
Although deoxycorticosterone acetate (DOCA)–salt hypertension is a volume dependent model of hypertension, it shows polyuria and natriuresis. It is expected that dysregulation of aquaporin water channels (AQPs) and sodium transporters associated with natriuretic peptide (NP) system may play an escape role in sodium retaining state. One week after left unilateral nephrectomy, rats were subcutaneously implanted with silastic DOCA (200 mg/kg) strips. Physiologic saline was supplied as a drinking water to all animals. 4 weeks after operation, the protein expression of AQPs, sodium transporters, and endopeptidase (NEP) was determined in the kidneys by semiquantitative immunoblotting and immunohistochemistry. The mRNA expression of NP system was determined by real-time polymerase chain reaction. The amount of urinary ANP excretion was measured by radioimmunoassay. In DOCA–salt rats, urine osmolality was decreased while urinary excretion of sodium was increased. The expression of AQP1-3 as well as that of α-1 subunit of Na,K–ATPase, NHE3, NKCC2 and NCC was decreased in the kidney. The mRNA expression of ANP, brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP) was increased in the kidney. The expression of NEP was decreased, and urinary ANP excretion was increased. Downregulation of AQPs and sodium transporters may contribute to mineralocorticoid escape in DOCA–salt hypertension. Increased expression of natriuretic peptides associated with downregulation of NEP may play a role in natriuresis.  相似文献   

20.
This study investigated the involvement of serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) in the control of sodium (Na+) excretion, potassium (K+) excretion, and urinary volume in unanesthetized rats subjected to acute isotonic blood volume expansion (0.15 M NaCl, 2 ml/100 g of body wt over 1 min) or control rats. Plasma oxytocin (OT), vasopressin (VP), and atrial natriuretic peptide (ANP) levels were also determined in the same protocol. Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In rats treated with vehicle in the LPBN, blood volume expansion increased urinary volume, Na+ and K+ excretion, and also plasma ANP and OT. Bilateral injections of serotonergic receptor antagonist methysergide (1 or 4 microg/200 etal) into the LPBN reduced the effects of blood volume expansion on increased Na+ and K+ excretion and urinary volume, while LPBN injections of serotonergic 5-HT(2a)/HT(2c) receptor agonist, 2.5-dimetoxi-4-iodoamphetamine hydrobromide (DOI; 1 or 5 microg/200 etal) enhanced the effects of blood volume expansion on Na+ and K+ excretion and urinary volume. Methysergide (4 microg) into the LPBN decreased the effects of blood volume expansion on plasma ANP and OT, while DOI (5 microg) increased them. The present results suggest the involvement of LPBN serotonergic mechanisms in the regulation of urinary sodium, potassium and water excretion, and hormonal responses to acute isotonic blood volume expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号