首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We have previously observed that metabolic oxidative stress-induced death domain-associated protein (Daxx) trafficking is mediated by the ASK1-SEK1-JNK1-HIPK1 signal transduction pathway. The relocalized Daxx from the nucleus to the cytoplasm during glucose deprivation participates in a positive regulatory feedback loop by binding to apoptosis signal-regulating kinase (ASK) 1. In this study, we report that Akt1 is involved in a negative regulatory feedback loop during glucose deprivation. Akt1 interacts with c-Jun NH(2)-terminal kinase (JNK)-interacting protein (JIP) 1, and Akt1 catalytic activity is inhibited. The JNK2-mediated phosphorylation of JIP1 results in the dissociation of Akt1 from JIP1 and subsequently restores Akt1 enzyme activity. Concomitantly, Akt1 interacts with stress-activated protein kinase/extracellular signal-regulated kinase (SEK) 1 (also known as MKK4) and inhibits SEK1 activity. Knockdown of SEK1 leads to the inhibition of JNK activation, JIP1-JNK2 binding, and the dissociation of Akt1 from JIP1 during glucose deprivation. Knockdown of JIP1 also leads to the inhibition of JNK activation, whereas the knockdown of Akt1 promotes JNK activation during glucose deprivation. Altogether, our data demonstrate that Akt1 participates in a negative regulatory feedback loop by interacting with the JIP1 scaffold protein.  相似文献   

2.
Exposure of mammalian cells to ultraviolet (UV) light or glucose deprivation activates c-Jun NH2-terminal protein kinase (JNK). However, the exact mechanism by which UV induces JNK activation is not yet understood completely. Previously, we have observed that glucose deprivation activates the ASK1-SEK1-JNK signal transduction pathway. In the present study, we reveal that UVC irradiation-induced JNK activation has a different signal transduction pathway from glucose deprivation. UVC irradiation increases the interaction between JIP3 and MEKK1, SEK1, while glucose deprivation increases the interaction between JIP3 and ASK1, SEK1, and JNK. UVC irradiation activates MEKK1 rather than ASK1. We also observed that MEKK1 interacted with Grb2 and Grb2-MEKK1 complex was recruited to epidermal growth factor receptor (EGFR) after UVC irradiation. Taken together, our data demonstrate that UVC-induced JNK activation adopts a different signaling cascade (EGFR-Grb2-MEKK1-SEK1-JNK) from glucose deprivation (ASK1-SEK1-JNK).  相似文献   

3.
JSAP1 (also termed JIP3) is a scaffold protein that interacts with specific components of the JNK signaling pathway. Apoptosis signal-regulating kinase (ASK) 1 is a MAP kinase kinase kinase that activates the JNK and p38 mitogen-activated protein (MAP) kinase cascades in response to environmental stresses such as reactive oxygen species. Here we show that JSAP1 bound ASK1 and enhanced ASK1- and H(2)O(2)-induced JNK activity. ASK1 phosphorylated JSAP1 in vitro and in vivo, and the phosphorylation facilitated interactions of JSAP1 with SEK1/MKK4, MKK7 and JNK3. Furthermore, ASK1-dependent phosphorylation was required for JSAP1 to recruit and thereby activate JNK in response to H(2)O(2). We thus conclude that JSAP1 functions not only as a simple scaffold, but it dynamically participates in signal transduction by forming a phosphorylation-dependent signaling complex in the ASK1-JNK signaling module.  相似文献   

4.
Overexpression of JNK binding domain inhibited glucose deprivation-induced JNK1 activation, relocalization of Daxx from the nucleus to the cytoplasm, and apoptosis signal-regulating kinase 1 (ASK1) oligomerization in human prostate adenocarcinoma DU-145 cells. However, SB203580, a p38 inhibitor, did not prevent relocalization of Daxx and oligomerization of ASK1 during glucose deprivation. Studies from in vivo labeling and immune complex kinase assay demonstrated that phosphorylation of Daxx occurred during glucose deprivation, and its phosphorylation was mediated through the ASK1-SEK1-JNK1-HIPK1 signal transduction pathway. Data from immunofluorescence staining and protein interaction assay suggest that phosphorylated Daxx may be translocated to the cytoplasm, bind to ASK1, and subsequently lead to ASK1 oligomerization. Mutation of Daxx Ser667 to Ala results in suppression of Daxx relocalization during glucose deprivation, suggesting that Ser667 residue plays an important role in the relocalization of Daxx. Unlike wild-type Daxx, a Daxx deletion mutant (amino acids 501-625) mainly localized to the cytoplasm, where it associated with ASK1, activated JNK1, and induced ASK1 oligomerization without glucose deprivation. Taken together, these results show that glucose deprivation activates the ASK1-SEK1-JNK1-HIPK1 pathway, and the activated HIPK1 is probably involved in the relocalization of Daxx from the nucleus to the cytoplasm. The relocalized Daxx may play an important role in glucose deprivation-induced ASK1 oligomerization.  相似文献   

5.
JIP1 is a scaffold protein that assembles and facilitates the activation of the mixed lineage kinase-dependent JNK module. Results of earlier work led us to propose a model for JIP1-JNK complex regulation that predicts that under basal conditions, JIP1 maintains DLK in a monomeric, unphosphorylated, and catalytically inactive state. Upon appropriate module stimulation, JNK-JIP1 binding affinity increases and DLK-JIP1 affinity decreases. Dissociation of DLK from JIP1 results in subsequent DLK oligomerization, autophosphorylation, and ultimately module activation. Our previous published results suggested the hypothesis that recruitment of JNK to JIP1 and phosphorylation of JIP1 by JNK is prerequisite for activation of the JNK module (Nihalani, D., Meyer, D., Pajni, S., and Holzman, L. B. (2001) EMBO J. 20, 3447-3458). The present study corroborated this hypothesis by demonstrating that JNK binding to JIP1 is necessary for stimulus-induced dissociation of DLK from JIP1, for DLK oligomerization, and for JNK activation. After mapping JNK-dependent JIP1 phosphorylation sites and testing their functional significance, it was observed that phosphorylation by JNK of JIP1 on Thr-103 and not other phosphorylated JIP1 residues is necessary for the regulation of DLK association with JIP1, DLK activation, and subsequent module activation. A refined model of JIP1-JNK module regulation is presented in which JNK phosphorylation of JIP1 is necessary prior to module activation.  相似文献   

6.
Epitope-tagged glutaredoxin (GRX) was utilized to determine the role of GRX in oxidative stress-induced signaling and cytotoxicity in glucose-deprived human cancer cells (MCF-7/ADR and DU-145). GRX-overexpressing cells demonstrated resistance to glucose deprivation-induced cytotoxicity and decreased activation of c-Jun N-terminal kinase (JNK1). Deletion mutants showed the C-terminal portion of apoptosis signal-regulating kinase 1 (ASK1) bound GRX, and glucose deprivation disrupted binding. Treatment with l-buthionine-(S,R)-sulfoximine reduced glutathione content by 99% and prevented glucose deprivation-induced dissociation of GRX from ASK1. A thiol antioxidant, N-acetyl-l-cysteine, or overexpression of an H(2)O(2) scavenger, catalase, inhibited glucose deprivation-induced dissociation of GRX from ASK1. GRX active site cysteine residues (Cys(22) and Cys(25)) were required for dissociation of GRX from ASK1 during glucose deprivation. Kinase assays revealed that SEK1 and JNK1 were regulated in an ASK1-dependent fashion during glucose deprivation. Overexpression of GRX or catalase inhibited activation of ASK1-SEK1-JNK1 signaling during glucose deprivation. These results demonstrate that GRX is a negative regulator of ASK1 and dissociation of GRX from ASK1 activates ASK1-SEK1-JNK1 signaling leading to cytotoxicity during glucose deprivation. These results support the hypothesis that the GRX-ASK1 interaction is redox sensitive and regulated in a glutathione-dependent fashion by H(2)O(2).  相似文献   

7.
Previously, we have shown that ASK1-interacting protein 1 (AIP1, also known as DAB2IP), a novel member of the Ras-GAP (Ras-GTPase-activating protein) protein family, opens its conformation in response to tumor necrosis factor (TNF), allowing it to form a complex with TRAF2-ASK1 that leads to activation of ASK1-JNK/p38 signaling in endothelial cells (EC). In the present study, we show that a TNF-inducible 14-3-3-binding site on AIP1 is critical for the opening of its conformation and for the AIP1-mediated TNF signaling. Ser-604, located in the C-terminal domain of AIP1, was identified as a 14-3-3-binding site. TNF treatment of EC induces phosphorylation of AIP1 at Ser-604 as detected by a phospho-specific antibody, with a similar kinetics to ASK1-JNK/p38 activation. 14-3-3 associates with an open, active state of AIP1 assessed by an in vitro pulldown assay. Mutation of AIP1 at Ser-604 (AIP1-S604A) blocks TNF-induced complex formation of AIP1 with 14-3-3. TNF treatment normally induces association of AIP1 with TRAF2-ASK1. The interactions with TRAF2 and ASK1 do not occur with AIP1-S604A, suggesting that phosphorylation at this site not only creates a 14-3-3-binding site but also opens up AIP1, allowing binding to TRAF2 and ASK1. Overexpression of AIP1-S604A blocks TNF-induced ASK1-JNK activation. We further show that RIP1 (the Ser/Thr protein kinase receptor-interacting protein) associates with the GAP domain of AIP1 and mediates TNF-induced AIP1 phosphorylation at Ser-604 and JNK/p38 activation as demonstrated by both overexpression and small interfering RNA knockdown of RIP1 in EC. Furthermore, RIP1 synergizes with AIP1 (but not AIP1-S604A) in inducing both JNK/p38 activation and EC apoptosis. Our results demonstrate that RIP1-mediated AIP1 phosphorylation at the 14-3-3-binding site Ser-604 is essential for TNF-induced TRAF2-RIP1-AIP1-ASK1 complex formation and for the activation of ASK1-JNK/p38 apoptotic signaling.  相似文献   

8.
Zhang QX  Pei DS  Guan QH  Sun YF  Liu XM  Zhang GY 《Biochemistry》2007,46(13):4006-4016
Our previous study indicates that global ischemia facilitates the assembly of the GluR6.PSD-95.MLK3 signaling module, which in turn activated MLK3, leading to exacerbated ischemic neuron death. In addition, JIP1, functioning as a scaffold protein, could couple MLK3-MKK7-JNK to form a specific signaling module and facilitate the activation of the JNK signal pathway. However, the organization, regulation, and function between the two signaling modules and the effects they have on MLK3 activation remain incompletely understood. Here, we show that JIP1 maintains MLK3 in an inactive and monomeric state; once activated, MLK3 binds to PSD-95 and then dimerizes and autophosphorylates. In addition, a GluR6 C-terminus-containing peptide (Tat-GluR6-9c) and antisense oligonucleotides (AS-ODNs) against PSD-95 inhibit the integration of PSD-95 and MLK3 and the dimerization of MLK3, facilitate the interaction of JIP1 and MLK3, and, consequently, perform neuroprotection on neuron death. However, AS-ODNs against JIP1 play a negative role compared to that mentioned above. The findings show that the crosstalk occurs between PSD-95 and the JIP1-mediated signaling module, which may be involved in brain ischemic injury and contribute to the regulation of MLK3 activation. Thus, specific blockade of PSD-95-MLK3 coupling may reduce the extent of ischemia-reperfusion-induced neuronal cell death.  相似文献   

9.
JIP1 is a mammalian scaffold protein that assembles and participates in regulating the dynamics and activation of components of the mixed-lineage kinase-dependent JNK module. Mechanisms governing JIP1-JNK module regulation remain unclear. JIP1 is a multiply phosphorylated protein; for this reason, it was hypothesized that signaling by unidentified protein kinases or phosphatases might determine module function. We find that Src family kinases directly bind and tyrosine phosphorylate JIP1 under basal conditions in several naturally occurring systems and, by doing so, appear to provide a regulated signal that increases the affinity of JIP1 for DLK and maintains the JIP-JNK module in a catalytically inactive state.  相似文献   

10.
Formation of signaling protein complexes is crucial for proper signal transduction. Scaffold proteins in MAP kinase pathways are thought to facilitate complex assembly, thereby promoting efficient and specific signaling. To elucidate the assembly mechanism of scaffold complexes in mammals, we attempted to rationally rewire JIP1-dependent JNK MAP kinase pathway via alternative assembly of JIP1 complex. When JIP1-JNK docking interaction in the complex was replaced with heterologous protein interaction domains, such as PDZ domains and JNK-binding domains, a functional scaffold complex was reconstituted, and JNK signaling was rescued. Reassembly of JIP1 complex using heterologous protein interactions was sufficient for restoring of JNK MAP kinase pathway to induce signaling responses, including JNK activation and cell death. These results suggest a simple yet modular mechanism for JIP1 scaffold assembly in mammals.  相似文献   

11.
ASK1-signaling promotes c-Myc protein stability during apoptosis   总被引:2,自引:0,他引:2  
We previously reported that JNK is involved in the regulation of c-Myc-mediated apoptosis triggered by UV irradiation and anticancer drug treatment. Here we show that ASK1 is an upstream regulator for c-Myc-mediated apoptosis triggered by UV, and we found a direct role for Ser-62 and Ser-71 in the regulation of protein stability and function of c-Myc. The ASK1-JNK pathway enhanced the protein stability of c-Myc through phosphorylation at Ser-62 and Ser-71, which was required for c-Myc-dependent apoptosis by ASK1-signaling. Interestingly, ASK1-signaling attenuated the degradation of ubiquitinated c-Myc without affecting the ubiquitination process. Together, these findings indicate that the ASK1-JNK pathway promotes the proapoptotic activity of c-Myc by modulating c-Myc protein stability through phosphorylation at Ser-62 and Ser-71.  相似文献   

12.
13.
The c-Jun NH(2)-terminal kinase (JNK) group of mitogen-activated protein kinases (MAPKs) is activated in response to the treatment of cells with inflammatory cytokines and by exposure to environmental stress. JNK activation is mediated by a protein kinase cascade composed of a MAPK kinase and a MAPK kinase kinase. Here we describe the molecular cloning of a putative molecular scaffold protein, JIP3, that binds the protein kinase components of a JNK signaling module and facilitates JNK activation in cultured cells. JIP3 is expressed in the brain and at lower levels in the heart and other tissues. Immunofluorescence analysis demonstrated that JIP3 was present in the cytoplasm and accumulated in the growth cones of developing neurites. JIP3 is a member of a novel class of putative MAPK scaffold proteins that may regulate signal transduction by the JNK pathway.  相似文献   

14.
Gemin5 is a 170-kDa WD-repeat-containing protein that was initially identified as a component of the survival of motor neurons (SMN) complex. We now show that Gemin5 facilitates the activation of apoptosis signal-regulating kinase 1 (ASK1) and downstream signaling. Gemin5 physically interacted with ASK1 as well as with the downstream kinases SEK1 and c-Jun NH(2)-terminal kinase (JNK1), and it potentiated the H(2)O(2)-induced activation of each of these kinases in intact cells. Moreover, Gemin5 promoted the binding of ASK1 to SEK1 and to JNK1, as well as the ASK1-induced activation of JNK1. In comparison, Gemin5 did not physically associate with MKK7, MKK3, MKK6, or p38. Furthermore, depletion of endogenous Gemin5 by RNA interference (RNAi) revealed that Gemin5 contributes to the activation of ASK1 and JNK1, and to apoptosis induced by H(2)O(2) and tumor necrosis factor-alpha (TNFalpha) in HeLa cells. Together, our results suggest that Gemin5 functions as a scaffold protein for the ASK1-JNK1 signaling module and thereby potentiates ASK1-mediated signaling events.  相似文献   

15.
Ischemia-reperfusion (IR)-induced cell apoptosis involves the activation of c-Jun NH2-terminal kinase (JNK). The activation of JNK requires the presence of scaffold proteins called JNK-interacting proteins (JIP), which bind several members of a signaling cascade for proper signaling specificity. In this study, the expression of scaffold proteins JIP1 and JIP3 and their roles in the regulation of JNK activity were investigated in simulated IR in a cell model (H9c2). JIP1 protein expression was significantly decreased, whereas JIP3 protein expression was increased in IR H9c2 cells. Adenovirus-induced overexpression of JIP1 reduced IR-induced JNK activity and apoptosis. Conversely, overexpression of JIP3 increased JNK activity and apoptosis following IR. Depletion of endogenous JIP1 by siRNA treatment increased the IR-induced JNK activity, whereas siRNA-mediated depletion of endogenous JIP3 inhibited JNK activity. These results suggest that JIP1 and JIP3 play important roles in the activation of JNK during simulated IR challenge in H9c2 cells.  相似文献   

16.
SHIP2 (SH2-containing inositol polyphosphate 5-phosphatase 2) is an ubiquitously expressed phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase which contains various motifs susceptible to mediate protein-protein interaction. In cell models, evidence has been provided that SHIP2 plays a role in insulin and growth factor signaling, cytoskeletal organization, cell adhesion and migration. Herein we describe the c-Jun NH2-terminal kinase (JNK)-interacting protein 1 (JIP1) as a new protein partner of SHIP2. The interaction between SHIP2 and JIP1 was confirmed in both overexpression systems and native cells. Without modifying the association of JIP1 with the MAPKs in the scaffold complex and with no apparent change of Akt phosphorylation, SHIP2 positively modulated the MLK3/JIP1-mediated JNK1 activation. Moreover, SHIP2 positively regulated the tyrosine phosphorylation of JIP1. This up-regulation was prevented by inhibitors of the Src family and Abl kinases, PP2 and Glivec. The effects of SHIP2 on JNK activity and JIP1 tyrosine phosphorylation were independent of the SHIP2 phosphoinositide 5-phosphatase activity, as similar results were obtained when using a SHIP2 catalytic inactive mutant instead of wild-type SHIP2. Together, these data suggest that by its docking properties, SHIP2 can modulate JIP1-mediated JNK pathway signaling.  相似文献   

17.
The apoptosis signal-regulating kinase 1 (ASK1)-JNK/p38 signaling pathway is pivotal component in cell apoptosis and can be activated by a variety of death stimuli including tumor necrosis factor (TNF) alpha and oxidative stress (reactive oxygen species). However, the mechanism for ASK1 activation is not fully understood. We have recently identified ASK1-interacting protein (AIP1) as novel signal transducer in TNFalpha-induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3. In the present study, we employed yeast two-hybrid system using the N-terminal domain of AIP1 as bait and identified homeodomain-interacting protein kinase 1 (HIPK1) as an AIP1-associated protein. Interestingly, we showed that TNFalpha induced HIPK1 desumoylation concomitant with a translocation from nucleus to cytoplasm at 15 min followed by a return to nucleus by 60 min. The kinetics of HIPK1 translocation correlates with those of stress-induced ASK1-JNK/P38 activation. A specific JNK inhibitor blocked the reverse but not the initial translocation of HIPK1, suggesting that the initial translocation is an upstream event of ASK1-JNK/p38 signaling and JNK activation regulates the reverse translocation as a feedback mechanism. Consistently, expression of HIPK1 increased, whereas expression of a kinase-inactive form (HIPK1-D315N) or small interference RNA of HIPK1 decreased stress-induced ASK1-JNK/P38 activation without effects on IKK-NF-kappaB signaling. Moreover, a sumoylation-defective mutant of HIPK1 (KR5) localizes to the cytoplasm and is constitutively active in ASK1-JNK/P38 activation. Furthermore, HIPK1-KR5 induces dissociation of ASK1 from its inhibitors 14-3-3 and thioredoxin and synergizes with AIP1 to induce ASK1 activation. Our study suggests that TNFalpha-induced desumoylation and cytoplasmic translocation of HIPK1 are critical in TNFalpha-induced ASK1-JNK/p38 activation.  相似文献   

18.
Cisplatin and its analogues have been widely used for treatment of human cancer. However, most patients eventually develop resistance to treatment through a mechanism that remains obscure. Previously, we found that AKT2 is frequently overexpressed and/or activated in human ovarian and breast cancers. Here we demonstrate that constitutively active AKT2 renders cisplatin-sensitive A2780S ovarian cancer cells resistant to cisplatin, whereas phosphatidylinositol 3-kinase inhibitor or dominant negative AKT2 sensitizes A2780S and cisplatin-resistant A2780CP cells to cisplatin-induced apoptosis through regulation of the ASK1/JNK/p38 pathway. AKT2 interacts with and phosphorylates ASK1 at Ser-83 resulting in inhibition of its kinase activity. Accordingly, activated AKT2 blocked signaling down-stream of ASK1, including activation of JNK and p38 and the conversion of Bax to its active conformation. Expression of nonphosphorylatable ASK1-S83A overrode the AKT2-inhibited JNK/p38 activity and Bax conformational changes, whereas phosphomimic ASK1-S83D inhibited the effects of cisplatin on JNK/p38 and Bax. Cisplatin-induced Bax conformation change was inhibited by inhibitors or dominant negative forms of JNK and p38. In conclusion, our data indicate that AKT2 inhibits cisplatin-induced JNK/p38 and Bax activation through phosphorylation of ASK1 and thus, plays an important role in chemoresistance. Further, regulation of the ASK1/JNK/p38/Bax pathway by AKT2 provides a new mechanism contributing to its antiapoptotic effects.  相似文献   

19.
Oxidative stress activates various signal transduction pathways, including Jun N-terminal kinase (JNK) and its substrates, that induce apoptosis. We reported here the role of angiopoietin-1 (Ang1), which is a prosurvival factor in endothelial cells, during endothelial cell damage induced by oxidative stress. Hydrogen peroxide (H2O2) increased apoptosis of endothelial cells through JNK activation, whereas Ang1 inhibited H2O2-induced apoptosis and concomitant JNK phosphorylation. The inhibition of H2O2-induced JNK phosphorylation was reversed by inhibitors of phosphatidylinositol (PI) 3-kinase and dominant-negative Akt, and constitutively active-Akt attenuated JNK phosphorylation without Ang1. These data suggested that Ang1-dependent Akt phosphorylation through PI 3-kinase leads to the inhibition of JNK phosphorylation. H2O2-induced phosphorylation of SAPK/Erk kinase (SEK1) at Thr261, which is an upstream regulator of JNK, was also attenuated by Ang1-dependent activation of the PI 3-kinase/Akt pathway. In addition, Ang1 induced SEK1 phosphorylation at Ser80, suggesting the existence of an additional signal transduction pathway through which Ang1 attenuates JNK phosphorylation. These results demonstrated that Ang1 attenuates H2O2-induced SEK1/JNK phosphorylation through the PI 3-kinase/Akt pathway and inhibits the apoptosis of endothelial cells to oxidative stress.  相似文献   

20.
We report here the cleavage of the c-Jun N-terminal Kinase (JNK) pathway scaffold protein, JNK Interacting Protein-1 (JIP1), by caspases during both Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) and staurosporine-induced apoptosis in HeLa cells. During the initiation of apoptosis, maximal JNK activation is observed when JIP1 is intact, whereas cleavage of JIP1 correlates with JNK inactivation and progression of apoptosis. JIP1 is cleaved by caspase-3 at two sites, leading to disassembly of the JIP1/JNK complex. Inhibition of JIP1 cleavage by the caspase-3 inhibitor DEVD.fmk inhibits this disassembly, and is accompanied by sustained JNK activation. These data suggest that TRAIL and staurosporine induce JNK activation in a caspase-3-independent manner and that caspase-3-mediated JIP1 cleavage plays a role in JNK inactivation via scaffold disassembly during the execution phase of apoptosis. Caspase-mediated cleavage of JIP scaffold proteins may therefore represent an important mechanism for modulation of JNK signalling during apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号