首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells have the ability to actively sense their mechanical environment and respond to both substrate stiffness and stretch by altering their adhesion, proliferation, locomotion, morphology, and synthetic profile. In order to elucidate the interrelated effects of different mechanical stimuli on cell phenotype in vitro, we have developed a method for culturing mammalian cells in a two-dimensional environment at a wide range of combined levels of substrate stiffness and dynamic stretch. Polyacrylamide gels were covalently bonded to flexible silicone culture plates and coated with monomeric collagen for cell adhesion. Substrate stiffness was adjusted from relatively soft (G′ = 0.3 kPa) to stiff (G′ = 50 kPa) by altering the ratio of acrylamide to bis-acrylamide, and the silicone membranes were stretched over circular loading posts by applying vacuum pressure to impart near-uniform stretch, as confirmed by strain field analysis. As a demonstration of the system, porcine aortic valve interstitial cells (VIC) and human mesenchymal stem cells (hMSC) were plated on soft and stiff substrates either statically cultured or exposed to 10% equibiaxial or pure uniaxial stretch at 1Hz for 6 hours. In all cases, cell attachment and cell viability were high. On soft substrates, VICs cultured statically exhibit a small rounded morphology, significantly smaller than on stiff substrates (p<0.05). Following equibiaxial cyclic stretch, VICs spread to the extent of cells cultured on stiff substrates, but did not reorient in response to uniaxial stretch to the extent of cells stretched on stiff substrates. hMSCs exhibited a less pronounced response than VICs, likely due to a lower stiffness threshold for spreading on static gels. These preliminary data demonstrate that inhibition of spreading due to a lack of matrix stiffness surrounding a cell may be overcome by externally applied stretch suggesting similar mechanotransduction mechanisms for sensing stiffness and stretch.  相似文献   

2.
Cells in the body experience various mechanical stimuli that are often essential to proper cell function. In order to study the effects of mechanical stretch on cell function, several devices have been built to deliver cyclic stretch to cells; however, they are generally not practical for live cell imaging. We introduce a novel device that allows for live cell imaging, using either an upright or inverted microscope, during the delivery of cyclic stretch, which can vary in amplitude and frequency. The device delivers equi-biaxial strain to cells seeded on an elastic membrane via indentation of the membrane. Membrane area strain was calibrated to indenter depth and the device showed repeatable and accurate delivery of strain at the scale of individual cells. At the whole cell level, changes in intracellular calcium were measured at different membrane area strains, and showed an amplitude-dependent response. At the subcellular level, the mitochondrial network was imaged at increasing membrane area strains to demonstrate that stretch can lead to mitochondrial fission in lung fibroblasts. The device is a useful tool for studying transient as well as long-term mechanotransduction as it allows for simultaneous stretching and imaging of live cells in the presence of various chemical stimuli.  相似文献   

3.
Little is known about the effects of repetitive deformation during peristaltic distension and contraction or repetitive villus shortening on the proliferation and differentiation of the intestinal epithelium. We sought to characterize the effects of repetitive deformation of a physiologically relevant magnitude and frequency on the proliferation and differentiation of human intestinal epithelial Caco-2 cells, a common cell culture model for intestinal epithelial biology. Human intestinal epithelial Caco-2 cells were cultured on collagen-coated membranes deformed by −20 kPa vacuum at 10 cycles/minute, producing an average 10% strain on the adherent cells. Proliferation was assessed by cell counting and 3H-thymidine incorporation. Alkaline phosphatase and dipeptidyl dipeptidase specific activity were measured in cell lysates. Since cells at the membrane periphery experience higher strain than cells in the center, the topography of brush border enzyme histochemical and immunohistochemical staining was analyzed for strain-dependence. Cyclic strain stimulated proliferation compared to static cells. Proliferation was highest in the membrane periphery where strain was maximal. Strain also modulated differentiation independently of its mitogenic effects, selectively stimulating dipeptidyl dipeptidase while inhibiting alkaline phosphatase. Strain-associated enzyme changes were also maximal in areas of greatest strain. The PKC inhibitors staurosporine and calphostin C ablated strain mitogenic effects while intracellular PKC activity was increased by strain. The strain-associated brush border enzyme changes were attenuated but not blocked by PKC inhibition. Thus, strain of a physiologically relevant frequency and magnitude promotes proliferation and modulates the differentiation of a well-differentiated human intestinal epithelial cell line in an amplitude-dependent fashion. PKC may be involved in coupling strain to increased proliferation. © 1996 Wiley-Liss, Inc.  相似文献   

4.
It is well documented that in response to substrate stretching adhering cells alter their orientation. Generally, the cells reorient away from the direction of the maximum substrate strain, depending upon the magnitude of the substrate strain and the state of cell contractility. Theoretical models from the literature can describe only some aspects of this phenomenon. In the present study, we developed a more comprehensive mathematical model of cell reorientation than the current models. Using the framework of theory of non-linear elasticity, we found that the problem of cell reorientation was a stability problem, with the global (Maxwell's) criterion for stability. For the case of uniaxial substrate stretching, we showed that cells would orient away from the direction of substrate strain such that the angle between the cell long axis and the direction of the substrate strain would increase with increasing magnitude of the strain. We also showed that at a given substrate strain this angle would be greater in cells having greater contractile strain. These results are consistent with experimental observations reported in the literature.  相似文献   

5.
Alveolar epithelial cells in patients with acute lung injury subjected to mechanical ventilation are exposed to increased procoagulant activity and mechanical strain. Thrombin induces epithelial cell stiffening, contraction, and cytoskeletal remodeling, potentially compromising the balance of forces at the alveolar epithelium during cell stretching. This balance can be further compromised by the loss of integrity of cell-cell junctions in the injured epithelium. The aim of this work was to study the effect of stretch on the structural integrity and micromechanics of human alveolar epithelial cell monolayers exposed to thrombin. Confluent and subconfluent cells (A549) were cultured on collagen-coated elastic substrates. After exposure to thrombin (0.5 U/ml), a stepwise cell stretch (20%) was applied with a vacuum-driven system mounted on an inverted microscope. The structural integrity of the cell monolayers was assessed by comparing intercellular and intracellular strains within the monolayer. Strain was measured by tracking beads tightly bound to the cell surface. Simultaneously, cell viscoelasticity was measured using optical magnetic twisting cytometry. In confluent cells, thrombin did not induce significant changes in transmission of strain from the substrate to overlying cells. By contrast, thrombin dramatically impaired the ability of subconfluent cells to follow imposed substrate deformation. Upon substrate unstretching, thrombin-treated subconfluent cells exhibited compressive strain (9%). Stretch increased stiffness (56-62%) and decreased cell hysteresivity (13-22%) of vehicle cells. By contrast, stretch did not increase stiffness of thrombin-treated cells, suggesting disruption of cytoskeletal structures. Our findings suggest that thrombin could exacerbate epithelial barrier dysfunction in injured lungs subjected to mechanical ventilation.  相似文献   

6.
Alveolar epithelial cells effect edema clearance by transporting Na(+) and liquid out of the air spaces. Active Na(+) transport by the basolaterally located Na(+)-K(+)-ATPase is an important contributor to lung edema clearance. Because alveoli undergo cyclic stretch in vivo, we investigated the role of cyclic stretch in the regulation of Na(+)-K(+)-ATPase activity in alveolar epithelial cells. Using the Flexercell Strain Unit, we exposed a cell line of murine lung epithelial cells (MLE-12) to cyclic stretch (30 cycles/min). After 15 min of stretch (10% mean strain), there was no change in Na(+)-K(+)-ATPase activity, as assessed by (86)Rb(+) uptake. By 30 min and after 60 min, Na(+)-K(+)-ATPase activity was significantly increased. When cells were treated with amiloride to block amiloride-sensitive Na(+) entry into cells or when cells were treated with gadolinium to block stretch-activated, nonselective cation channels, there was no stimulation of Na(+)-K(+)-ATPase activity by cyclic stretch. Conversely, cells exposed to Nystatin, which increases Na(+) entry into cells, demonstrated increased Na(+)-K(+)-ATPase activity. The changes in Na(+)-K(+)-ATPase activity were paralleled by increased Na(+)-K(+)-ATPase protein in the basolateral membrane of MLE-12 cells. Thus, in MLE-12 cells, short-term cyclic stretch stimulates Na(+)-K(+)-ATPase activity, most likely by increasing intracellular Na(+) and by recruitment of Na(+)-K(+)-ATPase subunits from intracellular pools to the basolateral membrane.  相似文献   

7.
While a number of whole cell mechanical models have been proposed, few, if any, have focused on the relationship among plasma membrane tension, plasma membrane unfolding, and plasma membrane expansion and relaxation via lipid insertion. The goal of this communication is to develop such a model to better understand how plasma membrane tension, which we propose stimulates Na(+)-K(+)-ATPase activity but possibly also causes cell injury, may be generated in alveolar epithelial cells during mechanical ventilation. Assuming basic relationships between plasma membrane unfolding and tension and lipid insertion as the result of tension, we have captured plasma membrane mechanical responses observed in alveolar epithelial cells: fast deformation during fast cyclic stretch, slower, time-dependent deformation via lipid insertion during tonic stretch, and cell recovery after release from stretch. The model estimates plasma membrane tension and predicts Na(+)-K(+)-ATPase activation for a specified cell deformation time course. Model parameters were fit to plasma membrane tension, whole cell capacitance, and plasma membrane area data collected from the literature for osmotically swollen and shrunken cells. Predictions of membrane tension and stretch-stimulated Na(+)-K(+)-ATPase activity were validated with measurements from previous studies. As a proof of concept, we demonstrate experimentally that tonic stretch and consequent plasma membrane recruitment can be exploited to condition cells against subsequent cyclic stretch and hence mitigate stretch-induced responses, including stretch-induced cell death and stretch-induced modulation of Na(+)-K(+)-ATPase activity. Finally, the model was exercised to evaluate plasma membrane tension and potential Na(+)-K(+)-ATPase stimulation for an assortment of traditional and novel ventilation techniques.  相似文献   

8.
Mechanical cues from the microenvironments play a regulating role in many physiological and pathological processes, such as stem cell differentiation and cancer cell metastasis. Experiments showed that cells adhered on a compliant substrate may change orientation with an externally applied strain in the substrate. By accounting for actin polymerization, actin retrograde flow, and integrin binding dynamics, here we develop a mechanism-based tensegrity model to study the orientations of polarized cells on a compliant substrate under biaxial stretches. We show that the cell can actively regulate its mechanical state by generating different traction force levels along its polarized direction. Under static or ultralow-frequency cyclic stretches, stretching a softer substrate leads to a higher increase in the traction force and induces a narrower distribution of cell alignment. Compared to static loadings, high-frequency cyclic loadings have a more significant influence on cell reorientation on a stiff substrate. In addition, the width of the cellular angular distribution scales inversely with the stretch amplitude under both static and cyclic stretches. Our results are in agreement with a wide range of experimental observations, and provide fundamental insights into the functioning of cellular mechanosensing systems.  相似文献   

9.
Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells were exposed to cyclic uniaxial stretch. Human airway smooth muscle cells, cultured on type I collagen-coated elastic silicone membranes, were stretched uniaxially (20% in strain, 30 cycles/min) for 2 h. The population of airway smooth muscle cells which were originally oriented randomly aligned near perpendicular to the stretch axis in a time-dependent manner. However, when the cells treated with microtubule disruptors, nocodazole and colchicine, were subjected to the same cyclic uniaxial stretch, the cells failed to align. Lack of alignment was also observed for airway smooth muscle cells treated with a microtubule stabilizer, paclitaxel. To understand the intracellular mechanisms involved, we developed a computational model in which microtubule polymerization and attachment to focal adhesions were regulated by the preexisting tensile stress, pre-stress, on actin stress fibers. We demonstrate that microtubules play a central role in cell re-orientation when cells experience cyclic uniaxial stretching. Our findings further suggest that cell alignment and cytoskeletal reorganization in response to cyclic stretch results from the ability of the microtubule-stress fiber assembly to maintain a homeostatic strain on the stress fiber at focal adhesions. The mechanism of stretch-induced alignment we uncovered is likely involved in various airway functions as well as in the pathophysiology of airway remodeling in asthma.  相似文献   

10.
Skeletal muscle cells are exposed to mechanical stretch during embryogenesis. Increased stretch may contribute to cell death, and the molecular regulation by stretch remains incompletely understood. The aim of this study was to investigate the effects of cyclic stretch on cell death and apoptosis in myoblast using a Flexercell Strain Unit. Apoptosis was studied by annexin V binding and PI staining, DNA size analysis, electron microphotograph, and caspase assays. Fas/FasL expression was determined by Western blot. When myoblasts were cultured on a flexible membrane and subjected to cyclic strain stress, apoptosis was observed in a time‐dependent manner. We also determined that stretch induced cleavage of caspase‐3 and increased caspase‐3 activity. Caspase‐3 inhibition reduced stretch‐induced apoptosis. Protein levels of Fas and FasL remained unchanged. Our findings implicated that stretch‐induced cell death is an apoptotic event, and that the activation of caspase cascades is required in stretch‐induced cell apoptosis. Furthermore, we had provided evidence that caspase‐3 mediated cyclic stretch‐induced myoblast apoptosis. Mechanical forces induced activation of caspase‐3 via signaling pathways independent of Fas/FasL system. J. Cell. Biochem. 107: 834–844, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
The airway epithelium may be damaged by inhalation of noxious agents, in response to pathogens, or during endotracheal intubation and mechanical ventilation. Maintenance of an intact epithelium is important for lung fluid balance, and the loss of epithelium may stimulate inflammatory responses. Epithelial repair in the airways following injury must occur on a substrate that undergoes cyclic elongation and compression during respiration. We have previously shown that cyclic mechanical strain inhibits wound closure in the airway epithelium (Savla and Waters, 1998b). In this study, we investigated the stimulation of epithelial wound closure by keratinocyte growth factor (KGF) in vitro and the mechanisms by which KGF overcomes the inhibition due to mechanical strain. Primary cultures of normal human bronchial epithelial cells (NHBE) and a cell line of human airway epithelial cells, Calu 3, were grown on Silastic membranes, and a wound was scraped across the well. The wells were then exposed to cyclic strain using the Flexercell Strain Unit, and wound closure was measured. While cyclic elongation (20% maximum) and cyclic compression (approximately 2%) both inhibited wound closure in untreated wells, treatment with KGF (50 ng/ml) significantly accelerated wound closure and overcame the inhibition due to cyclic strain. Since wound closure involves cell spreading, migration, and proliferation, we investigated the effect of cyclic strain on cell area, cell-cell distance, and cell velocity at the wound edge. While the cell area increased in unstretched monolayers, the cell area of monolayers in compressed regions decreased significantly. Treatment with KGF increased the cell area in both cyclically elongated and compressed cells. Also, when cells were treated with KGF, cell velocity was significantly increased in both static and cyclically strained monolayers, and cyclic strain did not inhibit cell migration. These results suggest that KGF is an important factor in epithelial repair that is capable of overcoming the inhibition of repair due to physiological levels of cyclic strain.  相似文献   

13.
A deep inspiration (DI) temporarily relaxes agonist-constricted airways in normal subjects, but in asthma airways are refractory and may rapidly renarrow, possibly due to changes in the structure and function of airway smooth muscle (ASM). Chronic largely uniaxial cyclic strain of ASM cells in culture causes several structural and functional changes in ASM similar to that in asthma, including increases in contractility, MLCK content, shortening velocity, and shortening capacity. However, changes in recovery from acute stretch similar to a DI have not been measured. We have therefore measured the response and recovery to large stretches of cells modified by chronic stretching and investigated the role of MLCK. Chronic, 10% uniaxial cyclic stretch, with or without a strain gradient, was administered for up to 11 days to cultured cells grown on Silastic membranes. Single cells were then removed from the membrane and subjected to 1 Hz oscillatory stretches up to 10% of the in situ cell length. These oscillations reduced stiffness by 66% in all groups (P < 0.05). Chronically strained cells recovered stiffness three times more rapidly than unstrained cells, while the strain gradient had no effect. The stiffness recovery in unstrained cells was completely inhibited by the MLCK inhibitor ML-7, but recovery in strained cells exhibiting increased MLCK was slightly inhibited. These data suggest that chronic strain leads to enhanced recovery from acute stretch, which may be attributable to the strain-induced increases in MLCK. This may also explain in part the more rapid renarrowing of activated airways following DI in asthma.  相似文献   

14.
The effects of cyclical expansion and elaxation of the vessel wall on endothelial cell metabolism have been modeled using a uniaxial strain device and cultured endothelial cell monolayers. Also, the effects of stopping and then restarting cyclic strain on metabolite secreation rates were determined. Secretion rates of prostacyclin (PGI(2)), endothelin, tissue plasminogen activator (t-PA), and plasminogen activator inhibitor-type 1 (PaI-1) by endothelial cells were constant over24-h periods The secreation of both PGI(2) and endothelin was enhanced in cells exposed to high physiological levels of cyclical strain (10% at 1Hz) compared with controls, while tPA production was unaltered. These results were true for both human and bovine endothelial cells. Characterization of the response of human endothelial cells to cyclical strain made evaluation of stretch effects on PAl-1 secretion possible. A nearly twofold increase in PAl-1 secretion by cells exposed to arterial levels of strain was observed. Endothelin secretion remained elevated even after strain was stopped for 12 h, while PGl(2) secretion returned to control values upon cessation of cyclic stretch. These results indicate that physiological levels of cyclic mechanical strain ca significantly modulate secretion of vasoactive metabolited form endothelial cells. The changes sen secretion are, in some cases, quite different from those caused by arterial levels of fluid shear stress exposure. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Non-uniform stress and strain fields are prevalent in many tissues in vivo, and often exacerbated by disease or injury. These mechanical gradients potentially play a role in contributing to pathological conditions, presenting a need for experimental tools to allow investigation of cell behavior within non-uniformly stimulated environments. Herein, we employ two in vitro cell-stretching devices (one previously published; one newly presented) capable of subjecting cells to cyclic, non-uniform stretches upon the surface of either a circular elastomeric membrane or a cylindrical PDMS tube. After 24 hours of cyclic stretch, 10T1/2 cells on both devices showed marked changes in long-axis orientation, with tendencies to align parallel to the direction of minimal deformation. The degree of this response varied depending on location within the stretch gradients. These results demonstrated the feasibility of conducting cell mechanobiology investigations with the two novel devices, while also highlighting the experimental capabilities of non-uniform mechanical environments for these types of studies. Such capabilities include robust data collection for developing mechanobiological dose-response curves, signal threshold identification, and potential spatial targeting for drug delivery.  相似文献   

16.
Cyclic mechanical strain causes proliferation of vascular smooth muscle cells, mediated in part by platelet-derived growth factor (PDGF). We examined the effect of cyclic strain on expression of PDGF-B and the PDGF beta receptor. Neonatal rat vascular smooth muscle cells were exposed to 1 hertz cyclic strain on silicone elastomer plates. PDGF-B mRNA increased after 6 h of strain. In cells transfected with a PDGF-B promoter chloramphenicol acetyl transferase construct (psisCAT 6A), activity increased by 12-fold following 12 h of strain. Two neutralizing antibodies to the PDGF beta receptor both reduced strain-induced [(3)H]thymidine incorporation by 50%. Expression of the PDGF beta receptor protein increased 1.8-fold following 24 h of strain. During strain, PDGF beta receptor expression was not significantly altered by neutralizing antibodies to PDGF-B. Thus, both PDGF-B and the PDGF beta receptor are induced by cyclic mechanical strain and both contribute to cell proliferation in response to strain.  相似文献   

17.
The response of cells in vitro to mechanical forces has been the subject of much research using devices to exert controlled mechanical stimulation on cultured cells or isolated tissue. In this study, esophageal smooth muscle cells were seeded on flexible polyurethane membranes to form a confluent cell layer. The cells were then subjected to uniform cyclic stretch of varying magnitudes at a frequency of approximately five cycles per minute in a custom made mechatronic bioreactor, providing similar strains experienced in the in vivo mechanical environment of the esophagus. The results show that the orientation response is dependent on the magnitude of cyclic stretch applied. Smooth muscle cells showed parallel alignment to the force direction at low cyclic strains (2%) compared to the hill‐valley morphology of static controls. At higher strains (5% and 10% magnitude), the cells exhibited a consistent alignment perpendicular to the strain. To our knowledge, this is the first time that the alignment direction's dependence on strain magnitude has been demonstrated. MTS analysis indicated that cell metabolism was reduced when mechanical strain was applied, and proliferation was inhibited by mechanical strain. Protein expression indicates a decrease in smooth muscle α‐actin, indicative of changes in cell phenotype, an increase in vimentin, which is associated with increased cell motility, and an increase in desmin, indicating differentiation in stimulated cells. Biotechnol. Bioeng. 2009;102: 1703–1711. © 2008 Wiley Periodicals, Inc.  相似文献   

18.
Aim of the present study was the isolation, culture, and characterization of amniotic membrane-derived epithelial cells (AE) from term placenta collected postpartum in buffalo. We found that cultured cells were of polygonal in shape, resistance to trypsin digestion and expressed cytokeratin-18 indicating that they were of epithelial origin. These cells have negative expression of mesenchymal stem cell markers (CD29, CD44, and CD105) and positive for pluripotency marker (OCT4) genes indicated that cultured cells were not contaminated with mesenchymal stem cells. Immunofluorescence staining with pluripotent stem cell surface markers, SSEA-1, SSEA-4, TRA-1-60, and TRA-1-81 indicated that these cells may retain pluripotent stem cell characteristics even after long period of differentiation. Differentiation potential of these cells was determined by their potential to differentiate into cells of neurogenic lineages using retinoic acid. In conclusion, we demonstrate that AE cells expressed pluripotent stem cell markers and have propensity to differentiate into cells of neurogenic lineage upon directed differentiation in vitro.  相似文献   

19.
After acute lung injury, repair of the alveolar epithelium occurs on a substrate undergoing cyclic mechanical deformation. While previous studies showed that mechanical stretch increased alveolar epithelial cell necrosis and apoptosis, the impact of cell death during repair was not determined. We examined epithelial repair during cyclic stretch (CS) in a scratch-wound model of primary rat alveolar type II (ATII) cells and found that CS altered the balance between proliferation and cell death. We measured cell migration, size, and density; intercellular gap formation; cell number, proliferation, and apoptosis; cytoskeletal organization; and focal adhesions in response to scratch wounding followed by CS for up to 24 h. Under static conditions, wounds were closed by 24 h, but repair was inhibited by CS. Wounding stimulated cell motility and proliferation, actin and vinculin redistribution, and focal adhesion formation at the wound edge, while CS impeded cell spreading, initiated apoptosis, stimulated cytoskeletal reorganization, and attenuated focal adhesion formation. CS also caused significant intercellular gap formation compared with static cells. Our results suggest that CS alters several mechanisms of epithelial repair and that an imbalance occurs between cell death and proliferation that must be overcome to restore the epithelial barrier.  相似文献   

20.
We have developed a stochastic model that describes the orientation response of bipolar cells grown on a cyclically deformed substrate. The model was based on the following hypotheses regarding the behavior of individual cells: (a) the mechanical signal responsible for cell reorientation is the peak to peak surface strain along the cell's major axis (p-p axial strain); (b) each cell has an axial strain threshold and the threshold is normally distributed in the cell population; (c) the cell will avoid any direction where the p-p axial strain is above its threshold; and (d) the cell will randomly orient within the range of directions where the p-p axial strains are less than the cell's threshold. These hypotheses were tested by comparing model predictions with experimental observations from stretch experiments conducted with human melanocytes. The cells were grown on elastic rectangular culture dishes subjected to unidirectional cyclic (1 Hz) stretching with amplitudes of 0, 4, 8, and 12%. After 24 h of stimulation, the distribution of cell orientations was determined by measuring the orientations of 300–400 randomly selected cells. The 12% stretch experiment was used to determine the mean, 3.5%, and the standard deviation, 1.0%, of the strain threshold for the cell population. The Kolmogorov-Smirnov test was then used to determine if the orientation distributions predicted by the model were different from experimentally measured distributions for the 4 and 8% stretches. No significant differences were found between the predicted and experimental distributions (4%: p = 0.70; and 8%: p = 0.71). These results support the hypothesis that cells randomly orient, but avoid directions where the p-p axial strains are above their thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号