首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
As a common feature of eukaryotic proteins, tandem amino acid repeat has been studied extensively in both animal and plant proteins. Here, a comparative analysis focusing on the proteins having tandem repeats was conducted in eight microsporidia, including four mammal‐infecting microsporidia (Encephalitozoon cuniculi, Encephalitozoon intestinalis, Encephalitozoon hellem and Encephalitozoon bieneusi) and four insect‐infecting microsporidia (Nosema apis, Nosema ceranae, Vavraia culicis and Nosema bombycis). We found that the proteins with tandem repeats were abundant in these species. The quantity of these proteins in insect‐infecting microsporidia was larger than that of mammal‐infecting microsporidia. Additionally, the hydrophilic residues were overrepresented in the tandem repeats of these eight microsporidian proteins and the amino acids residues in these tandem repeat sequences tend to be encoded by GC‐rich codons. The tandem repeat position within proteins of insect‐infecting microsporidia was randomly distributed, whereas the tandem repeats within proteins of mammal‐infecting microsporidia rarely tend to be present in the N terminal regions, when compared with those present in the C terminal and middle regions. Finally, a hypothetical protein EOB14572 possessing four tandem repeats was successfully characterized as a novel endospore wall protein, which colocalized with polar tube of N. bombycis. Our study provided useful insight for the study of the proteins with tandem repeats in N. bombycis, but also further enriched the spore wall components of this obligate unicellular eukaryotic parasite.  相似文献   

2.
Microsporidia constitute a group of extremely specialized intracellular parasites that infect virtually all animals. They are highly derived, reduced fungi that lack several features typical of other eukaryotes, including canonical mitochondria, flagella, and peroxisomes. Consistent with the absence of peroxisomes in microsporidia, the recently completed genome of the microsporidian Encephalitozoon cuniculi lacks a gene for catalase, the major enzymatic marker for the organelle. We show, however, that the genome of the microsporidian Nosema locustae, in contrast to that of E. cuniculi, encodes a group II large-subunit catalase. Surprisingly, phylogenetic analyses indicate that the N. locustae catalase is not specifically related to fungal homologs, as one would expect, but is instead closely related to proteobacterial sequences. This finding indicates that the N. locustae catalase is derived by lateral gene transfer from a bacterium. The catalase gene is adjacent to a large region of the genome that appears to be far less compact than is typical of microsporidian genomes, a characteristic which may make this region more amenable to the insertion of foreign genes. The N. locustae catalase gene is expressed in spores, and the protein is detectable by Western blotting. This type of catalase is a particularly robust enzyme that has been shown to function in dormant cells, indicating that the N. locustae catalase may play some functional role in the spore. There is no evidence that the N. locustae catalase functions in a cryptic peroxisome.  相似文献   

3.
Samples of intestinal content from thirty fattened pigs of six farms slaughtered at an abattoir in North-Western Germany, and faecal samples of four pigs kept as laboratory animals at the Federal Institute for Risk Assessment (BfR, Berlin, Germany) were investigated for the occurrence of microsporidia by light microscopy, PCR and sequencing. A modified Webers trichrome staining and the immunohistochemistry (the Avidin-Biotin-Peroxidase-Complex technique with a polyclonal anti-Encephalitozoon cuniculi-serum and monoclonal antibodies against Encephalitozoon intestinalis and Enterocytozoon bieneusi) was used as a screening method for the light microscopical detection of these pathogenic eukaryotes. By this light microscopically methods microsporidia suspected organisms were found in all samples (100%). By the use of PCR, microsporidia were identified in fourteen samples (41.2%). The prevalence of microsporidia infections among the farms diversifies from 0 to 80% as considered by PCR. E. bieneusi was the most prevalent species and was identified in twelve fattened pigs (40%) from five of the six tested farms (83.3%) and in two of the four laboratory animals (50%). Three of the E. bieneusi species belonged to the genotype O, one to the genotype E, and one to the genotype F. Two isolates were identified as novel genotypes and two samples showed a mixed infection of different genotypes. In three faecal samples of the pigs from two farms E. cuniculi genotype III was identified. One sample contained both microsporidia species. To our knowledge, this is the first time that the genotype III of E. cuniculi was identified in swine.  相似文献   

4.
Microsporidia are obligate intracellular parasites that were thought to be an ancient eukaryotic lineage based on molecular phylogenies using ribosomal RNA and translation elongation factors. However, this ancient origin of microsporidia has been contested recently, as several other molecular phylogenies suggest that microsporidia are closely related to fungi. Most of the protein trees that place microsporidia with fungi are not well sampled, however, and it is impossible to resolve whether microsporidia evolved from a fungus or from a protistan relative of fungi. We have sequenced beta-tubulins from 3 microsporidia, 4 chytrid fungi, and 12 zygomycete fungi, expanding the representation of beta-tubulin to include all four fungal divisions and a wide diversity of microsporidia. In phylogenetic trees including these new sequences, the overall topology of the fungal beta-tubulins generally matched the expected relationships among the four fungal divisions, although the zygomycetes were polyphyletic in some analyses. The microsporidia consistently fell within this fungal diversification, and not as a sister group to fungi. Overall, beta-tubulin phylogeny suggests that microsporidia evolved from a fungus sometime after the divergence of chytrids. We also found that chytrid alpha- and beta-tubulins are much less divergent than are tubulins from other fungi or microsporidia. In trees in which the only fungal representatives were the chytrids, microsporidia still branched with fungi (i.e., with chytrids), suggesting that the affiliation between microsporidian and fungal tubulins is not an artifact of long-branch attraction.  相似文献   

5.
The origin of microsporidia and the evolutionary relationships among the major lineages of fungi have been examined by molecular phylogeny using alpha-tubulin and beta-tubulin. Chytrids, basidiomycetes, ascomycetes, and microsporidia were all recovered with high support, and the zygomycetes were consistently paraphyletic. The microsporidia were found to branch within zygomycetes, and showed relationships with members of the Entomophthorales and Zoopagales. This provides support for the microsporidia having evolved from within the fungi, however, the tubulin genes are difficult to interpret unambiguously since fungal and microsporidian tubulins are very divergent. Rapid evolutionary rates a characteristic of practically all microsporidian genes studied, so determining their evolutionary history will never be completely free of such difficulties. While the tubulin phylogenies do not provide a decisive conclusion, they do further narrow the probable origin of microsporidia to a zygomycete-like ancestor.  相似文献   

6.
It is suggested that in the course of the TOM complex evolution at least two lineages have appeared: the animal–fungal and green plant ones. The latter involves also the TOM complexes of algae and protozoans. The amoeba Acanthamoeba castellanii is a free-living nonphotosynthetic soil protozoan, whose mitochondria share many bioenergetic properties with mitochondria of plants, animals and fungi. Here, we report that a protein complex, identified electrophysiologically as the A. castellanii TOM complex, contains a homologue of yeast/animal Tom70. Further, molecular weight of the complex (about 500 kDa) also points to A. castellanii evolutionary relation with fungi and animal. Thus, the data indicates that the TOM complex of A. castellanii is not a typical example of the protozoan TOM complex.  相似文献   

7.

Background  

Encephalitozoon cuniculi is a member of a distinctive group of single-celled parasitic eukaryotes called microsporidia, which are closely related to fungi. Some of these organisms, including E. cuniculi, also have uniquely small genomes that are within the prokaryotic range. Thus, E. cuniculi has undergone a massive genome reduction which has resulted in a loss of genes from diverse biological pathways, including those that act in DNA repair.  相似文献   

8.
The community structure of arbuscular mycorrhizal (AM) fungi in the roots of drought-resistant trees, Moringa spp., was examined in semiarid regions in Madagascar and Uganda. Root samples were collected from 8 individuals of M. hildebrandtii and 2 individuals of M. drouhardii in Madagascar and from 21 individuals of M. oleifera in Uganda. Total DNA was extracted from the root samples, and partial nSSU rDNA of AM fungi was amplified using a universal eukaryotic primer NS31 and an AM fungalspecific primer AM1. The PCR products were cloned and divided by restriction fragment length polymorphism (RFLP) analysis with HinfI and RsaI. Some representatives in each RFLP types were sequenced, and a neighbor-joining phylogenetic analysis was conducted for the obtained sequences with analogous sequences of AM fungi. The RFLP and phylogenetic analyses showed that AM fungi closely related to Glomus intraradices or G. sinuosum were detected in many samples. The AM fungal groups frequently detected in the Moringa spp. might be widely distributed species in semiarid environments.  相似文献   

9.

Background  

The highly compacted 2.9-Mb genome of Encephalitozoon cuniculi placed the microsporidia in the spotlight, encoding a mere 2,000 proteins and a highly reduced suite of biochemical pathways. This extreme level of reduction is not universal across the microsporidia, with genomes known to vary up to sixfold in size, suggesting that some genomes may harbor a gene content that is not as reduced as that of Enc. cuniculi. In this study, we present an in-depth survey of the large genome of Octosporea bayeri, a pathogen of Daphnia magna, with an estimated genome size of 24 Mb, in order to shed light on the organization and content of a large microsporidian genome.  相似文献   

10.
Although the terrestrial and temperate orchids–fungal biology have been largely explored, knowledge of tropical epiphytic orchids–fungus relationships, especially on the ecological roles imparted by non-mycorrhizal fungal endophytes, is less known. Exploitation of the endophytic fungal mycobiota residing in epiphytic orchid plants may be of great importance to further elucidate the fungal ecology in this special habitat as well as developing new approaches for orchid conversations. The composition of fungal endophytes associated with leaves, stems and roots of an epiphytic orchid (Dendrobium nobile), a famous Chinese traditional medicinal plant, was investigated. Microscopic imaging, culture-dependant method and molecular phylogeny were used to estimate their entity and diversity. Totally, there were 172 isolates, at least 14 fungal genera and 33 different morphospecies recovered from 288 samples. Ascomycetes, coelomycetes and hyphomycetes were three major fungal groups. There were higher overall colonization and isolation rates of endophytic fungi from leaves than from other tissues. Guignardia mangiferae was the dominant fungal species within leaves; while the endophytic Xylariaceae were frequently observed in all plant tissues; Colletotrichum, Phomopsis and Fusarium were also frequently observed. Phylogenetic analysis based on ITS gene revealed the high diversity of Xylariacea fungi and relatively diverse of non-Xylariacea fungi. Some potentially promising beneficial fungi such as Clonostachys rosea and Trichoderma chlorosporum were found in roots. This is the first report concerning above-ground and below-ground endophytic fungi community of an epiphytic medicinal orchid, suggesting the ubiquitous distribution of non-mycorrhizal fungal endophytes in orchid plants together with heterogeneity and tissue specificity of the endophyte assemblage. Possible physiological functions played by these fungal endophytes and their potential applications are also discussed briefly. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Microsporidia branch at the base of eukaryotic phylogenies inferred from translation elongation factor 1alpha (EF-1alpha) sequences. Because these parasitic eukaryotes are fungi (or close relatives of fungi), it is widely accepted that fast-evolving microsporidian sequences are artifactually "attracted" to the long branch leading to the archaebacterial (outgroup) sequences ("long-branch attraction," or "LBA"). However, no previous studies have explicitly determined the reason(s) why the artifactual allegiance of microsporidia and archaebacteria ("M + A") is recovered by all phylogenetic methods, including maximum likelihood, a method that is supposed to be resistant to classical LBA. Here we show that the M + A affinity can be attributed to those alignment sites associated with large differences in evolutionary site rates between the eukaryotic and archaebacterial subtrees. Therefore, failure to model the significant evolutionary rate distribution differences (covarion shifts) between the ingroup and outgroup sequences is apparently responsible for the artifactual basal position of microsporidia in phylogenetic analyses of EF-1alpha sequences. Currently, no evolutionary model that accounts for discrete changes in the site rate distribution on particular branches is available for either protein or nucleotide level phylogenetic analysis, so the same artifacts may affect many other "deep" phylogenies. Furthermore, given the relative similarity of the site rate patterns of microsporidian and archaebacterial EF-1alpha proteins ("parallel site rate variation"), we suggest that the microsporidian orthologs may have lost some eukaryotic EF-1alpha-specific nontranslational functions, exemplifying the extreme degree of reduction in this parasitic lineage.  相似文献   

12.
The fungus‐growing ants and their fungal cultivars constitute a classic example of a mutualism that has led to complex coevolutionary dynamics spanning c. 55–65 Ma. Of the five agricultural systems practised by fungus‐growing ants, higher‐attine agriculture, of which leaf‐cutter agriculture is a derived subset, remains poorly understood despite its relevance to ecosystem function and human agriculture across the Neotropics and parts of North America. Among the ants practising higher‐attine agriculture, the genus Trachymyrmex Forel, as currently defined, shares most‐recent common ancestors with both the leaf‐cutter ants and the higher‐attine genera Sericomyrmex Mayr and Xerolitor Sosa‐Calvo et al. Although previous molecular‐phylogenetic studies have suggested that Trachymyrmex is a paraphyletic grade, until now insufficient taxon sampling has prevented a full investigation of the evolutionary history of this group and limited the possibility of resolving its taxonomy. Here we describe the results of phylogenetic analyses of 38 Trachymyrmex species, including 27 of the 49 described species and at least 11 new species, using four nuclear markers, as well as phylogenetic analyses of the fungi cultivated by 23 species of Trachymyrmex using two markers. We generated new genetic data for 112 ants (402 new gene sequences) and 95 fungi (153 new gene sequences). Our results corroborate previous findings that Trachymyrmex, as currently defined, is paraphyletic. We propose recognizing two new genera, Mycetomoellerius gen.n. and Paratrachymyrmex gen.n. , and restricting the continued use of Trachymyrmex to the clade of nine largely North American species that contains the type species [Trachymyrmex septentrionalis (McCook)] and that is the sister group of the leaf‐cutting ants. Our fungal cultivar phylogeny generally corroborates previously observed broad patterns of ant–fungus association, but it also reveals further violations of those patterns. Higher‐attine fungi are divided into two groups: (i) the single species Leucoagaricus gongylophorus (Möller); and (ii) its sister clade, consisting of multiple species, recently referred to as Leucoagaricus Singer ‘clade B’. Our phylogeny indicates that, although most non‐leaf‐cutting higher‐attine ants typically cultivate species in clade B, some species cultivate L. gongylophorus, whereas still others cultivate fungi typically associated with lower‐attine agriculture. This indicates that the attine agricultural systems, which are currently defined by associations between ants and fungi, are not entirely congruent with ant and fungal phylogenies. They may, however, be correlated with as yet poorly understood biological traits of the ants and/or of their microbiomes.  相似文献   

13.
Sequence and Phylogenetic Analysis of SSU rRNA Gene of Five Microsporidia   总被引:2,自引:0,他引:2  
The complete small subunit rRNA (SSU rRNA) gene sequences of five microsporidia including Nosema heliothidis, and four novel microsporidia isolated from Pieris rapae, Phyllobrotica armta, Hemerophila atrilineata, and Bombyx mori, respectively, were obtained by PCR amplification, cloning, and sequencing. Two phylogenetic trees based on SSU rRNA sequences had been constructed by using Neighbor-Joining of Phylip software and UPGMA of MEGA4.0 software. The taxonomic status of four novel microsporidia was determined by analysis of phylogenetic relationship, length, G+C content, identity, and divergence of the SSU rRNA sequences. The results showed that the microsporidia isolated from Pieris rapae, Phyllobrotica armta, and Hemerophila atrilineata have close phylogenetic relationship with the Nosema, while another microsporidium isolated from Bombyx mori is closely related to the Endoreticulatus. So, we temporarily classify three novel species of microsporidia to genus Nosema, as Nosema sp. PR, Nosema sp. PA, Nosema sp. HA. Another is temporarily classified into genus Endoreticulatus, as Endoreticulatus sp. Zhenjiang. The result indicated as well that it is feasible and valuable to elucidate phylogenetic relationships and taxonomic status of microsporidian species by analyzing information from SSU rRNA sequences of microsporidia.  相似文献   

14.
In molecular ecology, the development of efficient molecular markers for fungi remains an important research domain. Nuclear ribosomal internal transcribed spacer (ITS) region was proposed as universal DNA barcode marker for fungi, but this marker was criticized for Indel‐induced alignment problems and its potential lack of phylogenetic resolution. Our main aim was to develop a new phylogenetic gene and a putative functional marker, from single‐copy gene, to describe fungal diversity. Thus, we developed a series of primers to amplify a polymorphic region of the Glycoside Hydrolase GH63 gene, encoding exo‐acting α‐glucosidases, in basidiomycetes. These primers were validated on 125 different fungal genomic DNAs, and GH63 amplification yield was compared with that of already published functional markers targeting genes coding for laccases, N‐acetylhexosaminidases, cellobiohydrolases and class II peroxidases. Specific amplicons were recovered for 95% of the fungal species tested, and GH63 amplification success was strikingly higher than rates obtained with other functional genes. We downloaded the GH63 sequences from 483 fungal genomes publicly available at the JGI mycocosm database. GH63 was present in 461 fungal genomes belonging to all phyla, except Microsporidia and Neocallimastigomycota divisions. Moreover, the phylogenetic trees built with both GH63 and Rpb1 protein sequences revealed that GH63 is also a promising phylogenetic marker. Finally, a very high proportion of GH63 proteins was predicted to be secreted. This molecular tool could be a new phylogenetic marker of fungal species as well as potential indicator of functional diversity of basidiomycetes fungal communities in term of secretory capacities.  相似文献   

15.
Berch  S.M.  Allen  T.R.  Berbee  M.L. 《Plant and Soil》2002,244(1-2):55-66
Through traditional culturing and molecular characterization, we have determined that five putative species and 2 polyphyletic assemblages of fungi produce ericoid mycorrhizae in Gaultheria shallon, other Ericaceae and Epacridaceae. Using phylogenetic analysis of ITS2 sequences in GenBank, we have confirmed that most of these fungi occur in North America, Europe, and Australia. The low recovery rate of culturable ericoid mycorrhizal fungi from Gaultheria shallon may partly be explained by the fact that most mycorrhizal root segments contain an unculturable basidiomycete, revealed by direct amplification, cloning, and sequencing of LSU fungal DNA from root. Molecular characterization and phylogenetic analysis are powerful tools in revealing the geographic distribution and identity of ericoid mycorrhizal fungi.  相似文献   

16.
Fungal secondary metabolites are an important source of bioactive compounds for agrochemistry and pharmacology. Over the past decade, many studies have been undertaken to characterize the biosynthetic pathways of fungal secondary metabolites. This effort has led to the discovery of new compounds, gene clusters, and key enzymes, and has been greatly supported by the recent releases of fungal genome sequences. In this review, we present results from a search for genes involved in secondary metabolism and their clusters in the genome of the rice pathogen, Magnaporthe grisea, as well as in other fungal genomes. We have also performed a phylogenetic analysis of recently discovered genes encoding hybrids between a polyketide synthase and a single non-ribosomal peptide synthetase module (PKS–NRPS), as M. grisea seems rich in these enzymes compared with other fungi. Using results from expression and functional studies, we discuss the role of these PKS-NRPS in the avirulence and pathogenicity of M. grisea.  相似文献   

17.
Several groups of parasitic protozoa, as represented by Giardia, Trichomonas, En-tamoeba and Microsporida, were once widely considered to be the most primitive extant eukaryotic group—Archezoa. The main evidence for this is their ‘lacking mitochondria’ and possessing some other primitive features between prokaryotes and eukaryotes, and being basal to all eukaryotes with mitochondria in phylogenies inferred from many molecules. Some authors even proposed that these organisms diverged before the endosymbiotic origin of mitochondria within eukaryotes. This view was once considered to be very significant to the study of origin and evolution of eukaryotic cells (eukaryotes). However, in recent years this has been challenged by accumulating evidence from new studies. Here the sequences of DNA topoisomerase II in G. lamblia, T. vaginalis and E. histolytica were identified first by PCR and sequencing, then combining with the sequence data of the microsporidia Encephalitozoon cunicul and other eukaryotic groups of different evolutionary positions from GenBank, phylogenetic trees were constructed by various methods to investigate the evolutionary positions of these amitochondriate protozoa. Our results showed that since the characteristics of DNA topoisomerase II make it avoid the defect of ‘long-branch attraction’ appearing in the previous phylogenetic analyses, our trees can not only reflect effectively the relationship of different major eukaryotic groups, which is widely accepted, but also reveal phylogenetic positions for these amitochondriate protozoa, which is different from the previous phylogenetic trees. They are not the earliest-branching eukaryotes, but diverged after some mitochondriate organisms such as kinetoplastids and mycetozoan; they are not a united group but occupy different phylogenetic positions. Combining with the recent cytological findings of mitochondria-like organelles in them, we think that though some of them (e.g. diplomonads, as represented by Giardia) may occupy a very low evolutionary position, generally these organisms are not as extremely primitive as was thought before; they should be polyphyletic groups diverging after the endosymbiotic origin of mitochondrion to adapt themselves to anaerobic parasitic life.  相似文献   

18.
Evolution and Diversification of RNA Silencing Proteins in Fungi   总被引:8,自引:0,他引:8  
Comprehensive phylogenetic analyses of fungal Argonaute, Dicer, and RNA-dependent RNA polymerase-like proteins have been performed to gain insights into the diversification of RNA silencing pathways during the evolution of fungi. A wide range of fungi including ascomycetes, basidiomycetyes, and zygomycetes possesses multiple RNA silencing components in the genome, whereas a portion of ascomycete and basidiomycete fungi apparently lacks the whole or most of the components. The number of paralogous silencing proteins in the genome differs considerably among fungal species, suggesting that RNA silencing pathways have diversified significantly during evolution in parallel with developing the complexity of life cycle or in response to environmental conditions. Interestingly, orthologous silencing proteins from different fungal clades are often clustered more closely than paralogous proteins in a fungus, indicating that duplication events occurred before speciation events. Therefore, the origin of multiple RNA silencing pathways seems to be very ancient, likely having occurred prior to the divergence of the major fungal lineages. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Rüdiger Cerff]  相似文献   

19.
ABSTRACT. Microsporidia are a large and diverse group of intracellular parasites related to fungi. Much of our understanding of the relationships between microsporidia comes from phylogenies based on a single gene, the small subunit (SSU) rRNA, because only this gene has been sampled from diverse microsporidia. However, SSUrRNA trees are limited in their ability to resolve basal branches and some microsporidian affiliations are inconsistent between different analyses. Protein phylogenies have provided insight into relationships within specific groups of microsporidia, but have rarely been applied to the group as a whole. We have sequenced α‐ and β‐tubulins from microsporidia from three different subgroups, including representatives from what have previously been inferred to be the basal branches, allowing the broadest sampled protein‐based phylogenetic analysis to date. Although some relationships remain unresolved, many nodes uniting subgroups are strongly supported and consistent in both individual trees as well as a concatenate of both tubulins. One such relationship that was previously unclear is between Brachiola algerae and Antonospora locustae, and their close association with Encephalitozoon and Nosema. Also, an uncultivated microsporidian that infects cyclopoid copepods is shown to be related to Edhazardia aedis.  相似文献   

20.
Small heat shock proteins (sHSPs) are chaperones that are crucial in the heat shock response but also have important nonstress roles within the cell. sHSPs are found in all three domains of life (Bacteria, Archaea, and Eukarya). These proteins are particularly diverse within land plants and the evolutionary origin of the land plant sHSP families is still an open question. Here we describe the identification of 17 small sHSPs from the complete genome sequences of five diverse algae: Chlamydomonas reinhardtii, Cyanidioschyzon merolae, Ostreococcus lucimarinus, Ostreococcus tauri, and Thalassiosira pseudonana. Our analysis indicates that the number and diversity of algal sHSPs are not correlated with adaptation to extreme conditions. While all of the algal sHSPs identified are members of this large and important superfamily, none of these sHSPs are members of the diverse land plant sHSP families. The evolutionary relationships among the algal sHSPs and homologues from bacteria and other eukaryotes are consistent with the hypothesis that the land plant chloroplast and mitochondrion sHSPs did not originate from the endosymbionts of the chloroplast and mitochondria. In addition the evolutionary history of the sHSPs is very different from that of the HSP70s. Finally, our analysis of the algal sHSPs sequences in light of the known sHSP crystal structures and functional data suggests that the sHSPs possess considerable structural and functional diversity. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Reviewing Editor: Dr. Rüdiger Cerff  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号