首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chrysotile asbestos is closely associated with excess mortality from pulmonary diseases such as lung cancer, mesothelioma, and asbestosis. Although multiple mechanisms in which chrysotile asbestos fibers induce pulmonary disease have been identified, the role of autophagy in human lung epithelial cells has not been examined. In this study, we evaluated whether chrysotile asbestos induces autophagy in A549 human lung epithelial cells and then analyzed the possible underlying molecular mechanism. Chrysotile asbestos induced autophagy in A549 cells based on a series of biochemical and microscopic autophagy markers. We observed that asbestos increased expression of A549 cell microtubule-associated protein 1 light chain 3 (LC3-II), an autophagy marker, in conjunction with dephosphorylation of phospho-AKT, phospho-mTOR, and phospho-p70S6K. Notably, AKT1/AKT2 double-knockout murine embryonic fibroblasts (MEFs) had negligible asbestos-induced LC3-II expression, supporting a crucial role for AKT signaling. Chrysotile asbestos also led to the phosphorylation/activation of Jun N-terminal kinase (JNK) and p38 MAPK. Pharmacologic inhibition of JNK, but not p38 MAPK, dramatically inhibited the protein expression of LC3-II. Moreover, JNK2−/− MEFs but not JNK1−/− MEFs blocked LC3-II levels induced by chrysotile asbestos. In addition, N-acetylcysteine, an antioxidant, attenuated chrysotile asbestos-induced dephosphorylation of P-AKT and completely abolished phosphorylation/activation of JNK. Finally, we demonstrated that chrysotile asbestos-induced apoptosis was not affected by the presence of the autophagy inhibitor 3-methyladenine or autophagy-related gene 5 siRNA, indicating that the chrysotile asbestos-induced autophagy may be adaptive rather than prosurvival. Our findings demonstrate that AKT/mTOR and JNK2 signaling pathways are required for chrysotile asbestos-induced autophagy. These data provide a mechanistic basis for possible future clinical applications targeting these signaling pathways in the management of asbestos-induced lung disease.  相似文献   

2.
Asbestos fibers have genotoxic effects and are a potential carcinogenic hazard to occupationally exposed workers. The ability of inhaled asbestos fibers to induce the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the DNA of white blood cells (WBC) of workers highly exposed at the workplace has been studied. The 8-OHdG adduct level of asbestos-exposed workers was significantly increased (p<0.001) compared to that in the control group in all three years of the study. Asbestos-exposed individuals showed a mean value of 2.61+/-0.91 8-OHdG/10(5) dG (median 2.49, n=496) in 1994-1995, 2.96+/-1.10 8-OHdG/10(5) dG (median 2.76, n=437) in 1995-1996 and 2.55+/-0.56 8-OHdG/10(5) dG (median 2.53, n=447) in 1996-1997. For the control subjects, a mean of 1.52+/-0.39 (median 1.51, n=214) was determined. The results indicate that human DNA samples from exposed individuals contain between 1.7 times and twice the level of oxidative damage relative to that found in control samples in all 3 years of the study. The studies presented here show that asbestos exposure can result in oxidative DNA damage. Our data confirm that oxidative DNA damage occurs in the WBC of workers highly exposed to asbestos fibers, thus supporting the hypothesis that asbestos fibers damage cells through an oxidative mechanism. These in vivo findings underline the importance of oxidative damage in asbestos-induced carcinogenesis and highlight the need for exploring the molecular basis of asbestos-induced diseases, and for more effective diagnosis, prevention and therapy of mesothelioma, lung cancer and pulmonary fibrosis. In addition, preventive and therapeutic approaches using antioxidants may be relevant.  相似文献   

3.
Mesotheliomas are malignant tumors usually associated with occupational asbestos exposure. Simian virus 40 (SV40) is a DNA tumor virus that preferentially causes mesotheliomas when injected intracardially and/or intrapleurally into hamsters. SV40 also transforms human cells in tissue culture, and these cells contain extensive DNA damage. In the United States, at least 60% of human mesotheliomas contain and express SV40. In these tumor cells, the SV40 tumor antigen binds and inhibits the cellular tumor suppressors p53 and Rb. These findings suggest that SV40 may contribute to the development of those human mesotheliomas that occur in people not exposed to asbestos. SV40 may also facilitate asbestos-mediated carcinogenicity. The epidemiological data available are insufficient to address the role that SV40 may have played in contributing to the increased incidence of mesothelioma in the second half of this century. J. Cell. Physiol. 180:167–172, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

4.
BACKGROUND AND AIM: Molecular diagnostics and therapeutics of human mesothelioma using disease-related markers present major challenges in clinical practice. To identify biochemical alternations that would be markers of human mesothelioma, we measured the intracellular steady-state levels of biologically important trace metals such as manganese (Mn), copper (Cu), and zinc (Zn) in a human mesothelial cell line, MeT-5A, and in five human mesothelioma cell lines (MSTO-211H, NCI-H226, NCI-H2052, NCI-H2452, ACC-MESO-1) by inductively coupled plasma-mass spectrometry (ICP-MS). We also aimed to investigate whether the alterations were related to the intracellular status of metal-containing superoxide dismutase (SOD). RESULTS: There were no significant differences in the contents of the trace metals among MeT-5A, MSTO-211H, and ACC-MESO-1 cells. However, each of the other three mesothelioma cell lines had a unique characteristic in terms of the intracellular amounts of the metals; NCI-H226 contained an extremely high level of Mn, an amount 7.3-fold higher than that in MeT-5A. NCI-H2052 had significantly higher amounts of Cu (3.4-fold) and Zn (1.3-fold) compared with MeT-5A. NCI-H2452 contained about 5.8-fold the amount of Cu and 2.5-fold that of Mn compared with MeT-5A. As for the intracellular levels of copper/zinc-SOD (Cu/Zn-SOD) and manganese-SOD (Mn-SOD), those of Cu/Zn-SOD were relatively unchanged among the cells tested, and no notable correlation with Cu or Zn contents was observed. On the other hand, all mesothelioma cells highly expressed Mn-SOD compared with MeT-5A, and a very high expression of the enzyme with a robust activity was observed in the two mesothelioma cells (NCI-H226, NCI-H2452) containing a large amount of Mn. CONCLUSIONS: In comparison with MeT-5A human mesothelial cells, some human mesothelioma cells had significantly higher amounts of Mn or Cu and one mesothelioma cell had a significantly higher amount of Zn. Interestingly, all mesothelioma cells overexpressed Mn-SOD compared with MeT-5A, and the cells whose Mn-SOD activity was increased contained higher amounts of Mn. It seemed that intracellular Mn content was positively correlated with Mn-SOD, suggesting that the intracellular Mn level is associated with Mn-SOD activity. These biochemical signatures could be potential disease-related markers of mesothelioma.  相似文献   

5.
The genotoxicity of asbestos fibers is generally mediated by reactive oxygen species (ROS) and by insufficient antioxidant protection. To further elucidate which radicals are involved in asbestos-mediated genotoxicity and to which extent, we have carried out experiments with the metal chelators deferoxamine (DEF) and phytic acid (PA), and with the radical scavengers superoxide dismutase (SOD), dimethylthiourea (DMTU) and the glutathione precursor Nacystelyn trade mark (NAL). We investigated the influence of these compounds on the potency of crocidolite, an amphibole asbestos fiber with a high iron content (27%), and chrysotile, a serpentine asbestos fiber with a low iron content (2%), to induce micronuclei (MN) in human mesothelial cells (HMC) after an exposure time of 24-72 h. Our results show that the number of crocidolite-induced MN is significantly reduced after pretreatment of fibers with PA and DEF. This effect was not observed with chrysotile. In contrast, simultaneous treatment of cells with asbestos and the OH*scavenging DMTU or the O2- -scavenging SOD significantly decreased the number of MN induced by chrysotile and crocidolite. In particular, DMTU almost completely suppressed micronucleus induction by both fiber types. A similar effect was observed in the presence of the H(2)O(2)-scavenging NAL after chrysotile treatment of HMC. By means of kinetochore analysis, it could be shown that the number of clastogenic events is decreased after PA and DEF pretreatment of fibers as well as after application of the above-mentioned scavengers. Our results show that chrysotile asbestos induces an increased release of H(2)O(2) in contrast to crocidolite. Also, the iron content of the fiber plays an important role in radical formation, but nevertheless, chrysotile produces oxy radicals to a similar extent as crocidolite, probably by phagocytosis-mediated oxidative bursting.  相似文献   

6.
The asbestos contents of the lungs of former employees of an asbestos textile factory were determined at necropsy using a transmission electron microscope. Those who had died of mesothelioma were compared with a matched sample of those who had died of other causes. The predominant fibre processed in the factory was chrysotile, but crocidolite had also been used. The lung content was consistent with the known exposure to chrysotile, but the crocidolite content was also high, being about 300 times that of the general population of the United Kingdom. The lungs of those with mesothelioma did not contain more of either chrysotile or crocidolite than the lungs of the controls, so no particular type of asbestos could be implicated in causing the mesotheliomas. The evidence of substantial exposure to crocidolite means that the mesotheliomas that occurred in this factory could not be attributed with any certainty to the exposure to chrysotile.  相似文献   

7.
Asbestos causes asbestosis and various malignancies by mechanisms that are not clearly defined. Here, we review the accumulating evidence showing that asbestos is directly genotoxic by inducing DNA strand breaks (DNA-SB) and apoptosis in relevant lung target cells. Although the exact mechanisms by which asbestos causes DNA damage and apoptosis are not firmly established, some of the implicated mechanisms include the generation of iron-derived reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), alteration in the mitochondrial function, and activation of the death receptor pathway. We focus on the accumulating evidence implicating ROS. DNA repair mechanisms have a key role in limiting the extent of DNA damage. Recent studies show that asbestos activates DNA repair enzymes such as apurinic/apyrimidinic endonuclease (APE) and poly (ADP-ribose) polymerase (PARP). Asbestos-induced neoplastic transformation may result in the setting where DNA damage overwhelms DNA repair in the face of a persistent proliferative signal. Strategies aimed at limiting asbestos-induced oxidative stress may reduce DNA damage and, as such, prevent malignant transformation.  相似文献   

8.
Exposure to asbestos causes cellular damage, leading to asbestosis, bronchogenic carcinoma, and mesothelioma in humans. The pathogenesis of asbestos-related diseases is complicated and still poorly understood. Studies on animal models and cell cultures have indicated that asbestos fibers generate reactive oxygen and nitrogen species (ROS/RNS) and cause oxidation and/or nitrosylation of proteins and DNA. The ionic state of iron and its ability to be mobilized determine the oxidant-inducing potential of pathogenic iron-containing asbestos types. In addition to their capacity to damage macromolecules, oxidants play important roles in the initiation of numerous signal transduction pathways that are linked to apoptosis, inflammation, and proliferation. There is strong evidence supporting the premise that oxidants contribute to asbestos-induced lung injury; thus, strategies for reducing oxidant stress to pulmonary cells may attenuate the deleterious effects of asbestos.  相似文献   

9.
Asbestos causes asbestosis and malignancies by mechanisms that are not fully understood. Alveolar epithelial cell (AEC) injury by iron-derived reactive oxygen species (ROS) is one important mechanism implicated. We previously showed that iron-catalyzed ROS in part mediate asbestos-inducedAEC DNA damage and apoptosis. Mitochondria have a critical role in regulating apoptosis after exposure to agents causing DNA damage but their role in regulating asbestos-induced apoptosis is unknown. To determine whether asbestos causes AEC mitochondrial dysfunction, we exposed A549 cells to amosite asbestos and assessed mitochondrial membrane potential changes (delta(psi)m) using a fluorometric technique involving tetremethylrhodamine ethyl ester (TMRE) and mitotracker green. We show that amosite asbestos, but not an inert particulate, titanium dioxide, reduces delta(psi)m after a 4 h exposure period. Further, the delta(psi)m after 4 h was inversely proportional to the levels of apoptosis noted at 24 h as assessed by nuclear morphology as well as by DNA nucleosome formation. A role for iron-derived ROS was suggested by the finding that phytic acid, an iron chelator, blocked asbestos-induced reductions in A549 cell delta(psi)m and attenuated apoptosis. Finally, overexpression of Bcl-xl, an anti-apoptotic protein that localizes to the mitochondria, prevented asbestos-induced decreases in A549 cell delta(psi)m after 4 h and diminished apoptosis. We conclude that asbestos alters AEC mitochondrial function in part by generating iron-derived ROS, which in turn can result in apoptosis. This suggests that the mitochondrial death pathway is important in regulating pulmonary toxicity from asbestos.  相似文献   

10.
Asbestos causes pulmonary toxicity by mechanisms that in part involve reactive oxygen species (ROS). However, the precise source of ROS is unclear. We showed that asbestos induces alveolar epithelial cell (AEC) apoptosis by a mitochondrial-regulated death pathway. To determine whether mitochondrial-derived ROS are necessary for causing asbestos-induced AEC apoptosis, we utilized A549-rho(omicron) cells that lack mitochondrial DNA and a functional electron transport. As expected, antimycin, which induces an oxidative stress by blocking mitochondrial electron transport at complex III, increased dichlorofluoroscein (DCF) fluorescence in A549 cells but not in A549-rho(omicron) cells. Compared with A549 cells, rho(omicron) cells have less asbestos-induced ROS production, as assessed by DCF fluorescence, and reductions in total glutathione levels as well as less caspase-9 activation and apoptosis, as assessed by TdT-mediated dUTP nick end labeling staining and DNA fragmentation. A mitochondrial anion channel inhibitor that prevents ROS release from the mitochondria to the cytoplasm also blocked asbestos-induced A549 cell caspase-9 activation and apoptosis. Finally, a role for nonmitochondrial-derived ROS with exposure to high levels of asbestos (50 microg/cm(2)) was suggested by our findings that an iron chelator (phytic acid or deferoxamine) or a free radical scavenger (sodium benzoate) provided additional protection against asbestos-induced caspase-9 activation and DNA fragmentation in rho(omicron) cells. We conclude that asbestos fibers affect mitochondrial DNA and functional electron transport, resulting in mitochondrial-derived ROS production that in turn mediates AEC apoptosis. Nonmitochondrial-associated ROS may also contribute to AEC apoptosis, particularly with high levels of asbestos exposure.  相似文献   

11.
Poly(ADP)ribose polymerase (PARP) may participate in cell survival, apoptosis and development of DNA damage. We investigated the role of PARP in transformed human pleural mesothelial (MeT-5A) and alveolar epithelial (A549) cells exposed from 0.05 to 5mM hydrogen peroxide (H(2)O(2)) or crocidolite asbestos fibres (1-10 microg/cm(2)) in the presence and absence of 3-aminobenzamide (ABA), a PARP inhibitor. The cells were investigated for the development of cell injury, DNA single strand breaks and depletion of the cellular high-energy nucleotides. Compared to H(2)O(2), fibres caused a minor decrease in cell viability and effect on the cellular high-energy nucleotide depletion, and a marginal effect on the development of DNA strand breaks when assessed by the single cell gel electrophoresis (the Comet assay). Inhibition of PARP transiently protected the cells against acute H(2)O(2) related irreversible cell injury when assessed by microculture tetrazolium dye (XTT) assay and potentiated oxidant related DNA damage when assessed by the Comet assay. However, PARP inhibition had no significant effect on fibre-induced cell or DNA toxicity with the exception of one fibre concentration (2 microg/cm(2)) in MeT-5A cells. Apoptosis is often associated with PARP cleavage and caspase activation. Fibres did not cause PARP cleavage or activation of caspase 3 further confirming previous results about relatively low apoptotic potential of asbestos fibres. In conclusion, maintenance of cellular high-energy nucleotide pool and high viability of asbestos exposed cells may contribute to the survival and malignant conversion of lung cells exposed to the fibres.  相似文献   

12.
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.  相似文献   

13.
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.  相似文献   

14.
To test the hypothesis that asbestos-mediated cell injury is mediated through an oxidant-dependent mitochondrial pathway, isolated mesothelial cells were examined for mitochondrial DNA damage as determined by quantitative PCR. Mitochondrial DNA damage occurred at fourfold lower concentrations of crocidolite asbestos compared with concentrations required for nuclear DNA damage. DNA damage by asbestos was preceded by oxidant stress as shown by confocal scanning laser microscopy using MitoTracker Green FM and the oxidant probe Redox Sensor Red CC-1. These events were associated with dose-related decreases in steady-state mRNA levels of cytochrome c oxidase, subunit 3 (COIII), and NADH dehydrogenase 5. Subsequently, dose-dependent decreases in formazan production, an indication of mitochondrial dysfunction, increased mRNA expression of pro- and antiapoptotic genes, and increased numbers of apoptotic cells were observed in asbestos-exposed mesothelial cells. The possible contribution of mitochondrial-derived pathways to asbestos-induced apoptosis was confirmed by its significant reduction after pretreatment of cells with a caspase-9 inhibitor. Apoptosis was decreased in the presence of catalase. Last, use of HeLa cells transfected with a mitochondrial transport sequence targeting the human DNA repair enzyme 8-oxoguanine DNA glycosylase to mitochondria demonstrated that asbestos-induced apoptosis was ameliorated with increased cell survival. Studies collectively indicate that mitochondria are initial targets of asbestos-induced DNA damage and apoptosis via an oxidant-related mechanism.  相似文献   

15.
Influence of metal ions (Fe2+, Fe3+, Cu2+, Zn2+) on the protective effect of rutin, dihydroquercetin, and green tea epicatechins against in vitro asbestos-induced cell injury was studied. Metals have been found to increase the capacity of rutin and dihydroquercetin to protect peritoneal macrophages against chrysotile asbestos-induced injury. The data presented here show that this effect is due to the formation of flavonoid metal complexes, which turned out to be more effective radical scavengers than uncomplexed flavonoids. At the same time epicatechins and their metal complexes have similar antiradical properties and protective capacities against the asbestos induced injury of macrophages. Metal complexes of all flavonoids were found to be considerably more potent than parent flavonoids in protecting red blood cells against asbestos-induced injury. It was also found that the metal complexes of all flavonoids were absorbed by chrysotile asbestos fibers considerably better than uncomplexed compounds and probably for this reason flavonoid metal complexes have better protective properties against asbestos induced hemolysis. Thus, the results of the present study show that flavonoid metal complexes may be effective therapy for the inflammatory response associated with the inhalation of asbestos fiber. The advantage of their application could be the strong increase in ROS scavenging by flavonoids and finally a better cell protection under the conditions of cellular oxidative stress.  相似文献   

16.
Chrysotile is one of the six types of asbestos, and it is the only one that can still be commercialized in many countries. Exposure to other types of asbestos has been associated with serious diseases, such as lung carcinomas and pleural mesotheliomas. The association of chrysotile exposure with disease is controversial. However, in vitro studies show the mutagenic potential of chrysotile, which can induce DNA and cell damage. The present work aimed to analyze alterations in lung small cell carcinoma cultures after 48 h of chrysotile exposure, followed by 2, 4 and 8 days of recovery in fiber-free culture medium. Some alterations, such as aneuploid cell formation, increased number of cells in G2/M phase and cells in multipolar mitosis were observed even after 8 days of recovery. The presence of chrysotile fibers in the cell cultures was detected and cell morphology was observed by laser scanning confocal microscopy. After 4 and 8 days of recovery, only a few chrysotile fragments were present in some cells, and the cellular morphology was similar to that of control cells. Cells transfected with the GFP-tagged α-tubulin plasmid were treated with chrysotile for 24 or 48 h and cells in multipolar mitosis were observed by time-lapse microscopy. Fates of these cells were established: retention in metaphase, cell death, progression through M phase generating more than two daughter cells or cell fusion during telophase or cytokinesis. Some of them were related to the formation of aneuploid cells and cells with abnormal number of centrosomes.  相似文献   

17.
Malignant mesothelioma (MM) is a neoplasm arising from mesothelial cells lining the pleural, peritoneal, and pericardial cavities. Over 20 million people in the US are at risk of developing MM due to asbestos exposure. MM mortality rates are estimated to increase by 5–10% per year in most industrialized countries until about 2020. The incidence of MM in men has continued to rise during the past 50 years, while the incidence in women appears largely unchanged. It is estimated that about 50–80% of pleural MM in men and 20–30% in women developed in individuals whose history indicates asbestos exposure(s) above that expected from most background settings. While rare for women, about 30% of peritoneal mesothelioma in men has been associated with exposure to asbestos. Erionite is a potent carcinogenic mineral fiber capable of causing both pleural and peritoneal MM. Since erionite is considerably less widespread than asbestos, the number of MM cases associated with erionite exposure is smaller. Asbestos induces DNA alterations mostly by inducing mesothelial cells and reactive macrophages to secrete mutagenic oxygen and nitrogen species. In addition, asbestos carcinogenesis is linked to the chronic inflammatory process caused by the deposition of a sufficient number of asbestos fibers and the consequent release of pro‐inflammatory molecules, especially HMGB‐1, the master switch that starts the inflammatory process, and TNF‐alpha by macrophages and mesothelial cells. Genetic predisposition, radiation exposure and viral infection are co‐factors that can alone or together with asbestos and erionite cause MM. J. Cell. Physiol. 227: 44–58, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Several studies found simian virus 40 (SV40) in 47% to 83% of human mesotheliomas. Mesotheliomas are malignant tumors of the pleura and peritoneum, firmly associated with asbestos exposure. In this issue, Gazdar and colleagues ?Shivapurkar et al., 1999 found that SV40 is present only in the malignant cells and not in the surrounding stromal cells. Using the microdissection technique, they found SV40 in 54% of 93 mesotheliomas of the epithelial type. The surrounding reactive stromal cells, (20 lung cancers and 14 mesotheliomas of the sarcomatoid/fibrous type) did not contain SV40, confirming the specificity of their positive findings. Furthermore, SV40 was found in 14% of 14 non-malignant reactive mesothelial cell proliferations. In 12 cases of mesothelioma a noninvasive (or in situ) component was also identified. In all four cases in which SV40 sequences were present in the invasive component, sequences were also present in the accompanying noninvasive component. These data suggest that the virus resides in the mesothelial cells prior to tumor development. The data address the remaining concerns raised at an International Meeting organized by the NIH, FDA, and CDC in 1997 to definitively associate SV40 with human mesothelioma. It is time now to investigate the pathogenic mechanisms of this association, and if SV40-infected mesothelial cells are more susceptible to other carcinogens, such as asbestos. Furthermore, we must investigate the interaction between the host immune system and SV40-infected mesothelial cells, and study if the immunosuppressive activity of asbestos interferes with tumor rejection. These studies should lead to a better understanding of mesothelioma pathogenesis, and possibly to new therapeutic approaches aimed at interfering with the expression of the SV40 genome and/or at eliciting a strong immune response against SV40 infected mesothelial cells.  相似文献   

19.
The incidence of malignant mesothelioma (MM) shows a strong epidemiological association with exposure to asbestos fibers. Recently, simian virus 40 (SV40) DNA sequences have been reported in MM tumor specimens from the United States and several European countries, and the SV40 tumor virus has been implicated as a potential co-factor in the etiology of this disease. However, several large studies from the US, Finland, and Turkey did not detect SV40 sequences in MM samples. To address this discrepancy, MM specimens from Turkey and the US were analyzed in the same laboratory under identical conditions to detect the presence of SV40 DNA. We detected SV40 sequences in 4 of 11 specimens from the United States, but in none of the 9 Turkish samples examined. These findings suggest that geographical differences exist with regard to the involvement of SV40 in human tumors.  相似文献   

20.
Unscheduled DNA synthesis (UDS) was studied in confluent rat pleural mesothelial cells (RPMCs) arrested in G0/G1 with hydroxyurea (HU) and treated with various fibre types, i.e., chrysotile, crocidolite or attapulgite. In addition, the effects of UV light and of benzo[a]pyrene were determined as references. Using autoradiography after [3H]thymidine incorporation ([3H]dThd), RPMCs treated with 4 micrograms/cm2 of chrysotile fibres exhibited a low but significant enhancement of net grains compared to untreated cells. Treatment with higher doses of chrysotile was not possible because of the impairment of microscopic observation due to the presence of the fibres. Using liquid scintillation counting, RPMCs treated with chrysotile or crocidolite showed a significant dose-dependent increase in [3H]dThd incorporation compared to untreated cells. In contrast, attapulgite did not enhance [3H]dThd incorporation compared to untreated cells. Treatment of RPMCs with 1, 2 or 4 micrograms/ml of benzo[a]pyrene resulted in a significant increase in [3H]dThd incorporation. In order to discount a possible role of S cells in the augmentation of [3H]dThd incorporation, despite the presence of 5 mM HU, S cells were counted by autoradiography. Results indicated that the percentage of S cells was similar in asbestos-treated and untreated cultures. Stimulation of the S phase also seems unlikely because treatment of RPMCs with asbestos fibres in the absence of HU resulted in a reduction of [3H]dThd incorporation attributed to an impairment of the S phase by the fibres. 1-4 micrograms/ml benzo[a]pyrene or 10-50 J/m2 UV light resulted in an approximate doubling of [3H]dThd incorporation. The effects of inhibitors of DNA repair were determined in chrysotile-treated RPMCs. [3H]dThd incorporation was inhibited by cytosine arabinoside and nalidixic acid. These results show that asbestos produces UDS in RPMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号