首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corneal tolerance of vitrifiable concentrations of propane-1,2-diol   总被引:4,自引:0,他引:4  
S J Rich  W J Armitage 《Cryobiology》1991,28(2):159-170
The merit of corneal cryopreservation by vitrification as opposed to conventional freezing is the avoidance of ice damage which is believed to disrupt the integrity of the corneal endothelium resulting in loss of corneal transparency. The cornea must be equilibrated with high concentrations of cryoprotectant in order to achieve vitrification at practicable cooling rates. In an earlier study, corneas were exposed to 3.4 mol/liter propane-1,2-diol (Rich and Armitage (1990) Cryobiology 27, 42-54). The present study exposed rabbit corneas to concentrations of propane-1,2-diol between 3.4 and 5.4 mol/liter in a Hepes-buffered Ringer's solution containing glutathione, adenosine, 5 mmol/liter sodium bicarbonate, 6% (w/v) bovine serum albumin, and 2.5% (w/v) dextran sulfate. Dextran sulfate was as effective as chondroitin sulfate at improving endothelial tolerance of 3.4 mol/liter propane-1,2-diol. This beneficial effect may be linked to the polyanionic nature of these molecules. Corneas exposed to 5.4 mol/liter propane-1,2-diol were cooled in liquid nitrogen vapor at a temperature of -140 degrees C for 2 h. Warming was achieved by direct transfer to a dilution solution at -10 degrees C. Endothelial function was assessed by monitoring corneal thickness during perfusion of the endothelial surface at 34 degrees C for 6 h. Endothelial structure was observed by specular microscopy during the perfusion and by scanning electron microscopy after perfusion. Corneas tolerated exposure to 3.4 mol/liter propane-1,2-diol for 20 min at 0 degrees C and to 4.1 mol/liter for 10 min at -10 degrees C. Exposure to 4.8 and 5.4 mol/liter for 10 min at -10 degrees C caused endothelial damage, although a degree of endothelial function was retained. Function following exposure to 5.4 mol/liter was improved by reducing the temperature of exposure to -15 degrees C. Corneas cooled after exposure to 5.4 mol/liter propane-1,2-diol for 10 min at -15 degrees C apparently vitrified, but devitrified on warming. The corneas swelled to such an extent during perfusion that the endothelium could not be viewed by specular microscopy, subsequent scanning electron microscopy showed a severely disrupted endothelium.  相似文献   

2.
3.
4.
The effect of glycerol on the structure of cytochrome c was investigated by circular dichroism, absorbance and EPR spectroscopy. The results obtained show that an increasing concentration of the organic solvent (70-99.2%, v/v) in aqueous-polyalcohol mixtures converts native cytochrome c into a new, low spin form through a fully reversible, two-state transition. The glycerol-stabilized form (that we call here the G state) retains native-like amounts of alpha-helix structure while rigid tertiary structure and native Fe(III)-Met(80) axial bond are lost. Analysis of data suggests a molten globule character of the G state; support to this view is afforded by the striking similarities between the spectroscopic (and, thus, structural) properties of the G state with those of the acidic molten globule of the protein (A state).  相似文献   

5.
Cryopreservation of spermatozoa is a pivotal tool in assisted reproduction, and studies aiming to establish optimal freezing/thawing protocols are essential to enhance sperm survival. The objectives of the present study were to (1) compare the cryoprotective efficiency of three different glycerol concentrations (3%, 5%, and 7%) on the basis of post-thaw sperm quality and (2) investigate whether the incidence of morphologically abnormal sperm in fresh samples is related to cryodamage sensitivity. Semen was collected from six tomcats using an artificial vagina (total 18 ejaculates). Each ejaculate was diluted using Tris-egg yolk–based extender (TEY), evaluated, equally divided into three aliquots, and rediluted using TEY with and without glycerol to achieve final concentrations of 3%, 5%, and 7%. Samples were loaded into 0.25 mL straws, equilibrated for 60 minutes at 5 °C, frozen, and then thawed at 46 °C for 12 seconds. Fresh and frozen-thawed samples were evaluated for sperm motion parameters (computer-assisted sperm analysis), plasma membrane integrity (PMI; propidium iodide and carboxyfluorescein diacetate), and DNA integrity (acridine orange). Plasma and acrosomal membrane integrity were assessed by flow cytometry (propidium iodide and fluorescein isothiocyanate–conjugated pea (Pisum sativum) agglutinin) immediately after thawing. Sperm motion parameters were also evaluated at 30 and 60 minutes of postincubation. For all treatment groups, cryopreservation significantly impaired the PMI and sperm motion parameters, except for straightness and amplitude of lateral head displacement. DNA integrity showed a slight reduction (P < 0.05) when 3% glycerol was used. The percentage of total motility, progressive motility, and rapid spermatozoa were significantly lower immediately after thawing and up to 60 minutes of incubation for the 3% glycerol group when compared with 5% and 7%. No difference (P > 0.05) was found for PMI, acrosome integrity, and DNA integrity among post-thaw groups. However, higher (P < 0.05) incidence of viable cells with reacted acrosome and dead cells with intact acrosome were observed with 7% and 3% glycerol, respectively. Percentage of morphologically abnormal spermatozoa in fresh sample was positively correlated with PMI only in the 3% glycerol group and negatively correlated with sperm motility in the 5% and 7% groups. In conclusion, the final concentration of 5% glycerol offered better cryoprotective effect for ejaculated cat sperm, and the relationship found between prefreezing sperm morphology and post-thaw sperm quality showed to be dependent on final glycerol concentration.  相似文献   

6.
As glycerol was suggested as an osmotic agent in the salt tolerant Debaryomyces hansenii the concentrations of total, intracellular, and extracellular glycerol produced by this yeast was followed during growth in 4 mM, 0.68 M, and 2.7 M NaCl media. The total amount of glycerol was not directly proportional to biomass production but to the cultural salinity with maximum concentrations just prior to or at the beginning of the stationary phase. In all cultures the cells lost some glycerol to the media, at 2.7 M NaCl the extracellular glycerol even amounted maximally to 80% of the total. A distinct maximum of intracellular glycerol, related to dry weight or cell number, appeared during the log phase at all NaCl concentrations. As the intracellular calculated glycerol concentrations amounted to 0.2 M, 0.8 M, and 2.6 M in late log phase cells at 4mM, 0.68 M, and 2.7 M NaCl, respectively, whereas the corresponding analysed values for the glycerol concentrations of the media were 0.7 mM, 2.5 mM, and 3.0 mM, glycerol contributes to the osmotic balance of the cells. During the course of growth all cultures showed a decreasing heat production related to cell substance produced, most pronounced at 2.7 M NaCl. At 2.7 M NaCl the total heat production amounted to--1690 kJ per mole glucose consumed in contrast to--1200 and--1130 kJ at 4 mM and 0.68 M NaCl, respectively. The Ym-values were of an inverse order, being 129, 120, and 93 at 4 mM, 0.68 M, and 2.7 M NaCl respectively.  相似文献   

7.
One widely accepted explanation of injury from slow freezing is that damage results when the concentration of electrolyte reaches a critical level in partly frozen solutions during freezing. We have conducted experiments on human red cells to further test this hypothesis. Cells were suspended in phosphate-buffered saline containing 0-3 M glycerol, held for 30 min at 20 degrees C to permit solute permeation, and frozen at 0.5 or 1.7 degrees C/min to various temperatures between -2 and -100 degrees C. Upon reaching the desired minimum temperature, the samples were warmed at rates ranging from 1 to 550 degrees C/min and the percent hemolysis was determined. The results for a cooling rate of 1.7 degrees C/min indicate the following: (a) Between 0.5 and 1.85 M glycerol, the temperature yielding 50% hemolysis (LT50) drops slowly from -18 to -35 degrees C. (b) The LT50's over this range of concentrations are relatively independent of warming rate. (c) With glycerol concentrations of 1.95 and 2.0 M, the LT50 drops abruptly to -60 degrees C and to below -100 degrees C, respectively, and becomes dependent on warming rate. The LT50 is lower with slow warming at 1 degree C/min than with rapid. With still higher concentrations (2.5 and 3.0 M), there is no LT50, i.e., more than 50% of the cells survive freezing to-100 degrees C. Results for cooling at 0.5 degrees C/min in 2 M glycerol were similar except that the LT50s were some 10-20 degrees C higher. A companion paper (Rall et al., Biophys. J. 23:101-120, 1978) examines the relation between survival and the concentrations of salts produced during freezing.  相似文献   

8.
9.
Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L?1), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H2 production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4?±?0.1 molH2?mol?1 glycerol consumed) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H2 production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR.  相似文献   

10.
Tolerance to low oxygen concentrations is expected in Brachionus plicatilis, a rotifer adapted to live in saline warm waters. The population dynamics of a clone of this species, isolated from an endorreic saline lake, was studied under controlled laboratory conditions. Although their growth and metabolism is extremely reduced, B. plicatilis populations are able to maintain relatively high-density populations (a mean of 35 ind ml–1) in oxygen concentrations below 1 mg 1–1, for more than one month. Major features of population growth related to oxygen are discussed.  相似文献   

11.

Background

Left ventricular hypertrophy (LVH) is a powerful independent risk factor for cardiovascular morbidity and mortality among hypertensive patients. Data regarding relationships between diabetes and LVH are controversial and inconclusive, whereas possible gender differences were not specifically investigated. The goal of this work was to investigate whether gender differences in left heart structure and mass are present in hypertensive patients with type 2 diabetes.

Methods

Five hundred fifty hypertensive patients with at least one additional cardiovascular risk factor (314 men and 246 women, age 52 to 81, mean 66 ± 6 years), were enrolled in the present analysis. In 200 (36%) of them – 108 men and 92 women – type 2 diabetes mellitus was found upon enrollment. End-diastolic measurements of interventricular septal thickness (IVS), LV internal diameter, and posterior wall thickness were performed employing two-dimensionally guided M-mode echocardiograms. LVH was diagnosed when LV mass index (LVMI) was >134 g/m2 in men and >110 g/m2 in women.

Results

Mean LVMI was significantly higher among diabetic vs. nondiabetic women (112.5 ± 29 vs. 105.6 ± 24, p = 0.03). In addition, diabetic women presented a significantly higher prevalence of increased IVS thickness, LVMI and left atrial diameter on intra-gender comparisons. The age adjusted relative risk for increased LVMI in diabetics vs. nondiabetics was 1.47 (95% CI: 1.0–2.2) in females and only 0.8 (0.5–1.3) in males.

Conclusion

Type 2 diabetes mellitus was associated with a significantly higher prevalence of LVH and left atrial enlargement in hypertensive women.  相似文献   

12.
13.
14.
The aims of this study were to investigate the kinetics of the current glycerol banking method for the preservation of non-viable skin allografts; to improve it with respect to efficiency and microbial safety; and to investigate the possibility of using propylene glycol in place of glycerol to provide a more rapid process. Skin grafts were preserved in 98% v/v glycerol (GLY) according to the method used in the Sheffield Skin Bank. During the addition and removal processes, the amounts of GLY and water in the skin were determined using the Karl Fischer method and HPLC respectively. Propylene glycol (PG) was investigated as an alternative to glycerol with the object of shortening the process. To avoid the need for prolonged storage in glycerol to disinfect the tissue, and to improve the effectiveness of disinfection, exposure to peracetic acid (PAA) was included and its influence on the kinetics of the preservation process was evaluated. The histological and ultrastructural appearances of skin that had been banked by these methods was also investigated. It was found that the permeation of GLY in skin probably involves two processes: diffusion and binding; the rate of transport was attenuated as the GLY concentration in the skin increased. The current incubation time could be shortened, but an inconveniently prolonged washout process was required. The substitution of PG for GLY accelerated the whole process, particularly the removal process, making the method more convenient for the emergency use of skin grafts in the clinic. The penetration of PG also involved diffusion and binding, but there was no attenuation of transport as the concentration increased. The addition of PAA sterilisation did not alter the transport of GLY or PG. Structural integrity was also maintained with the new banking treatments. An improved banking method can now be proposed; it can be completed in only one working day and the risk of disease transmission is reduced.  相似文献   

15.
Several concentrations of glycerol for cryoprotection and several concentrations of sucrose for cryoprotectant dilution were examined with frozen, thawed and cultured mouse embryos. Four hundred and eighty late morulae to early blastocyst stage embryos were collected from 35 superovulated mice (B6D2 x Swiss Webster crosses back-crossed to Swiss Webster males) 3-1/2 days after breeding. The embryos were transferred through increasing concentrations of glycerol in modified Dulbecco(1)s phosphate buffered saline (MDPBS) to reach three final concentrations of 1.0 M, 1.4 M and 1.8 M. The embryos were loaded in 0.5-ml French straws appropriately filled with the cryoprotectant and sucrose solutions for each treatment. The straws were cooled with a standard fast-freezing program to -35 degrees C, then plunged into liquid nitrogen. After 58 days of storage at -196 degrees C the straws were thawed in a 37 degrees C water bath. Cryoprotectant dilution was accomplished with a standard step-wise procedure or in the straw with one of three concentrations of sucrose solution (0.25 M, 0.5 M, 1.0 M) in MDPBS. The embryos were then washed twice in MDPBS, twice in Whitten's media for embryo culture and then placed in microdrops of Whitten's media under paraffin oil in a water saturated 5% CO(2) in air atmosphere at 37 degrees C. Embryos were observed 24 hours later for development to the expanded blastocyst stage. The proportion of embryos developing in vitro from the three glycerol concentrations were not significantly different with standard step-wise dilution procedures for glycerol removal. After step-wise cryoprotectant removal, blastocyst expansion occurred in 49%, 44% and 52% of embryos frozen in 1.0 M, 1.4 M and 1.8 M glycerol, respectively. The 1.0 M sucrose dilution of 1.0 M glycerol showed the highest development (60.5%) in vitro but was not significantly different from any of these three step-wise diluted glycerol concentrations. The step-wise dilution of the three glycerol concentrations and dilution of the 1.0 M glycerol and 1.0 M sucrose were all superior (P < 0.01) to any other dilution procedure examined.  相似文献   

16.
Abstract

PGHX is a polymer of β (1-3)-galactose which posses the gel-forming property. As previously reported in the flask culture experiment, the crude PGHX (24.9?g/L, 48.2% in yield) with the maximum gel strength of 957?g/cm2 can be generated. However, PGHX produced in the stirred bioreactor had no gel-forming property when using the same medium. Hence, the effects of different glycerol concentrations on both the yield and the gel-forming property of PGHX were investigated and the reason for gel-forming property losing was explored. We proposed a new strategy for the production of PGHX with enhanced gel formation in the stirred bioreactor by mediating both the concentration of carbon source and the duration of fermentation. As a result, we managed to obtain the crude PGHX (22?g/L, 42.4% in yield) with the maximum gel strength of 438?g/cm2 at 56?h in the bioreactor. This strategy would help the enhancement of PGHX yield in the industrial production.  相似文献   

17.
The percentage post-thaw motility and velocity of semen samples mixed one to one by volume with Ackerman protective medium, with final buffered glycerol concentrations of 6, 8, 12, 16, and 24%, and frozen in liquid nitrogen vapor were studied. Semen frozen in 12 and 16% glycerol gave better motility recovery than those frozen in the other concentrations considered. The changes in motility and kinetics of thawed samples, recorded at 15-min intervals, showed a significant drop 30 min after thawing for motility and after 1 hr for velocity. Results obtained with the photomicrographic method confirm the increase in percentage motility given with the SKM measures when the concentration of glycerol is raised from 8 to 12%. The physical method did not discrimate between progressing and nonprogressing spermatozoa motilities while recording the percentage motility of a population of spermatozoa.  相似文献   

18.
Corneal cryopreservation with dextran.   总被引:3,自引:0,他引:3  
Different methods of corneal cryopreservation have been introduced, those employing intracellular cryoprotectants such as Me2SO or glycerol being the most widely favored. We investigated the influence of several freeze-thaw trauma variables on the survival of porcine endothelial monolayers when employing the extracellular cryoprotective agent dextran. We first examined the effects of various dextran concentrations and then, having ascertained the optimal concentration, further investigated the influence of fetal calf serum (FCS) concentration in the cryopreservation medium, the cooling rate, the thawing temperature, and the length of the preincubation in the freezing medium prior to cryopreservation. The numerical densities of endothelial cells were determined at dissection in hypoosmotic balanced salt solution and after organ culture by staining with alizarin red S and trypan blue. Morphological evaluation was not performed directly after thawing but after a subsequent organ culture at 37 degrees C to detect latent cell damage after freeze-thaw trauma. Our data revealed that corneas cryopreserved in minimal essential medium containing 10% dextran but lacking FCS, preincubated for 3 h, frozen at a cooling rate of 1 degrees C/min, and thawed at 37 degrees C incurred the lowest cell losses (22.4%, SD +/- 3.8). We conclude that dextran is an effective cryoprotectant for freezing of porcine corneas. However, variations between species in the results of cryopreservation require further investigation of an in vivo animal model and studies with human corneas before its clinical use can be recommended.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号