首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial reduction of selenium (Se) oxyanions (Se[VI] and Se[IV]) to elemental Se (Se[0]) is one of the major biogeochemical processes removing Se from agricultural drainage water and depositing Se in the sediment. This study was conducted to characterize Se-reducing bacterial populations in Lost Hills evaporation pond sediment and to observe their response to Se(VI) and organic C amendments. Se(VI) was removed from the dissolved phase in the sediment slurries amended with organic C with a decrease in redox potential (Eh). Se(VI) concentrations decreased from 2137 to 79 microg L-1 after 9 days of incubation in a 5% soil slurry. Upon our screening process, 9 Se(VI)- and 14 Se(IV)-reducing bacteria were isolated from sediment slurries and identified by amplification and sequencing of 16S rDNA. Bacillus strains appeared to be dominant in the bacterial assemblages active in Se(VI) and Se(IV) reduction in the sediment. Halomonas pacifica and Staphylococcus warneri were also identified as Se(IV)-reducers. Indigenous bacteria have a significant role in the biogeochemical cycling of Se and may be stimulated by addition of a suitable organic source for Se reduction. The bacterial strains isolated from salt-affected and Se-contaminated Lost Hills evaporation pond sediment may have potential application in removing Se from high salt drainage water.  相似文献   

2.
The animal biopolymers prepared from hen eggshell membrane and broiler chicken feathers, which are byproducts of the poultry-processing industry, were evaluated for the removal of the oxyanions selenium [Se(IV) and Se(VI)] and arsenic [As(III) and As(V)] from aqueous solutions. The biopolymers were found to be effective at removing Se(VI) from solution. Optimal Se(IV) and Se(VI) removal was achieved at pH 2.5–3.5. At an initial Se concentration of 100 mg/L (1.3 m M), the eggshell membrane removed approx 90% Se(VI) from the solution. Arsenic was removed less effectively than Se, but the chemical modification of biopolymer carboxyl groups dramatically enhanced the As(V) sorption capacity. Se(VI) and As(V) sorption isotherms were developed at optimal conditions and sorption equilibrium data fitted the Langmuir isotherm model. The maximum uptakes by the Langmuir model were about 37.0 mg/g and 20.7 mg/g of Se(VI) and 24.2 mg/g and 21.7 mg/g of As(V) for eggshell membrane and chicken feathers, respectively.  相似文献   

3.
Microbial processes are known to mediate selenium (Se) oxidation–reduction reactions, strongly influencing Se speciation, bioavailability, and transport throughout the environment. While these processes have commonly been studied in anaerobic bacteria, the role that aerobic fungi play in Se redox reactions could be important for Se‐rich soil systems, dominated by microbial activity. We quantified fungal growth, aerobic Se(IV, VI) reduction, and Se immobilization and volatilization in the presence of six, metal‐tolerant Ascomycete fungi. We found that the removal of dissolved Se was dependent on the fungal species, Se form (i.e., selenite or selenate), and Se concentration. All six species grew and removed dissolved Se(IV) or Se(VI) from solution, with five species reducing both oxyanions to Se(0) biominerals, and all six species removing at least 15%–20% of the supplied Se via volatilization. Growth rates of all fungi, however, decreased with increasing Se(IV,VI) concentrations. All fungi removed 85%–93% of the dissolved Se(IV) within 10 d in the presence of 0.01 mm Se(IV), although only about 20%–30% Se(VI) was removed when grown with 0.01 mm Se(VI). Fungi‐produced biominerals were typically 50‐ to 300‐nm‐diameter amorphous or paracrystalline spherical Se(0) nanoparticles. Our results demonstrate that activity of common soil fungi can influence Se form and distribution, and these organisms may therefore play a role in detoxifying Se‐polluted environments.  相似文献   

4.
Chromate-reducing microorganisms with the ability of reducing toxic chromate [Cr(VI)] into insoluble trivalent chromium [Cr(III)] are very useful in treatment of Cr(VI)-contaminated water. In this study, a novel chromate-reducing bacterium was isolated from Mn/Cr-contaminated soil. Based on morphological, physiological/biochemical characteristics and 16S rRNA gene sequence analyses, this strain was identified as Intrasporangium sp. strain Q5-1. This bacterium has high Cr(VI) resistance with a MIC of 17 mmol l−1 and is able to reduce Cr(VI) aerobically. The best condition of Cr(VI) reduction for Q5-1 is pH 8.0 at 37°C. Strain Q5-1 is also able to reduce Cr(VI) in resting (non-growth) conditions using a variety of carbon sources as well as in the absence of a carbon source. Acetate (1 mmol l−1) is the most efficient carbon source for stimulating Cr(VI) reduction. In order to apply strain Q5-1 to remove Cr(VI) from wastewater, the bacterial cells were immobilized with different matrices. Q5-1 cells embedded with compounding beads containing 4% PVA, 3% sodium alginate, 1.5% active carbon and 3% diatomite showed a similar Cr(VI) reduction rates to that of free cells. In addition, the immobilized Q5-1 cells have the advantages over free cells in being more stable, easier to re-use and minimal clogging in continuous systems. This study provides potential applications of a novel immobilized chromate-reducing bacterium for Cr(VI) bioremediation.  相似文献   

5.
Summary One of the major concerns in central California (San Joaquin Valley) is the level of selenium (Se) in evaporation ponds containing agricultural drainage water. The objective of this work was to determine if volatilization of Se could be used as a bioremediation program to detoxify a saline seleniferous sediment of a dewatered evaporation pond. The dewatered sediment was rototilled, divided into subplots, and amended with various organic materials including citrus (orange) peel, cattle manure, barley straw and grape pomance. Some of the subplots were fertilized with nitrogen [(NH4)2SO4] and zinc (ZnSO4). Selenium volatilization was monitored in the field with a flux chamber system utilizing alkaline peroxide to trap the gas. Overall, the greatest emission of gaseous Se was recorded in the summer months and the lowest emission during the winter months. The background emission of volatile Se averaged 3.0 g Se h–1 m–2. The most effective organic amendment was cattle manure with an avg. Se emission of 54 g Se h–1 m–2. Composite soil samples from each subplot (upper 15 cm) were analyzed for total Se on a monthly interval during the course of this field study. After 22 months, the application of water plus tillage alone removed 32.2% of the Se content while the cattle manure treatment removed 57.8%. Among the parameters which enhanced volatilization of Se were an available C source, aeration, moisture, and high temperatures. This field study indicates promising results in detoxifying seleniferous sediments via microbial volatilization once environmental conditions have been optimized.  相似文献   

6.
Two bacterial consortia were developed by continuous enrichment of microbial population of tannery and pulp and paper mill effluent contained Serratia mercascens, Pseudomonas fluorescence, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter sp. identified by 16S rDNA method. The consortia evaluated for removal of chromate [(Cr(VI)] in shake flask culture indicated pulp and paper mill consortium had more potential for removal of chromate. Acinetobacter sp. isolated from pulp and paper mill consortium removed higher amount of chromate [Cr(VI)] under aerobic conditions. Parameters optimized in different carbon, nitrogen sources, and pH, indicated maximum removal of chromate in sodium acetate (0.2%), sodium nitrate (0.1%) and pH 7 by Acinetobacter sp. Bacteria was applied in 2-l bioreactor significantly removed chromate after 3 days. The results of the study indicated removal of more than 75% chromium by Acinetobacter sp. determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometer after 7 days. Study of microbial [Cr(VI)] removal and identification of reduction intermediates has been hindered by the lack of analytical techniques. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) which indicated bioaccumulation of chromium in the bacterial cells.  相似文献   

7.
[背景]高盐含铬废水的去除过程中,Cr(Ⅵ)还原菌是研究者关注的重点,但目前对耐盐菌株的Cr(Ⅵ)脱毒特性及机理的分析仍较少。[目的]比较两株耐盐菌株的Cr(Ⅵ)移除特性,并区分Cr(Ⅵ)耐受机制的差异;通过基因组测序分析,从基因层面推测铬耐受相关基因;构建铬还原菌的混菌体系,考察两者对去除污染物的协同作用。[方法]从青海茶卡盐湖分离耐盐菌Staphylococcus sp.YZ-1,与Bacillus cereus CC-1进行基础特性和Cr(Ⅵ)去除性能的比较,并通过全基因组序列的分析验证特性测试的结果。[结果]两株菌都具有铬移除特性,但CC-1的铬移除效率更高,在初始Cr(Ⅵ)浓度为0.1 mmol/L情况下,CC-1能在12h内移除95.3%的Cr(Ⅵ),而YZ-1只能移除40.1%。在进一步实验中发现YZ-1只能对Cr(Ⅵ)进行还原,将其转化为可溶的有机态Cr(Ⅲ),而CC-1能同时对Cr(Ⅵ)进行还原和吸附。全基因组分析发现YZ-1具有编码外排泵蛋白的基因和编码NAD(P)H氧化还原酶的基因,而CC-1具有编码铬转运蛋白ChrA和细胞色素C氧化还原酶的基因。两株菌的混菌体系在处理含Cr(Ⅵ)、Te(Ⅳ)的废水时,菌群能将还原产物聚集成团并沉淀到底部。[结论]菌株YZ-1和CC-1均为耐盐铬还原菌,但YZ-1中的铬还原酶为诱导型酶,CC-1则为组成型酶。基因组数据分析鉴别出两者可能同时存在多种铬耐受机制相关编码基因。混合菌群可以结合YZ-1的自絮凝特性和两者均有的Te(Ⅳ)/Cr(Ⅵ)还原活性,具有潜在的实用价值。  相似文献   

8.
Terrestrial organic carbon is exported to freshwater systems where it serves as substrate for bacterial growth. Temporal variations in the terrigenous organic carbon support for aquatic bacteria are not well understood. In this paper, we demonstrate how the combined influence of landscape characteristics and hydrology can shape such variations. Using a 13-day bioassay approach, the production and respiration of bacteria were measured in water samples from six small Swedish streams (64° N, 19° E), draining coniferous forests, peat mires, and mixed catchments with typical boreal proportions between forest and mire coverage. Forest drainage supported higher bacterial production and higher bacterial growth efficiency than drainage from mires. The areal export of organic carbon was several times higher from mire than from forest at low runoff, while there was no difference at high flow. As a consequence, mixed streams (catchments including both mire and forest) were dominated by mire organic carbon with low support of bacterial production at low discharge situations but dominated by forest carbon supporting higher bacterial production at high flow. The stimulation of bacterial growth during high-flow episodes was a result of higher relative export of organic carbon via forest drainage rather than increased drainage of specific “high-quality” carbon pools in mire or forest soils.  相似文献   

9.
Microcosm experiments were conducted with soils contaminated with heavy metals (Pb and Cr) and aromatic hydrocarbons to determine the effects of each upon microbial community structure and function. Organic substrates were added as a driving force for change in the microbial community. Glucose represented an energy source used by a broad variety of bacteria, whereas fewer soil species were expected to use xylene. The metal amendments were chosen to inhibit the acute rate of organic mineralization by either 50% or 90%, and lower mineralization rates persisted over the entire 31-day incubation period. Significant biomass increases were abolished when metals were added in addition to organic carbon. The addition of organic carbon alone had the most significant impact on community composition and led to the proliferation of a few dominant phylotypes, as detected by PCR-denaturing gradient gel electrophoresis of bacterial 16S rRNA genes. However, the community-wide effects of heavy metal addition differed between the two carbon sources. For glucose, either Pb or Cr produced large changes and replacement with new phylotypes. In contrast, many phylotypes selected by xylene treatment were retained when either metal was added. Members of the Actinomycetales were very prevalent in microcosms with xylene and Cr(VI); gene copy numbers of biphenyl dioxygenase and phenol hydroxylase (but not other oxygenases) were elevated in these microcosms, as determined by real-time PCR. Much lower metal concentrations were needed to inhibit the catabolism of xylene than of glucose. Cr(VI) appeared to be reduced during the 31-day incubations, but in the case of glucose there was substantial microbial activity when much of the Cr(VI) remained. In the case of xylene, this was less clear.  相似文献   

10.
Microcosm experiments were conducted with soils contaminated with heavy metals (Pb and Cr) and aromatic hydrocarbons to determine the effects of each upon microbial community structure and function. Organic substrates were added as a driving force for change in the microbial community. Glucose represented an energy source used by a broad variety of bacteria, whereas fewer soil species were expected to use xylene. The metal amendments were chosen to inhibit the acute rate of organic mineralization by either 50% or 90%, and lower mineralization rates persisted over the entire 31-day incubation period. Significant biomass increases were abolished when metals were added in addition to organic carbon. The addition of organic carbon alone had the most significant impact on community composition and led to the proliferation of a few dominant phylotypes, as detected by PCR-denaturing gradient gel electrophoresis of bacterial 16S rRNA genes. However, the community-wide effects of heavy metal addition differed between the two carbon sources. For glucose, either Pb or Cr produced large changes and replacement with new phylotypes. In contrast, many phylotypes selected by xylene treatment were retained when either metal was added. Members of the Actinomycetales were very prevalent in microcosms with xylene and Cr(VI); gene copy numbers of biphenyl dioxygenase and phenol hydroxylase (but not other oxygenases) were elevated in these microcosms, as determined by real-time PCR. Much lower metal concentrations were needed to inhibit the catabolism of xylene than of glucose. Cr(VI) appeared to be reduced during the 31-day incubations, but in the case of glucose there was substantial microbial activity when much of the Cr(VI) remained. In the case of xylene, this was less clear.  相似文献   

11.
The losses of benzoic acid and a homologous series of both mono- and dibasic aliphatic acids in oil shale retort water were monitored with time (21 days) in liquid culture (4% retort water, vol/vol) inoculated with soil. The organic acids constituted approximately 12% of the dissolved organic carbon in retort water, which served as the sole source of carbon and energy in these studies. The levels of the acids in solution were reduced by 80 to 90% within 9 days of incubation. From mass balance calculations, the decrease in dissolved organic carbon with time of incubation was equal to the formation of CO2 and bacterial cell carbon. The decrease in the level of the acid components, either from degradation to CO2 or incorporation into bacteria, would account for ~70% of the loss in dissolved organic carbon within the first 9 days of incubation and would account for ~50% of the loss over the entire 21-day incubation period.  相似文献   

12.
During the drilling process and transport of crude oil, water mixes with the petroleum. At oil terminals, the water settles to the bottom of storage tanks. This drainage water is contaminated with emulsified oil and water-soluble hydrocarbons and must be treated before it can be released into the environment. In this study, we tested the efficiency of a continuous flow, two-stage bioreactor for treating drainage water from an Israeli oil terminal. The bioreactor removed all of the ammonia, 93% of the sulfide and converted 90% of the total organic carbon (TOC) into carbon dioxide. SYBR Gold staining indicated that reactor 1 contained 1.7 × 108 bacteria and 3.7 × 108 phages per millilitre, and reactor 2 contained 1.3 × 108 bacteria and 1.7 × 109 phages per millilitre. The unexpectedly high mineralization of TOC and high concentration of phage in reactor 2 support the concept of a phage-driven microbial loop in the bioremediation of the drainage water. In general, application of this concept in bioremediation of contaminated water has the potential to increase the efficiency of processes.  相似文献   

13.
We screened for fungi that can decolorize molasses melanoidin in the tropical zone and isolated some strains, mainly in the genus Aspergillus. Of these, strain No. G-2–6 was most active and was identical with Aspergillus fumigatus based on detailed morphological studies.

This strain decolorized about 75% of a molasses melanoidin solution when the strain was cultivated on a glycerol-peptone medium at 45°C for 3 days with shaking. In successive decolorization reusing the mycelia, this strain had more than 60% of the melanoidin-decolorizing activity at the eighth replacement in the presence of 4% glycerol.

Continuous decolorization of molasses melanoidin solution in a jar fermentor had an almost constant decolorization yield of about 70% at a dilution rate of 0.014 hr-1. At the same time, about 51 % of the chemical oxygen demand and 56% of the total organic carbon in the initial solution were removed. In contrast, continuous decolorization of non-dialyzed molasses melanoidin solution removed a little more chemical oxygen demand and total organic carbon than those of dialyzed molasses melanoidin solution, but had a lower level of melanoidin-decolorizing activity (about 40%).  相似文献   

14.
A field-scale experiment was conducted to evaluate organic carbon amendment of mine tailings as a technique for pore water and drainage treatment. Six test cells were constructed by amending sulfide- and carbonate- rich tailings with varied mixtures of peat, spent-brewing grain and municipal biosolids. Samples were collected for microbial, geochemical and mineralogical analysis approximately three years after commencing this experiment. Test cells amended with spent-brewing grain promoted sulfate reduction and effective removal of sulfate and metal(loid)s. The addition of municipal biosolids did not sustain enhanced sulfidogenesis after three years, and peat was an ineffective source of organic carbon. Terminal-restriction fragment length polymorphism revealed that test cells which supported sulfidogenesis exhibited the greatest microbial diversity. Indigenous bacteria identified using molecular and cultivation analyses were found to be related to Cellulomonas, Thiobacillus, Bacteroides, Paludibacter and Desulfovibrio, which was the only sulfate-reducing bacterial (SRB) isolated. The results demonstrate that mixtures of solid organic materials which supported complex anaerobic microbial communities, including sulfate- reducing bacteria, were most effective in promoting pore-water treatment.  相似文献   

15.
Chromium (Cr) is the most toxic at its hexavalent state. Widespread use of chromium for various anthropogenic activities causing rapid decline of the agricultural productivity is now a major global concern. The purpose of this study was to isolate the plant growth promoting (PGP) chromium-resistant bacteria and characterize it before being applied for bioremediation. A potent Cr-resistant rhizobacterium (CrS2) was isolated from the rice field near an industrial sewage and identified as Raoultella sp. based on 16S rDNA sequence homology with some phenotypic characteristics. The strain exhibited Cr(VI) resistance up to 25 mM and also possesses some important PGP traits. The selected CrS2 strain has varied degrees of resistance to other toxic heavy metals/metalloids like arsenic, cadmium, and lead. The removal capacity of chromium was studied in broth cultures. The appropriate growth media for the strain is peptone yeast glucose media with glucose (0.5%) and peptone (1%) as carbon and nitrogen sources, respectively. The strain removed substantial amount of chromium after media optimization. The chromate reductase (EC.1.6.5.2) activity was constitutive in nature of this strain. Thus, the strain CrS2 may be exploited for bioremediation of Cr(VI) in Cr-contaminated agricultural soil, where it might also enhance plant growth promotion.  相似文献   

16.
Selenocyanate (SeCN(-)) is a major contaminant in the effluents from some oil refineries, power plants, and in mine drainage water. In this study, we determined the potential of Indian mustard (Brassica juncea) and muskgrass (a macroalga, Chara canescens) for SeCN(-) phytoremediation in upland and wetland situations, respectively. The tolerance of Indian mustard to toxic levels of SeCN(-) was similar to or higher than other toxic forms of Se. Indian mustard treated with 20 microM SeCN(-) removed 30% (w/v) of the Se supplied in 5 d, accumulating 554 and 86 microg of Se g(-1) dry weight in roots and shoots, respectively. Under similar conditions, muskgrass removed approximately 9% (w/v) of the Se supplied as SeCN(-) and accumulated 27 microg of Se g(-1) dry weight. A biochemical pathway for SeCN(-) degradation was proposed for Indian mustard. Indian mustard and muskgrass efficiently degraded SeCN(-) as none of the Se accumulated by either organism remained in this form. Indian mustard accumulated predominantly organic Se, whereas muskgrass contained Se mainly as selenite and organic Se forms. Indian mustard produced volatile Se from SeCN(-) in the form of less toxic dimethylselenide. Se volatilization by Indian mustard accounted for only 0.7% (w/v) of the SeCN(-) removed, likely because the biochemical steps in the production of dimethylselenide from organic Se were rate limiting. Indian mustard is promising for the phytoremediation of SeCN(-) -contaminated soil and water because of its remarkable abilities to phytoextract SeCN(-) and degrade all the accumulated SeCN(-) to other Se forms.  相似文献   

17.
Washed-cell suspensions of Sulfurospirillum barnesii reduced selenate [Se(VI)] when cells were cultured with nitrate, thiosulfate, arsenate, or fumarate as the electron acceptor. When the concentration of the electron donor was limiting, Se(VI) reduction in whole cells was approximately fourfold greater in Se(VI)-grown cells than was observed in nitrate-grown cells; correspondingly, nitrate reduction was approximately 11-fold higher in nitrate-grown cells than in Se(VI)-grown cells. However, a simultaneous reduction of nitrate and Se(VI) was observed in both cases. At nonlimiting electron donor concentrations, nitrate-grown cells suspended with equimolar nitrate and selenate achieved a complete reductive removal of nitrogen and selenium oxyanions, with the bulk of nitrate reduction preceding that of selenate reduction. Chloramphenicol did not inhibit these reductions. The Se(VI)-respiring haloalkaliphile Bacillus arsenicoselenatis gave similar results, but its Se(VI) reductase was not constitutive in nitrate-grown cells. No reduction of Se(VI) was noted for Bacillus selenitireducens, which respires selenite. The results of kinetic experiments with cell membrane preparations of S. barnesii suggest the presence of constitutive selenate and nitrate reduction, as well as an inducible, high-affinity nitrate reductase in nitrate-grown cells which also has a low affinity for selenate. The simultaneous reduction of micromolar Se(VI) in the presence of millimolar nitrate indicates that these organisms may have a functional use in bioremediating nitrate-rich, seleniferous agricultural wastewaters. Results with (75)Se-selenate tracer show that these organisms can lower ambient Se(VI) concentrations to levels in compliance with new regulations proposed for release of selenium oxyanions into the environment.  相似文献   

18.
This study evaluated the treatment of oil sands process-affected water (OSPW) using a fluidized bed biofilm reactor (FBBR) with granular activated carbon (GAC) as support media. The bioreactor was operated for 120 days at different organic and hydraulic loading rates. The combined GAC adsorption and biodegradation process removed 51% of chemical oxygen demand (COD), 56% of acid-extractable fraction (AEF) and 96% of classical naphthenic acids (NAs) under optimized operational conditions. Bioreactor treatment efficiencies were dependent on the organic loading rate (OLR), and to a lower degree, on the hydraulic loading rate (HLR). Further ultra performance liquid chromatography/high resolution mass spectroscopy (UPLC/HRMS) analysis showed that the removal of classical NAs increased as the carbon number increased. Compared with planktonic bacterial community in OSPW, more diverse microbial structures were found in biofilms colonized on the surface of GAC after 120-day treatment, with various carbon degraders namely Polaromonas jejuensis, Algoriphagus sp., Chelatococcus sp. and Methylobacterium fujisawaense in the GAC-biofilm reactor. The results of this study, therefore, showed that the GAC-biofilm seems to be a promising biological treatment method for OSPW remediation.  相似文献   

19.
The research on the function and mechanism of selenium (Se) is of great significance for the development of Se-enriched agricultural products. In this paper, uptake, speciation distribution, the effects on the flue-cured tobacco growth and antioxidant system of Se at different levels (0–22.2 mg Se kg−1) were studied through a pot experiment, aiming to clarify flue-cured tobacco's response to Se stress and the relationship between Se speciation and antioxidant system. The results showed that the leaf area and number, the biomass and the chlorophyll content reached the maximum at 4.4 mg kg−1 of Se treatment. Selenium at low levels (≤4.4 mg kg−1) stimulated the growth of flue-cured tobacco by elevating the capability of antioxidant stress and reducing the malondialdehyde (MDA) content to 0.6–0.8 times of that of the control. However, high Se levels (≥11.1 mg kg−1) depressed the capability of antioxidant stress and raised the MDA content to 1.5-fold of that of the control, and meanwhile the biomass of the aboveground parts and underground parts declined notably. The Se content in different parts of flue-cured tobacco significantly increased with the growth of Se levels. The range of Se content in roots, leaves and stems at 2.2–22.2 mg kg−1 of Se treatment were 16.7–58.6 mg kg−1, 2.6–37.3 mg kg−1 and 2.2–10.3 mg kg−1, respectively. According to the detection of different Se speciation, only selenocysteine (SeCys) was detectable in leaves at 2.2 mg kg−1 Se treatment; SeCys, selenite [Se(IV)]and selenate [Se(VI)] were detected in flue-cured tobacco leaves at Se treatment (≥4.4 mg kg−1), which accounted for 4.6–10%, 9–18.7% and 71–86% respectively; SeCys, selenomethionine (SeMet) and Se(IV) were detected in roots, and organic selenium(66–84%) was the main Se species at Se  11.1 mg kg−1 treatment; four Se species [SeCys, SeMet, Se(IV) and Se(VI)] were detected in flue-cured tobacco roots, and the main Se species was inorganic Se (60%) at 22.2 mg kg−1 Se treatment. That was to say, the percentage of organic Se species (SeCys and SeMet in flue-cured tobacco leaves and root) declined, whereas the ratio of inorganic Se species [Se(IV) and Se(VI)] increased with the growth of Se levels. The correlation analysis showed that the superoxide dismutase (SOD) activity as well as the glutathione (GSH) and MDA contents were positively correlated with the Se(IV) and Se(VI) contents at P < 0.01 and excessive inorganic Se might destruct the reactive oxygen species (ROS) balance and enhance the MDA content, thus causing damage to the plant growth. In a word, the present study suggested that the ratio of inorganic Se [Se(IV) and Se(VI)] was closely related with the growth and the antioxidant capacity of flue-cured tobacco and the excessive application of Se led to the higher proportion of inorganic Se and poorer antioxidant capacity, which ultimately inhibited the growth of flue-cured tobacco.  相似文献   

20.
Studies were conducted to evaluate carbon and energy sources suitable to support hexavalent chromium (Cr(VI)) reduction by a bacterial consortium enriched from dichromate-contaminated aquifer sediments. The consortium was cultured under denitrifying conditions in a minimal, synthetic groundwater medium that was amended with various individual potential carbon and energy sources. The effects of these individual carbon and energy sources on Cr(VI) reduction and growth were measured. The consortium was found to readily reduce Cr(VI) with sucrose, acetate, L-asparagine, hydrogen plus carbon dioxide, ethanol, glycerol, glycolate, propylene glycol, or D-xylose as a carbon and energy source. Minimal Cr(VI) reduction was observed when the consortium was cultured with citrate, 2-ketoglutarate, L-lactate, pyruvate, succinate, or thiosulfate plus carbon dioxide as a carbon and energy source when compared with abiotic controls. The consortium grew on all of the above carbon and energy sources, with the highest cell densities reached using D-xylose and sucrose, demonstrating that the consortium is metabolically diverse and can reduce Cr(VI) using a variety of different carbon and energy sources. The results suggest that the potential exists for the enrichment of Cr(VI)-reducing microbial populations in situ by the addition of a sucrose-containing feedstock such as molasses, which is an economical and readily available carbon and energy source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号