首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the influence of nonclimatic factors on predicting the habitats of tree species and an assessment of climate change impacts over a broad geographical extent at about 1 km resolution, we investigated the predictive performance for models with climatic factors only (C-models) and models with climatic and nonclimatic factors (CN-models) using seven tree species in Japan that exhibit different ecological characteristics such as habitat preference and successional traits. Using a generalized additive model, the prediction performance was compared by prediction accuracy [area under the operating characteristic curve (AUC)], goodness of fit, and potential habitat maps. The results showed that the CN-models had higher predictive accuracy, higher goodness of fit, smaller empty habitats, and more finely defined borders of potential habitat than those of the C-models for all seven species. The degree of the total contribution of the nonclimatic variables to prediction performance also varied among the seven species. These results suggest that nonclimatic factors also play an important role in predicting species occurrence when measured to this extent and resolution, that the magnitude of model improvement is larger for species with specific habitat preferences, and that the C-models cannot predict the land-related habitats that exist for almost all species. Climate change impacts were overestimated by C-models for all species. Therefore, C-model outcomes may lead to locally ambiguous assessment of the impact of climate change on species distribution. CN-models provide a more accurate and detailed assessment for conservation planning.  相似文献   

2.
Experimental evidence shows that site fertility is a key modulator underlying plant community changes under climate change. Communities on fertile sites, with species having fast dynamics, have been found to react more strongly to climate change than communities on infertile sites with slow dynamics. However, it is still unclear whether this generally applies to high‐latitude plant communities in natural environments at broad spatial scales. We tested a hypothesis that vegetation of fertile sites experiences greater changes over several decades and thus would be more responsive under contemporary climate change compared to infertile sites that are expected to show more resistance. We resurveyed understorey communities (vascular plants, bryophytes, and lichens) of four infertile and four fertile forest sites along a latitudinal bioclimatic gradient. Sites had remained outside direct human disturbance. We analyzed the magnitude of temporal community turnover, changes in the abundances of plant morphological groups and strategy classes, and changes in species diversity. In agreement with our hypothesis, temporal turnover of communities was consistently greater on fertile sites compared to infertile sites. However, our results suggest that the larger turnover of fertile communities is not primarily related to the direct effects of climatic warming. Furthermore, community changes in both fertile and infertile sites showed remarkable variation in terms of shares of plant functional groups and strategy classes and measures of species diversity. This further emphasizes the essential role of baseline environmental conditions and nonclimatic drivers underlying vegetation changes. Our results show that site fertility is a key determinant of the overall rate of high‐latitude vegetation changes but the composition of plant communities in different ecological contexts is variously impacted by nonclimatic drivers over time.  相似文献   

3.
While poleward species migration in response to recent climatic warming is widely documented, few studies have examined entire range responses of broadly distributed sessile organisms, including changes on both the trailing (equatorward) and the leading (poleward) range edges. From a detailed population census throughout the entire geographical range of Aloe dichotoma Masson, a long-lived Namib Desert tree, together with data from repeat photographs, we present strong evidence that a developing range shift in this species is a 'fingerprint' of anthropogenic climate change. This is explained at a high level of statistical significance by population level impacts of observed regional warming and resulting water balance constraints. Generalized linear models suggest that greater mortalities and population declines in equatorward populations are virtually certainly the result, due to anthropogenic climate change, of the progressive exceedance of critical climate thresholds that are relatively closer to the species' tolerance limits in equatorward sites. Equatorward population declines are also broadly consistent with bioclimatically modelled projections under anticipated anthropogenic climate change but, as yet, there is no evidence of poleward range expansion into the area predicted to become suitable in future, despite good evidence for positive population growth trends in poleward populations. This study is among the first to show a marked lag between trailing edge population extinction and leading edge range expansion in a species experiencing anthropogenic climate change impacts, a pattern likely to apply to most sessile and poorly dispersed organisms. This provides support for conservative assumptions of species' migration rates when modelling climate change impacts for such species. Aloe dichotoma 's response to climate change suggests that desert ecosystems may be more sensitive to climate change than previously suspected.  相似文献   

4.
The effects of anthropogenic climate change on biodiversity are well known for some high‐profile Australian marine systems, including coral bleaching and kelp forest devastation. Less well‐published are the impacts of climate change being observed in terrestrial ecosystems, although ecological models have predicted substantial changes are likely. Detecting and attributing terrestrial changes to anthropogenic factors is difficult due to the ecological importance of extreme conditions, the noisy nature of short‐term data collected with limited resources, and complexities introduced by biotic interactions. Here, we provide a suite of case studies that have considered possible impacts of anthropogenic climate change on Australian terrestrial systems. Our intention is to provide a diverse collection of stories illustrating how Australian flora and fauna are likely responding to direct and indirect effects of anthropogenic climate change. We aim to raise awareness rather than be comprehensive. We include case studies covering canopy dieback in forests, compositional shifts in vegetation, positive feedbacks between climate, vegetation and disturbance regimes, local extinctions in plants, size changes in birds, phenological shifts in reproduction and shifting biotic interactions that threaten communities and endangered species. Some of these changes are direct and clear cut, others are indirect and less clearly connected to climate change; however, all are important in providing insights into the future state of terrestrial ecosystems. We also highlight some of the management issues relevant to conserving terrestrial communities and ecosystems in the face of anthropogenic climate change.  相似文献   

5.
Mounting evidence suggests that climate change will cause shifts of tree species range and abundance (biomass). Abundance changes under climate change are likely to occur prior to a detectable range shift. Disturbances are expected to directly affect tree species abundance and composition, and could profoundly influence tree species spatial distribution within a geographical region. However, how multiple disturbance regimes will interact with changing climate to alter the spatial distribution of species abundance remains unclear. We simulated such forest demographic processes using a forest landscape succession and disturbance model (LANDIS-II) parameterized with forest inventory data in the northeastern United States. Our study incorporated climate change under a high-emission future and disturbance regimes varying with gradients of intensities and spatial extents. The results suggest that disturbances catalyze changes in tree species abundance and composition under a changing climate, but the effects of disturbances differ by intensity and extent. Moderate disturbances and large extent disturbances have limited effects, while high-intensity disturbances accelerate changes by removing cohorts of mid- and late-successional species, creating opportunities for early-successional species. High-intensity disturbances result in the northern movement of early-successional species and the southern movement of late-successional species abundances. Our study is among the first to systematically investigate how disturbance extent and intensity interact to determine the spatial distribution of changes in species abundance and forest composition.  相似文献   

6.
Climate change is expected to have an impact on plant communities as increased temperatures are expected to drive individual species' distributions polewards. The results of a revisitation study after c. 34 years of 89 coastal sites in Scotland, UK, were examined to assess the degree of shifts in species composition that could be accounted for by climate change. There was little evidence for either species retreat northwards or for plots to become more dominated by species with a more southern distribution. At a few sites where significant change occurred, the changes were accounted for by the invasion, or in one instance the removal, of woody species. Also, the vegetation types that showed the most sensitivity to change were all early successional types and changes were primarily the result of succession rather than climate‐driven changes. Dune vegetation appears resistant to climate change impacts on the vegetation, either as the vegetation is inherently resistant to change, management prevents increased dominance of more southerly species or because of dispersal limitation to geographically isolated sites.  相似文献   

7.
Species range boundaries are determined by a variety of factors of which climate is one of the most influential. As a result, climate change is expected to have a profound effect on organisms and ecosystems. However, the impacts of weather and climate are frequently modified by multiple nonclimatic factors. Therefore, the role of these nonclimatic factors needs to be examined in order to understand and predict future change. Marine intertidal ecosystems are exposed to heat extremes during warm, sunny, midday low tides. Thus, the timing of low tide, a nonclimatic factor, determines the potential contact intertidal invertebrates and algae have with heat extremes. We developed a method that quantifies the daily risk of high temperature extremes in the marine intertidal using solar elevations and spatially continuous tidal predictions. The frequency of 'risky days' is variable over time and space along the Pacific Coast of North America. Results show that at some sites the percentage of risky days in June can vary by 30% across years. In order to do a detailed analysis, we selected San Francisco as a study site. In San Francisco, May is the month with the greatest frequency of risky days, even though September is the month with the greatest frequency of high air temperature, ≥30 °C. These results indicate that marine intertidal organisms can be protected from high temperature extremes due to the timing of tides and local weather patterns. In addition, annual fluctuations in tides influence the frequency of intertidal zone exposures to high temperature extremes. Peaks in risk for heat extremes in the intertidal zone occur every 18 years, the length of the tidal epoch. These results suggest that nonclimatic variables can complicate predictions of shifts in species ranges due to climate change, but that mechanistic approaches can be used to produce predictions that include these factors.  相似文献   

8.
Abstract: Both species and community‐level investigations are important for understanding the biotic impacts of climate change, because current evidence suggests that individual species responses are idiosyncratic. However, few studies of climate change impacts have been conducted on entire terrestrial arthropod communities living in the same habitat in the southern Hemisphere, and the effects of precipitation changes on them are particularly poorly understood. Here we investigate the species‐ and community‐level responses of microarthropods inhabiting a keystone plant species, on sub‐Antarctic Marion Island, to experimental reduction in precipitation, warming and shading. These climate manipulations were chosen based on observed climate trends and predicted indirect climate change impacts on this system. The dry‐warm and shade inducing treatments that were imposed effected significant species‐ and community‐level responses after a single year. Although the strongest community‐level trends included a dramatic decline in springtail abundance and total biomass under the dry‐warm and shade treatments, species responses were generally individualistic, that is, springtails responded differently to mites, and particular mite and springtail species responded differently to each other. Our results therefore provide additional support for the dynamic rather than static model for community responses to climate change, in the first such experiment in the sub‐Antarctic. In conclusion, these results show that an ongoing decline in precipitation and increase in temperature is likely to have dramatic direct and indirect effects on this microarthropod community. Moreover, they indicate that while at a broad scale it may be possible to make generalizations regarding species responses to climate change, these generalizations are unlikely to translate into predictable effects at the community level.  相似文献   

9.
Functional groups (FG) are an useful generalization to investigate environmental change effects on biotic communities. Assigning species to FGs is a contextual task and carries an arbitrary element, regardless of whether the grouping is obtained a priori or by sophisticated numerical methods. Using two grassland community case studies, we show that even simple FG allocation based on growth form, architecture and longevity (plants and mosses), or foraging characteristics (above-ground invertebrates) can be useful to increase our understanding of community processes. For example, the sensitivity of organisms to climate change increases with trophic rank and is higher in disturbed than in undisturbed communities. Complexity of interaction webs (in terms of web connectance), however, is larger in undisturbed than in disturbed communities. A significant and important relationship is likely to exist between anthropogenic disturbances, community complexity and the ecosystem effects of climate change. Trophic interactions may be disrupted much easier by climate changes in disturbed than in undisturbed communities where complexity may be buffering these effects.  相似文献   

10.
Forecasting how species will respond to climatic change requires knowledge of past community dynamics. Here we use time‐series data from the small‐mammal fossil records of two caves in the Great Basin of the American West to evaluate how contrasting and variable local paleoclimates have shaped small‐mammal abundance dynamics over the last ~7500 years of climatic change. We then predict how species and communities will respond to future scenarios of increased warming and aridity coupled with continued spread of an invasive annual grass (Bromus tectorum). We find that most community‐level responses to climatic change occur in the mammalian abundance structure at both sites; the dominance of the community by individuals from species with a southern geographic affinity increases with climatic warming. This suggests that responses occurred in situ rather than by the immigration of new taxa over this time interval. Despite predictability at the community‐scale, species‐level relationships between abundance and climate are variable and are not necessarily explained by a species' geographic affinity. Species present at both sites, however, exhibit remarkably similar responses to climate at each site, indicating that species autecology (specifically dietary functional group) is important in determining response to climatic warming. Regression‐tree analyses show remarkable concordance between the two cave faunas and highlight the importance of a granivorous dietary strategy in this desert ecosystem. Under projections of increased temperature and decreased precipitation over the next 50 years, our results indicate that granivores should thrive as communities become more dominated by individuals with a southern geographic affinity. Granivores, however, are negatively impacted by the invasion of cheatgrass. The last century of anthropogenic impacts has thus placed granivores at a greater risk of extinction than predicted under climate‐only scenarios.  相似文献   

11.

Aim

Despite an increasing number of studies highlighting the impacts of climate change on boreal species, the main factors that will drive changes in species assemblages remain ambiguous. We study how species community composition would change following anthropogenic and natural disturbances. We determine the main drivers of assemblage dissimilarity for bird and beetle communities.

Location

Côte-Nord, Québec, Canada.

Methods

We quantify two climate-induced pathways based on direct and indirect effects on species occurrence under different forest harvest management scenarios. The direct climate effects illustrate the impact of climate variables while the indirect effects are reflected through habitat-based climate change. We develop empirical models to predict the distribution of 127 and 108 species under climate-habitat and habitat-only models, respectively, over the next century. We analyse the regional and the latitudinal species assemblage dissimilarity by decomposing it into balanced variation in species occupancy and occurrence and occupancy and occurrence gradient.

Results

Both pathways increased dissimilarity in species assemblage. At the regional scale, both effects have an impact on decreasing the number of winning species. Yet, responses are much larger in magnitude under mixed climate effects. Regional assemblage dissimilarity reached 0.77 and 0.69 under mixed effects versus 0.09 and 0.10 under indirect effects for beetles and birds, respectively, between RCP8.5 and baseline climate scenarios when considering forest harvesting. Latitudinally, assemblage dissimilarity increased following the climate conditions pattern.

Main conclusions

The two pathways are complementary and alter biodiversity, mainly caused by species turnover. Yet, responses are much larger in magnitude under mixed climate effects. Therefore, inclusion of climatic variables considers aspects other than just those related to forest landscapes, such as life cycles of animal species. Moreover, we expect differences in occupancy between the two studied taxa. This could indicate the potential range of change in boreal species concerning novel environmental conditions.  相似文献   

12.
Biodiversity has been described as the diversity of life on earth within species, among species, and among ecosystems. The rate of biodiversity loss due to human activity in the last 50 years has been more rapid than at any other time in human history, and many of the drivers of biodiversity loss are increasing, including habitat loss, overexploitation, invasive species, climate change, and pollution, including pollution from reactive nitrogen (Nr). Of these stressors, climate change and Nr from anthropogenic activities are causing some of the most rapid changes. Climate change is causing warming trends that result in poleward and elevational range shifts of flora and fauna, and changes in phenology, particularly the earlier onset of spring events and migration, and lengthening of the growing season. Nitrogen (N) enrichment can enhance plant growth, but has been shown to favor, fast-growing, sometimes invasive, species over native species adapted to low N conditions. Although there have been only a few controlled studies on climate change and N interactions, inferences can be drawn from various field observations. For example, in arid ecosystems of southern California, elevated N deposition and changing precipitation patterns have promoted the conversion of native shrub communities to communities dominated by annual non-native grasses. Both empirical studies and modeling indicate that N and climate change can interact to drive losses in biodiversity greater than those caused by either stressor alone. Reducing inputs of anthropogenic Nr may be an effective mitigation strategy for protecting biodiversity in the face of climate change.  相似文献   

13.
Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.  相似文献   

14.
Species' range shifts in response to ongoing climate change have been widely documented, but although complex spatial patterns in species' responses are expected to be common, comprehensive comparisons of species' ranges over time have undergone little investigation. Here, we outline a modeling framework based on historical and current species distribution records for disentangling different drivers (i.e. climatic vs. nonclimatic) and assessing distinct facets (i.e. colonization, extirpation, persistence, and lags) of species' range shifts. We used extensive monitoring data for stream fish assemblages throughout France to assess range shifts for 32 fish species between an initial period (1980–1992) and a contemporary one (2003–2009). Our results provide strong evidence that the responses of individual species varied considerably and exhibited complex mosaics of spatial rearrangements. By dissociating range shifts in climatically suitable and unsuitable habitats, we demonstrated that patterns in climate‐driven colonization and extirpation were less marked than those attributed to nonclimatic drivers, although this situation could rapidly shift in the near future. We also found evidence that range shifts could be related to some species' traits and that the traits involved varied depending on the facet of range shift considered. The persistence of populations in climatically unsuitable areas was greater for short‐lived species, whereas the extent of the lag behind climate change was greater for long‐lived, restricted‐range, and low‐elevation species. We further demonstrated that nonclimatic extirpations were primarily related to the size of the species' range, whereas climate‐driven extirpations were better explained by thermal tolerance. Thus, the proposed framework demonstrated its potential for markedly improving our understanding of the key processes involved in range shifting and also offers a template for informing management decisions. Conservation strategies would greatly benefit from identifying both the geographical patterns and the species' traits associated with complex modifications of species' distributions in response to global changes.  相似文献   

15.
A wide range of evidences indicate climate change as one the greatest threats to biodiversity in the 21st century. The impacts of these changes, which may have already resulted in several recent species extinction, are species-specific and produce shifts in species phenology, ecological interactions, and geographical distributions. Here we used cutting-edge methods of species distribution models combining thousands of model projections to generate a complete and comprehensive ensemble of forecasts that shows the likely impacts of climate change in the distribution of all 55 marsupial species that occur in Brazil. Consensus projections forecasted range shifts that culminate with high species richness in the southeast of Brazil, both for the current time and for 2050. Most species had a significant range contraction and lost climate space. Turnover rates were relatively high, but vary across the country. We also mapped sites retaining climatic suitability. They can be found in all Brazilian biomes, especially in the pampas region, in the southern part of the Brazilian Atlantic Forest, in the north of the Cerrado and Caatinga, and in the northwest of the Amazon. Our results provide a general overview on the likely effects of global climate change on the distribution of marsupials in the country as well as in the patterns of species richness and turnover found in regional marsupial assemblages.  相似文献   

16.
Although future anthropogenic climate change is recognized as one of the major threats to European species, its implementation during reserve planning has only been started recently. We here describe climate change impacts on the Iberian endemic lizard Lacerta schreiberi expecting serious declines and range reductions due to a loss of suitable climate space in the next future. We apply species distribution models to assess possible future changes in the lizard’s range, identify areas with high extinction risk meriting conservation efforts and analyze whether the Natura 2000 network in its current stage will offer a sufficient protection for the genetically most valuable lineages. Despite a very good coverage and connectivity of the most valuable populations of L. schreiberi with the existing protected sites network, our results predict a strong loss of genetic variability by 2080. Also, two main patterns become evident: While the genetically less diverse north-western populations may be less affected by climate change, the climate change effects on the southern isolates and the genetically most diverse populations within the Central System may be devastating. To improve a successful prospective conservation of L. schreiberi the management of protected sites needs to consider the processes that threaten this species. Furthermore, our study highlights the urgent need to consider climate change effects on evolutionary significant units within the Natura 2000 framework.  相似文献   

17.
Historical harvesting pushed many whale species to the brink of extinction. Although most Southern Hemisphere populations are slowly recovering, the influence of future climate change on their recovery remains unknown. We investigate the impacts of two anthropogenic pressures—historical commercial whaling and future climate change—on populations of baleen whales (blue, fin, humpback, Antarctic minke, southern right) and their prey (krill and copepods) in the Southern Ocean. We use a climate–biological coupled “Model of Intermediate Complexity for Ecosystem Assessments” (MICE) that links krill and whale population dynamics with climate change drivers, including changes in ocean temperature, primary productivity and sea ice. Models predict negative future impacts of climate change on krill and all whale species, although the magnitude of impacts on whales differs among populations. Despite initial recovery from historical whaling, models predict concerning declines under climate change, even local extinctions by 2100, for Pacific populations of blue, fin and southern right whales, and Atlantic/Indian fin and humpback whales. Predicted declines were a consequence of reduced prey (copepods/krill) from warming and increasing interspecific competition between whale species. We model whale population recovery under an alternative scenario whereby whales adapt their migratory patterns to accommodate changing sea ice in the Antarctic and a shifting prey base. Plasticity in range size and migration was predicted to improve recovery for ice‐associated blue and minke whales. Our study highlights the need for ongoing protection to help depleted whale populations recover, as well as local management to ensure the krill prey base remains viable, but this may have limited success without immediate action to reduce emissions.  相似文献   

18.
Despite increasing concerns about the vulnerability of species'' populations to climate change, there has been little overall synthesis of how individual population responses to variation in climate differ between taxa, with trophic level or geographically. To address this, we extracted data from 132 long-term (greater than or equal to 20 years) studies of population responses to temperature and precipitation covering 236 animal and plant species across terrestrial and freshwater habitats. Our results identify likely geographical differences in the effects of climate change on populations and communities in line with macroecological theory. Temperature tended to have a greater overall impact on populations than precipitation, although the effects of increased precipitation varied strongly with latitude, being most positive at low latitudes. Population responses to increased temperature were generally positive, but did not vary significantly with latitude. Studies reporting significant climatic trends through time tended to show more negative effects of temperature and more positive effects of precipitation upon populations than other studies, indicating climate change has already impacted many populations. Most studies of climate change impacts on biodiversity have focused on temperature and are from middle to high northern latitudes. Our results suggest their findings may be less applicable to low latitudes.  相似文献   

19.

Aim

Changes to the extent and severity of wildfires driven by anthropogenic climate change are predicted to have compounding negative consequences for ecological communities. While there is evidence that severe weather events like drought impact amphibian communities, the effects of wildfire on such communities are not well understood. The impact of wildfire on amphibian communities and species is likely to vary, owing to the diversity of their life-history traits. However, no previous research has identified commonalities among the amphibians at most risk from wildfire, limiting conservation initiatives in the aftermath of severe wildfire. We aimed to investigate the impacts of the unprecedented 2019–2020 black summer bushfires on Australian forest amphibian communities.

Location

Eastern coast of New South Wales, Australia.

Methods

We conducted visual encounter surveys and passive acoustic monitoring across 411 sites within two regions, one in northeast and one in southeast New South Wales. We used fire severity and extent mapping in two multispecies occupancy models to assess the impacts of fire on 35 forest amphibian species.

Results

We demonstrate a negative influence of severe fire extent on metacommunity occupancy and species richness in the south with weaker effects in the north—reflective of the less severe fires that occurred in this region. Both threatened and common species were impacted by severe wildfire extent. Occupancy of burrowing species and rain forest specialists had mostly negative relationships with severe wildfire extent, while arboreal amphibians had neutral relationships.

Main Conclusion

Metacommunity monitoring and adaptive conservation strategies are needed to account for common species after severe climatic events. Ecological, morphological and life-history variation drives the susceptibility of amphibians to wildfires. We document the first evidence of climate change-driven wildfires impacting temperate forest amphibian communities across a broad geographic area, which raises serious concern for the persistence of amphibians under an increasingly fire-prone climate.  相似文献   

20.
Both disturbance history and disturbance type act to structure communities through selecting for particular species traits but they may also interact. For example, flooding selects for species with flood‐resistant traits in streams, but those traits could make communities susceptible to other disturbances and so could cause shifts in community composition due to anthropogenic climate change. To better understand the interactive influences of disturbance history and type on community composition, we investigated the response of macroinvertebrate communities to disturbance using in‐stream channels. Using a split‐plot design, individual channels in five ‘stable’ streams and five ‘frequently disturbed’ streams (disturbance history) were subject to different disturbance type treatments (flooding, drying and a control). Disturbance type independently drove effects on species diversity, but all other effects of disturbance type depended on disturbance history. In particular, the interaction of disturbance type and history determined overall community response. Both disturbance types tested produced similar community responses in frequently disturbed streams, including changes in community composition and alterations to the abundance of less mobile taxa, but low‐flow had a significantly greater effect in stable streams. Macroinvertebrate drift was greatest in the rock‐rolling treatments and significantly less in the low‐flow treatment for both disturbance histories. Therefore, disturbance history moderated the effects of disturbance type and determined the mechanism of community response by determining how well species were adapted to disturbance. This outcome suggests that previous disturbances strongly influence how vulnerable communities are to changes in disturbance, and so should be considered when predicting how changes in disturbance regimes will affect future community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号