首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sex pheromone gland of female Heliothis virescens was analyzed for fatty acid and lipid content. Base methanolysis of the gland showed a large amount of methyl (Z)-11-hexadecenoate (Z11-16:Acyl), the fatty acyl analog of the major pheromone component, (Z)-11-hexadecenal, as well as a small amount of methyl (Z)-11-octadecenoate. Methyl esters of various common fatty acids were also observed. HPTLC analysis of the glandular lipids revealed large quantities of triacylglycerols (TGs), and lesser amounts of 1,2-diacylglycerols (1,2-DGs), 2-monoacylglycerols (2-MGs), phosphatidyl ethanolamines, and phosphatidyl cholines. The greatest amount of Z11-16:Acyl in these lipids was in the TGs, with lesser amounts in the two phospholipid classes and only trace amounts in the other neutral lipids. The glands of females at various ages and photoperiodic times were extracted, fractionated into neutral and polar fractions by silica SPE, and fatty acid titers in these fractions determined. All fatty acids, but notably Z11-16:Acyl, showed significant total and neutral lipid fraction peaks at mid scotophase for 2-day-old females; a less dramatic, but significant, Z11-16:Acyl peak in the polar fraction was also observed. However, only a relatively small proportion (<50%) of this acid was recovered from the silica at all times. This "non-recoverable" Z11-16:Acyl showed a dramatic and significant peak at mid scotophase for 2-day females, corresponding roughly with maximal pheromone titer. All other acids in the gland were recovered in high proportions, and their respective "non-recoverable" titers were not different at any of the times analyzed. Based on previous work, this non-recoverable Z11-16:Acyl is likely the CoA ester. Therefore, it appears that the pheromone gland of H. virescens maintains pools of Z11-16:Acyl in both CoA ester and TG forms, which are available for biosynthesis of pheromone. These pools are greatest during maximal pheromone production when the biosynthetic enzymes, possibly the fatty acid reductase, are unable to utilize rapidly enough the quantities of Z11-16:Acyl biosynthesized.  相似文献   

2.
The control of pheromone biosynthesis by the neuropeptide PBAN was investigated in the moth Heliothis virescens. When decapitated females were injected with [2-(14)C] acetate, females co-injected with PBAN produced significantly greater quantities of radiolabeled fatty acids in their pheromone gland than females co-injected with saline. This indicates that PBAN controls an enzyme involved in the synthesis of fatty acids, probably acetyl CoA carboxylase. Decapitated females injected with PBAN showed a rapid increase in native pheromone, and a slower increase in the pheromone precursor, (Z)-11-hexadecenoate. Total native palmitate and stearate (both pheromone intermediates) showed a significant decrease after PBAN injection, before their titers were later restored to initial levels. In contrast, the acyl-CoA thioesters of these two saturated fatty acids increased during the period when their total titers decreased. When a mixture of labeled palmitic and heptadecanoic (an acid that cannot be converted to pheromone) acids was applied to the gland, PBAN-injected females produced greater quantities of labeled pheromone and precursor than did saline-injected ones. The two acids showed similar time-course patterns, with no difference in total titers of each of the respective acids between saline- and PBAN-injected females. When labeled heptadecanoic acid was applied to the gland alone, there was no difference in titers of either total heptadecanoate or of heptadecanoyl-CoA between PBAN- and saline-injected females, suggesting that PBAN does not directly control the storage or liberation of fatty acids in the gland, at least for this fatty acid. Overall, these data indicate that PBAN also controls a later step involved in pheromone biosynthesis, perhaps the reduction of acyl-CoA moieties. The control by PBAN of two enzymes, near the beginning and end of the pheromone biosynthetic process, would seem to allow for more efficient utilization of fatty acids and pheromone than control of only one enzyme.  相似文献   

3.
《Insect Biochemistry》1989,19(2):177-181
The fatty acid composition of Thaumetopoea pityocampa female sex pheromone gland was determined. In addition to the common C16 and C18 fatty acids, the glandular tissue contains large amounts of (Z)-11-hexadecenoate, (Z,Z)-11,13-hexadecadienoate, (Z)-13-hexadecen-11-ynoate and 11-hexadecynoate, as well as some unusual C18 fatty acids, such as (Z)-11 and (Z)-13-octadecenoic acids. From these results, different biosynthetic pathways are discussed for the formation of (Z)-13-hexadecen-11-ynyl acetate, the main component of the sex pheromone of the processionary moth.  相似文献   

4.
Deuterium-labeled hexadecanoic acid (D4-16:COOH), a sex pheromone biosynthetic intermediate, and heptadecanoic acid (D3-17:COOH), an acid that cannot be converted to sex pheromone, were topically applied to the pheromone gland of female Heliothis virescens, and the fate of the label determined. Both acids were incorporated similarly into the glycerolipids, with by far the greatest amount found in the triacylglycerols (TGs), and relatively small amounts found in other neutral and polar classes. For D4-16:COOH, the labeled pheromone precursor, (Z)-11-hexadecenoate, was also found predominantly in the TGs but relatively (compared to labeled hexadecanoate) high amounts were also found in the phospholipids. Within the TGs, both acids, as well as the pheromone precursor, were found almost exclusively on the sn-3 position of the glycerol backbone. This demonstrates that the major fate, in the glycerolipids, of free fatty acids is addition to 1,2-diacylglycerols. A relatively large amount of the applied acid was also found in the gland in the form of the acyl-CoA thioester. In a 24-h time-course study, this form remained at a relatively high level for the duration of the assay, and decreased at a rate comparable to the titer of this acid in the TGs, suggesting that titers of fatty acids in the glycerolipids and acyl-CoA thioesters may be in equilibrium. A time-course assay with D4-16:COOH demonstrated that peak pheromone titer after application was reached before peak titers of both total hexadecanoate and hexadecanoyl-CoA. Combined with a dose-response experiment, which showed that labeled pheromone titer did not increase above an applied concentration of 20 mg/ml, these data suggest that the final step in pheromone biosynthesis, reduction of Z11-16:Acyl-CoA, may be inhibited by increased acyl-CoA titers in the gland. Overall, our data are consistent with the glycerolipids modulating acyl-CoA concentrations in the pheromone gland.  相似文献   

5.
Using a tracer–tracee approach, we fed 1-d-old virgin Heliothis virescens U-13C-glucose and analyzed the key labeled fatty acids, (Z)-11-hexadecenoate, hexadecanoate and octadecanoate, known to be intermediates in pheromone biosynthesis, by mass isotopomer distribution analysis. This method allowed determination of enrichment, and fractional (FSR) and absolute (ASR) synthetic rates. As expected, FSRs and ASRs for all three moieties were greater in the scotophase than photophase. However, in whole gland extracts, FSRs and ASRs of (Z)-11-hexadecenoate and hexadecanoate were much lower than those of the major pheromone component, (Z)-11-hexadecenal, determined previously. Since pheromone is made via these acids, we postulated that pheromone was produced directly and very rapidly via a small pool of acyl CoA thioesters of these acids and that the pool of acids we analyzed in our whole gland extract was largely a ‘dead end’ pool of excess acids (i.e., not converted directly to pheromone) stored in glycerolipids. We tested this by fractionating the whole glandular extract and analyzing the glycerolipid fraction. FSRs and ASRs for the two acids in the glycerolipid fraction were similar to those for the whole gland extract, confirming our postulate. Thus, most acetate produced in the pheromone gland is converted rapidly and directly to pheromone, while excess fatty acids are stored in glycerolipids and remain relatively inaccessible for pheromone production, at least over the two periods studied. Precursor enrichment of octadecanoate was substantially lower than that determined for the two 16-carbon acids and pheromone component. This suggests that hexadecanoate is the principal product of the multi-enzyme complex fatty acid synthase in the gland, and that octadecanoate is formed by subsequent chain elongation of hexadecanoate.  相似文献   

6.
Deuterium-labeled fatty acids have been used to elucidate the sex pheromone biosynthetic pathway in Spodoptera littoralis. Label from palmitic acid was incorporated during the scotophase into all the pheromone acetates and their corresponding fatty acyl intermediates. (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone blend, is synthesized from palmitic acid via tetradecanoic acid, which, by the action of a specific (E)-11 desaturase and subsequently a (Z)-9 desaturase, is converted into (Z,E)-9,11-tetradecadienoate. By further reduction and acetylation, this compound leads to the dienne acetate. Deuterated precursors applied to the pheromone gland during the photophase were also incorporated into the pheromone. The percentage of labeled (Z,E)-9,11-tetradecadienyl acetate relative to natural compound was significantly higher during the light period. Label incorporation from different intermediates into the pheromone was stimulated by injection of brain-subesophageal ganglion extract during the photophase. The influence of the pheromone biosynthesis-activating neuropeptide on the biosynthetic pathway is discussed.  相似文献   

7.
The regulation of pheromone biosynthesis by the neuropeptide PBAN in the Z strain of the European corn borer, Ostrinia nubilalis, was investigated using labeled intermediates. Injection of radiolabeled acetate showed PBAN did not influence the de novo synthesis of saturated fatty acids in the gland. When deuterium-labeled myristic acid was topically applied to the gland, females injected with PBAN produced more labeled pheromone than did control females, indicating that PBAN controls one of the later steps of pheromone biosynthesis. Although more myristic acid was Delta11-desaturated in the gland in the presence of PBAN, this was counterbalanced by less Delta11-desaturation of palmitic acid, indicating that desaturase activity did not change overall. This change in flux of myristic acid through to pheromone was shown to be caused by increased reduction of fatty acid pheromone precursors occurring in the presence of PBAN.  相似文献   

8.
Sex pheromones of many moth species have relatively simple structures consisting of a hydrocarbon chain with a functional group and one to several double bonds. These sex pheromones are derived from fatty acids through specific biosynthetic pathways. We investigated the incorporation of deuterium-labeled tetradecanoic, hexadecanoic, and octadecanoic acid precursors into pheromone components of Heliothis subflexa and Heliothis virescens. The two species utilize (Z)11-hexadecenal as the major pheromone component, which is produced by Delta11 desaturation of hexadecanoic acid. H. subflexa also produced (Z)11-hexadecanol and (Z)-11-hexadecenyl acetate via Delta11 desaturation. In H. subflexa, octadecanoic acid was used to biosynthesize the minor pheromone components (Z)9-hexadecenal, (Z)9-hexadecenol, and (Z)9-hexadecenyl acetate. These minor components are produced by Delta11 desaturation of octadecanoic acid followed by one round of chain-shortening. In contrast, H. virescens used hexadecanoic acid as a substrate to form (Z)11-hexadecenal and (Z)11-hexadecenol and hexadecenal. H. virescens also produced (Z)9-tetradecenal by Delta11 desaturation of the hexadecanoic acid followed by one round of chain-shortening and reduction. Tetradecanoic acid was not utilized as a precursor to form Z9-14:Ald in H. virescens. This labeling pattern indicates that the Delta11 desaturase is the only active desaturase present in the pheromone gland cells of both species.  相似文献   

9.
Biosynthesis of the sex pheromone components (Z)-5-dodecenol and (Z,E)-5,7-dodecadienol in Dendrolimus punctatus was studied by topical application of deuterium-labeled fatty acids to pheromone glands and subsequent analysis of fatty acyl groups and pheromone components by gas chromatography-mass spectrometry. Our studies suggest that both (Z)-5-dodecenol and (Z,E)-5,7-dodecadienol can be biosynthetically derived from chain elongation of palmitate to stearate in the gland, and its subsequent Delta11 desaturation to produce (Z)-11-octadecenoate. After three cycles of 2-carbon chain-shortening, the pheromone glands produce (Z)-5-dodecenoate, which is then converted to (Z)-5-dodecenol by reduction. A second Delta11 desaturation of (Z)-9-hexadecenoate produces (Z,E)-9,11-hexadecadienoate, which is then chain shortened in two cycles of beta-oxidation and finally converted to (Z,E)-5,7-dodecadienol by reduction.  相似文献   

10.
Sex pheromones of many Lepidopteran species have relatively simple structures consisting of a hydrocarbon chain with a functional group and usually one to several double bonds. The sex pheromones are usually derived from fatty acids through a specific biosynthetic pathway. We investigated the incorporation of deuterium-labeled palmitic and stearic acid precursors into pheromone components of Helicoverpa zea and Helicoverpa assulta. The major pheromone component for H. zea is (Z)11-hexadecenal (Z11-16:Ald) while H. assulta utilizes (Z)9-hexadecenal (Z9-16:Ald). We found that H. zea uses palmitic acid to form Z11-16:Ald via delta 11 desaturation and reduction, but also requires stearic acid to biosynthesize the minor pheromone components Z9-16:Ald and Z7-16:Ald. The Z9-16:Ald is produced by delta 11 desaturation of stearic acid followed by one round of chain-shortening and reduction to the aldehyde. The Z7-16:Ald is produced by delta 9 desaturation of stearic acid followed by one round of chain-shortening and reduction to the aldehyde. H. assulta uses palmitic acid as a substrate to form Z9-16:Ald, Z11-16:Ald and 16:Ald. The amount of labeling indicated that the delta 9 desaturase is the major desaturase present in the pheromone gland cells of H. assulta; whereas, the delta 11 desaturase is the major desaturase in pheromone glands of H. zea. It also appears that H. assulta lacks chain-shortening enzymes since stearic acid did not label any of the 16-carbon aldehydes.  相似文献   

11.
Two Helicoverpa species, H. armigera and H. assulta use (Z)-11-hexadecenal and (Z)-9-hexadecenal as their sex attractant pheromone components but in opposite ratios. Since both female and male interspecific hybrids produced by female H. assulta and male H. armigera have been obtained in our laboratory, we can make a comparative study of sex pheromone composition and biosynthesis in the two species and their hybrid. With GC and GC-MS analyses using single gland extracts, the ratio of (Z)-9-hexadecenal to (Z)-11-hexadecenal was determined as 2.1:100 in H. armigera, and 1739:100 in H. assulta. The hybrid has a ratio of 4.0: 100, which is closer to that of H. armigera, but significantly different from H. armigera. We investigated pheromone biosynthesis with labeling experiments, using various fatty acid precursors in H. armigera, H. assulta and the hybrid. In H. armigera, (Z)-11-hexadecenal is produced by delta11 desaturation of palmitic acid, followed by reduction and terminal oxidation; (Z)-9-hexadecenal results from delta11 desaturation of stearic acid, followed by one cycle of chain shortening, reduction and terminal oxidation. delta11 desaturase is the unique desaturase for the production of the two pheromone components. In our Chinese strain of H. assulta, palmitic acid is used as the substrate to form both the major pheromone component, (Z)-9-hexadecenal and the minor one, (Z)-11-hexadecenal. Our data suggest that delta9 desaturase is the major desaturase, and delta11 desaturase is responsible for the minor component in H. assulta, which is consistent with previous work. However, the weak chain shortening acting on (Z)-9 and (Z)-11-octadecenoic acid, which is present in the pheromone glands, does occur in this species to produce (Z)-7 and (Z)-9-hexadecenoic acid. In the hybrid, the major pheromone component, (Z)-11-hexadecenal is produced by delta11 desaturation of palmitic acid, followed by reduction and terminal oxidation. The direct fatty acid precursor of the minor component, (Z)-9-hexadecenoic acid is mainly produced by delta9 desaturation of palmitic acid, but also by delta11 desaturation of stearic acid and one cycle of chain shortening. The greater relative amounts of (Z)-9-hexadecenal in the hybrid are due to the fact that both palmitic and stearic acids are used as substrates, whereas only stearic acid is used as substrate in H. armigera. The evolutionary relationships between the desaturases in several Helicoverpa species are also discussed in this paper.  相似文献   

12.
Biosynthesis of the sex pheromone components, (Z)-5-tetradecenyl acetate (Z5-14:OAc) and (Z)-7-tetradecenyl acetate (Z7-14:OAc), was investigated in the New Zealand tortricid moth Planotortrix excessana (Walker) by fatty acid methyl ester (FAME) analysis of base-methanolyzed extracts of lipids in the sex pheromone gland and through application of various labelled fatty acids. Analysis of the base-methanolyzed gland extracts revealed common FAMEs, including methyl oleate and methyl palmitoleate, as well as the FAMEs of the putative precursors, methyl (Z)-5-tetradecenoate and methyl (Z)-7-tetradecenoate. Application of labelled, saturated fatty acids, myristic, palmitic, and stearic did not result in any significant incorporation of label into either of the unsaturated pheromone components, although label was incorporated into tetradecyl acetate (14:OAc). In contrast, application of labelled oleic acid resulted in incorporation of label into Z5-14:OAc but not into Z7-14:OAc or into 14:OAc, whereas application of labelled palmitoleic acid resulted in incorporation of label into Z7-14:OAc but not into Z5-14:OAc or 14:OAc. These data support a route for biosynthesis of Z5-14:OAc and Z7-14:OAc in this species by limited β-oxidation of the common fatty acyl moieties, respectively, oleate (involving two cycles of 2-carbon chain-shortening) and palmitoleate (involving only one cycle of 2-carbon chain-shortening), and apparently involving no desaturase (other than the common Δ9) specific to sex pheromone biosynthesis. Interestingly, P. excessana females biosynthesize the same component (Z5-14:OAc) from an entirely different route from that of the related species Ctenopseustis obliquana (which biosynthesizes Z5-14:OAc by Δ5-desaturation of myristate). Additionally, the pheromone biosynthesis activating neuropeptide (PBAN) stimulates pheromone biosynthesis in this species. Arch. Insect Biochem. Physiol. 37:158–167, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Lipids in the sex pheromone gland of females of the Z-strain of Ostrinia nubilalis were analyzed for fatty acyl pheromone analogs (FAPAs) and other potential biosynthetic intermediates. More than 80% of the FAPAs were found in the triacylglycerols (TGs), with smaller amounts found in the phosphatidyl cholines, ethanolamines, and serines. Analysis of the TGs by lipase revealed that the two FAPAs were distributed fairly evenly among all three stereospecific positions. Comparison of changes in titers of key glandular fatty acids with those of pheromone components, with respect to photoperiodic time and age of females, showed that both FAPA and pheromone titers exhibited a cyclical pattern with peaks in the scotophase and valleys in the photophase. However, whereas pheromone titer tended to peak in the first half of the scotophase, FAPA titer peaked at the end of the scotophase. Significantly, the titer of the FAPA of the minor component, (E)-11-tetradecenyl acetate (3% of pheromone), was always much greater than the titer of the FAPA of the major component, (Z)-11-tetradecenyl acetate (97%), of the pheromone. Titer of myristate, an intermediate in pheromone biosynthesis, was also higher during the scotophase than the photophase. However, myristate titer showed a pronounced dip in the middle of the scotophase. These data suggest two roles for glandular lipids in sex pheromone biosynthesis in O. nubilalis. Firstly, they remove excess FAPA of the minor component so the fatty acid reductase system is not presented with a high ratio of this isomer (which would otherwise result from the reductase's own selectivity), which could cause changes in the final pheromone ratio. Secondly, hydrolysis of the large amounts of stored saturated fatty acids from the TGs may provide substrate for pheromone biosynthesis.  相似文献   

14.
The effect of 10,11-methylenetetradec-10-enoic acid on the sex pheromone biosynthetic pathway of Spodoptera littoralis is reported. This new cyclopropene fatty acid inhibited the biosynthesis of the main pheromone component from labeled myristicacid. The study of each Z desaturation step revealed that the Z9-desaturase of E11–14:Acid was inhibited, whereas the Z11-desaturase of 16:Acid was not affected. The results presented in this article agree with our hypothesis that the methylenehexadecenoic acids are beta-oxidized in the pheromone gland to the corresponding methylenetetradecenoic acids. © 1994 Wiley-Liss, Inc.  相似文献   

15.
In order to clarify the biochemical basis to the divergence of sex pheromones in the genus Ostrinia (Lepidoptera: Crambidae), the pheromone biosynthetic pathway in O. zaguliaevi, a close relative of the European corn borer O. nubilalis, was investigated. Deuterium-labeled hexadecanoic or tetradecanoic acids were topically applied to the surface of the pheromone gland, and the incorporation of the label into pheromone components and their putative precursors was determined. It was suggested that the two components shared by O. zaguliaevi and O. nubilalis, (E)-11- and (Z)-11-tetradecenyl acetates, are biosynthesized from hexadecanoic acid through one round of chain shortening, Delta11 desaturation, reduction, and acetylation. An additional component specifically found in O. zaguliaevi, (Z)-9-tetradecenyl acetate, is likely to be produced by delta11 desaturation of hexadecanoic acid, one round of chain shortening, reduction, and acetylation. Non-production of (Z)-9-tetradecenyl acetate in O. nubilalis was suggested to be due to the blockage of chain shortening from (Z)-11-hexadecenoate to (Z)-9-tetradecenoate.  相似文献   

16.
In vivo treatments of female sex pheromone glands of the processionary moth, Thaumetopoea pityocampa, with mass-labeled fatty acids showed that (Z)-13-hexadecen-11-ynyl acetate, the main sex pheromone component, is biosynthesized from palmitic acid by the combined action of delta-11 and delta-13 desaturases. The involvement of this unusual delta-13 has been proven by application of [16,16,16-2H3] [1,2-13C2]-hexadecanoic acid to the glands with a resultant incorporation of all labeled atoms into the pheromone and each one of the corresponding intermediates. These results seem to exclude alternative biosynthetic pathways, such as chain shortening and elongation combined with delta-11 desaturation. The delta-11 desaturase responsible for the formation of the triple bond in both the 11-hexadecynoyl and (Z)-13-hexadecen-11-ynoyl intermediates is also an unusual enzyme not previously reported in lepidopteran sex pheromone biosynthesis.  相似文献   

17.
Manduca sexta females that were decapitated produced no pheromone during the scotophase following decapitation, indicating that they were free of pheromone biosynthesis activating neuropeptide (PBAN). When deuterated hexadecanoic or (Z)-11-hexadecenoic acid was applied to the sex pheromone glands of decapitated or intact females of the same age, and allowed to incubate in vivo for 24 h, deuterium labeled Δ-11- and Δ-10, 12-unsaturated 16-carbon fatty acids were produced in both types of females. Injection of PBAN into intact or decapitated females 23 h after application of labeled acids had no effect on the production of unsaturated labeled fatty acids. However, deuterium labeled aldehydes were produced only in females that were injected with PBAN. Therefore, in this species, PBAN activates the process by which fatty acyl precursors in the pheromone gland are converted into the pheromonal aldehydes. © 1995 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    18.
    The pheromone blend produced by the tobacco hornworm moth (Manduca sexta) (L.) female is unusually complex and contains two conjugated dienals and trienals together with two monounsaturated alkenals. Here, we describe the identification and construction of two genes encoding MsexKPSE and MsexAPTQ desaturases from a cDNA library prepared from the total RNA of the M. sexta pheromone gland. The MsexKPSE desaturase shares a high degree of similarity with Delta(9)-desaturases from different moth species. The functional expression of MsexAPTQ desaturase in Saccharomyces cerevisiae followed by a detailed GC-MS analysis of fatty acid methyl esters (FAME) and their derivatized products and gas-phase Fourier transform infrared (FTIR) spectroscopy of the extracted FAME confirms that this enzyme is a bifunctional Z-Delta(11)-desaturase. MsexAPTQ desaturase catalyses the production of Z11-hexadecenoate (Z11-16) and Z10E12- and E10E12-hexadecadienoates (Z10E12-16) via 1,4-desaturation of the Z11-16 substrate. The stereochemistry of 1,4-desaturation and formation of isomers is discussed.  相似文献   

    19.
    Previously, we demonstrated that sex pheromone production in mated female Heliothis virescens moths is dependent upon hemolymph trehalose concentration (HTC), which is influenced by activities such as the feeding of adults on sucrose. In this paper we demonstrate, for the first time, that this effect also occurs in starved (i.e., sugar-stressed) virgin females. Females allowed to feed on sugar for 6 days, following eclosion, had significantly greater titers than females that had fed only on water (i.e., were starved). No differences in pheromone titer were observed between sugar- and water-fed females at shorter (1 or 3 days) periods following eclosion. The relatively short-term effects of HTC on sex pheromone titer of virgins, were demonstrated by feeding experiments, in which starved (for 4 days) virgins fed on 10% sucrose solution had significantly greater HTC and pheromone titers than ones fed only on water; an increase in HTC was apparent within an hour, while the increase in pheromone titer was apparent within 2.5 h, of sugar feeding. Starvation also showed similar effects on titers of pheromone gland fatty acids (pheromone intermediates) and HTC. Over 6 days of starvation, fatty acid titers and HTC declined gradually. After feeding on sucrose, titers of hexadecanoic, (Z)-9-hexadecanoic, (Z)-11-hexadecanoic and (Z)-9-octadecanoic, acids, as well as HTC, increased significantly 24 h later, but titers of octadecanoic and (Z,Z)-9,12-octadecanoic (linoleic) acids did not. Lepidoptera cannot biosynthesize polyunsaturated acids, but the lack of change in octadecanoic acid titer suggests this acid may not participate in pheromone biosynthesis. In addition to these short-term changes in pheromone and fatty acid production, mediated by HTC, a longer-term effect of age, regardless of HTC, on pheromone titer was observed. Overall, these results are consistent with hemolymph trehalose and glandular fatty acids acting as twin metabolite reservoirs for pheromone biosynthesis. Hemolymph trehalose, able to be refilled through feeding on exogenous sugars, has a one-way flow of metabolites for synthesis of glandular free fatty acids (FFAs) and pheromone, while glandular glycerolipids provide a reversible reservoir for metabolites, accepting surplus FFAs when glandular concentrations are high, and providing FFAs for pheromone biosynthesis when concentrations are low.  相似文献   

    20.
    The temperature-composition phase diagrams of dipalmitoylphosphatidylcholine (DPPC)/palmitic acid and distearoylphosphatidylcholine (DSPC)/stearic acid mixtures in excess water were recorded using high-sensitivity differential scanning calorimetry. New, slowly reversible phase transitions were found at 38° C in DPPC/palmitic acid mixtures at 0.4–0.9 mole fractions of palmitic acid and at 46° C in the DSCP/stearic acid binary. These transitions reveal gel-state metastability of the mixtures which is caused most probably by co-crystallization of the two lipids as it cannot be observed in the pure components. Both mixtures display azeotropic behavior at 2 fatty acids per 1 phospholipid. The physical reasons for such behavior have been analyzed theoretically in the framework of the Bragg-Williams and the UNIversal QUAsiChemical (UNIQUAC) approximations. This analysis shows that the azeotropic points in the phase diagrams are due to a combination of compound formation in the solid state and close to random mixing in the liquid state of the mixtures. UNIQUAC provides better fits to the experimental phase diagrams since it accounts also for the dimer-monomer character of the phospholipid/fatty acid mixtures. At fatty acid mole fractions greater than 0.65–0.7 the excess fatty acids phase separate from the compound phase. The stability of the compound phase domains at low fatty acid concentrations in relation to their possible physiological role has been discussed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号