首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbit intestinal epithelial cells, obtained after a limited hyaluronidase digestion, were incubated in medium with or without calf serum, on bacteriological plastic dishes. The dishes, either plain or coated with an air-dried type I collagen film, were pretreated with medium alone or with medium containing purified laminin or purified fibronectin. Cells did not attach in significant numbers to untreated bacteriological plastic, even in the presence of serum. Cells did attach to collagen-coated dishes, and were judged viable on the basis of their incorporation of radiolabeled leucine into cell protein. Cell adhesion to the collagen substrate increased in proportion to the concentration of serum in the medium, with maximal attachment at 5% serum or greater. Pretreatment of plain or collagen-coated dishes with increasing amounts of fibronectin enhanced cell adhesion in a concentration-dependent manner. Either serum, or fibronectin-free serum in the medium enhanced cell attachment to substrates pretreated with cither fibronectin or laminin. Thus, intestinal epithelial cells appear to possess surface receptors for both laminin and fibronectin. The evidence further suggests that calf serum may contain factors, other than fibronectin, capable of enhancing intestinal epithelial cell attachment to collagen substrates.  相似文献   

2.
Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.  相似文献   

3.
Summary The distribution and organization of the extracellular matrix (ECM) proteins laminin, fibronectin, entactin, and type IV collagen were investigated in primary colonies and secondary cultures of bovine lens epithelial cells using species-specific antisera and indirect immunofluorescence microscopy. Primary cell colonies fixed in formaldehyde and permeabilized with Triton X-100 displayed diffuse clonies. In contrast, thick bundles of laminin and fibronectin were located on the basal cellsurfaces and in between cells in the densely packed center of the colonies, and as “adhesive plaques” and fine extracellular matrix cords in the sparsely populated (migratory) outer edge of the colonies. The distribution of ECM proteins observed in secondary lens epithelial cell cultures was similar to that observed at the periphery of the primary colony. Extraction of the secondary cell cultures with sodium deoxycholate confirmed that laminin and fibronectin were deposited on the basal cell surface. Indeed, the patterns of laminin and fibronectin deposition suggested that these proteins codistribute. These results establish that lens epithelial cells in culture can be used as a model system to study the synthesis and extracellular deposition of the basement membrane proteins, laminin and fibronectin. Supported by Public Health Service grant EY05570 from the National Eye Institute Bethesda, MD.  相似文献   

4.
Fibronectin and laminin production by human keratinocytes cultured in serum-free, low-calcium medium without a fibroblast feeder layer were examined by several techniques. By indirect immunofluorescence, fibronectin but not laminin appeared as short radial fibrils between the cells and the substratum, and in the pericellular matrix. Synthesis of fibronectin and laminin by 7-day keratinocyte cultures was determined by 18 hr 35S-methionine metabolic labeling followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Fibronectin accounted for 2.9% of total synthesized protein, 26.5% of fluid phase protein secretion, and 4.3% of deposited ECM protein. In contrast, only 0.1% of the total synthesized protein was laminin, little (6.3%) of this product was secreted, and none of this product was deposited in the ECM. Our results indicate that human keratinocytes under culture conditions that prevent terminal differentiation in vitro can synthesize, secrete, and deposit fibronectin in the extracellular matrix. Although these cells synthesize laminin, they secrete very little and deposit no detectable laminin in the matrix under these culture conditions. From these data we believe that fibronectin may play an important role in the interaction of epidermal cells with connective tissue matrix during wound healing or morphogenesis in in vivo situations in which the epidermis is not terminally differentiated.  相似文献   

5.
A growth factor (EDGF) derived from the retina controls the proliferation and shape of adult bovine epithelial lens (BEL) cells in vitro as well as extracellular matrix (ECM) assembly. In order to analyse this mechanism and the specificity of the interactions between BEL cells and the extracellular matrix we have investigated the adhesion and growth of BEL cells on various substrata (fibronectin, laminin, ECM). BEL cells treated with EDGF adhered more slowly to plastic Petri dishes than untreated cells, in part due to EDGF inhibition of fibronectin deposition. The untreated BEL cells spread less well on ECM or laminin than on fibronectin-coated plastic. The preferential adhesiveness of BEL cells on fibronectin vs laminin was confirmed by attachment experiments performed on replicas of SDS-PAGE of these proteins. However, in long-term cultures, 8 days after seeding, BEL cells were very differently arranged on plastic or on ECM. ECM by itself did not increase the proliferation rate but helped to restore an organized cell monolayer. BEL cells stimulated to grow on ECM by treatment with EDGF exhibited at least transiently contact inhibition producing a perfectly organized epithelium similar to the one observed in vivo. These results suggest specific interactions between ECM or ECM components with BEL cell that restrain excessive cell spreading and restore an original polarized phenotype of the cells seen in vivo.  相似文献   

6.
Laminin and fibronectin are glycoproteins that influence cell behavior and mediate cell/substratum adhesion. We have examined the interaction of these macromolecules with the serine protease plasminogen activator (PA) in two types of extracellular matrices; one produced by the murine Engelbreth-Holm-Swarm (EHS) tumor (Matrigel), and another by normal kidney epithelial cells in culture. Matrigel was found to contain significant quantities of tissue-type PA (tPA). Two of the major components of Matrigel, laminin and type IV collagen, were also examined. Tissue-type PA was associated with purified preparations of laminin; however, it was not found associated with type IV collagen. Normal kidney epithelial cells in culture secrete large amounts of urokinase (UK) and deposit a subepithelial matrix containing both laminin and fibronectin. These matrix macromolecules were isolated from the deposited matrix by immunoprecipitation, examined by zymography, and found to contain UK. The potential role of this interaction in the mechanisms of cell migration and matrix remodeling is discussed.  相似文献   

7.
Summary A primary culture of serous cystadenocarcinoma of the ovary was used to study the expression of intermediate filament proteins and the deposition of basal lamina proteins. It was found that cells grown on type I and IV collagens or in collagen gels failed to express vimentin, which was readily demonstrable in cultures of the same cells grown on plastic or glass. Furthermore cells grown in collagen gels formed colonies demonstrating a cystic architecture Unlike what is commonly observed on glass or plastic where laminin and fibronectin are deposited as disorganized fibrils in the extracellular space, in or on collagen these proteins appear solely at the interface between the epithelial cells and matrix. The results suggest that the extracellular matrix influences the cytoskeletal organization of the intermediate filaments and determines cell polarity. They confirm that collagen substrates permit epithelial cell cultures to progress toward a more differentiated state. Supported by grants from the Italian Assciation for Cancer Research (AIRC).  相似文献   

8.
We examined the synthesis of extracellular matrix macromolecules by the differentiated rat thyroid epithelial cell line FRTL-5. As shown by electron microscopy, the extracellular material produced by these cells is deposited at the basolateral surface and focally organized in the form of a basement membrane. Biochemical and biosynthetic studies demonstrated that laminin, type IV collagen, and fibronectin are synthesized and deposited in the culture monolayer. Secretion of fibronectin into the culture medium also occurred. By immunofluorescence we observed some peculiarities in the distribution patterns of the basement membrane glycoproteins; while fibronectin and laminin had an almost superimposable distribution, type IV collagen displayed a rather different pattern. Type IV collagen and laminin localization at sites where extracellular material was detected was confirmed by immuno electronmicroscopy using the protein A-colloidal gold technique. The results indicate that under appropriate culture conditions the differentiated thyroid epithelial cell line FRTL-5 synthesizes, secretes and organizes an extracellular matrix where some basement membrane glycoproteins are present.  相似文献   

9.
Human diploid fibroblasts (TIG-3) were shown to attach and spread onto substrata coated with collagen, fibronectin, laminin and vitronectin. The cell attachment to these proteins required divalent cations. Mg2+ stimulated the cell attachment to all the proteins, while Ca2+ alone was not effective for the attachment to collagen and laminin. A mild trypsin treatment had prevented cells from attaching to the laminin, while it had no effect on the attachment to the other proteins. The fibronectin fragment, which retained cell binding activity, inhibited the cells from attaching and spreading onto fibronectin, but it did not cause any inhibition on the other proteins. The synthetic peptide GRGDSP inhibited the cells from attaching and spreading onto fibronectin and vitronectin, while it did not cause any inhibition on collagen and laminin. In attempts to isolate distinct receptors for these proteins, we were able to purify proteins very similar to the fibronectin and vitronectin receptors of human placenta. Based on the differential properties of the attachment of TIG-3 cells to these proteins and biochemical data, we indicate that human diploid fibroblasts have distinctive binding sites (receptors) for collagen, fibronectin, laminin and vitronectin.  相似文献   

10.
Hepatocytes isolated by perfusion of adult rat liver and cultured on substrata consisting of one or more of the major components of the liver biomatrix (fibronectin, laminin, type IV collagen) have been examined for the synthesis of defined proteins. Under these conditions, tyrosine amino transferase, a marker of hepatocyte function, is maintained at similar levels in response to dexamethasone over 5 days in culture on each substratum, and total cellular protein synthesis remains constant. By contrast, there is a rapid decrease in synthesis and secretion of albumin and a 3-7-fold increase in synthesis and secretion of alpha-fetoprotein which are most marked on a laminin substratum, but least evident on type IV collagen, and an increased synthesis of fibronectin and type IV collagen. The newly synthesized matrix proteins are present in the cell layer as well as in cell secretions. The enhanced synthesis of fibronectin is less in cells seeded onto a fibronectin substratum than on laminin or type IV collagen substrata, and its synthesis by hepatocytes seeded onto a mixed substratum of laminin and fibronectin is down-regulated by fibronectin in a dose-related manner. Similarly, type IV collagen synthesis is less when the cells are seeded on the homologous matrix protein substratum than on heterologous substrata. These results indicate that hepatocytes cultured in serum-free medium on substrata composed of components of the liver biomatrix maintain certain functions of the differentiated state (tyrosine amino transferase), lose others (albumin secretion) and switch to increased synthesis of matrix components as well as fetal markers such as alpha-fetoprotein. The magnitude of these effects depends on the substratum on which the hepatocytes are cultured.  相似文献   

11.
Integrin alpha3beta1 engagement disrupts intercellular adhesion   总被引:2,自引:0,他引:2  
During tissue morphogenesis and tumor invasion, epithelial cells must undergo intercellular rearrangement in which cells are repositioned with respect to one another and the surrounding mesenchymal extracellular matrix. Using three-dimensional aggregates of squamous epithelial cells, we show that such intercellular rearrangements can be triggered by activation of beta1 integrins after their ligation with extracellular matrices. On nonadherent substrates, multicellular aggregates (MCAs) formed rapidly via E-cadherin junctional complexes and over time became compacted spheroids exhibiting a more epithelial phenotype. After MCAs were replated on culture substrates, the spheroids collapsed to yield tightly arranged cell monolayers. Cell-cell contact induced rapid elevation in E-cadherin levels, which was due to an increase in the metabolic stability of junctional receptors. During MCA remodeling of cell-cell adhesions, and monolayer formation, their E-cadherin levels fell rapidly. Similar behavior was obtained regardless of which ECM ligand-collagen type I, fibronectin, or laminin 1-MCAs were seeded on. In contrast, when seeded onto a matrix elaborated by squamous epithelial cells, cells in the MCA attached, spread, lost cell-cell junctions, and dispersed. Analysis identified laminin 5 as the active ECM ligand in this matrix, and MCA dispersion required functional beta1 integrin and specifically alpha3beta1. Furthermore, substrate-immobilized anti-integrin antibody effectively reproduced the epithelial-mesenchymal-like transition induced by the laminin 5 matrix. During the early stages of aggregate rearrangement and collapse, cells on laminin 5 substrates, but not those on collagen I substrates, exhibited intense cortical arrays of F-actin, microspikes, and fascin accumulation at their peripheral surfaces. These results suggest that engagement of specific integrin-ligand pairs regulates cadherin junctional adhesions during events common to epithelial morphogenesis and tumor invasion.  相似文献   

12.
We have previously shown that cell surface galactosyltransferase (GalTase) mediates cell spreading and migration on basal lamina matrices by binding N-linked oligosaccharide substrates within laminin. In this study we have examined the distribution and expression of cell surface GalTase during mesenchymal cell migration on various extracellular matrices. Antisera raised against affinity-purified beta 1,4 GalTase, as well as anti-GalTase Fab fragments, inhibited cell migration on laminin-containing matrices, whereas under identical conditions, anti-GalTase IgG had no effect on the rate of cell migration on fibronectin substrates. Cells migrating on laminin had three times the level of surface GalTase, assayed by 125I-antibody binding and by direct enzyme assay, than similar cells migrating on fibronectin. On the other hand, total cellular GalTase, assayed either enzymatically or by Northern blot analysis, was similar when cells were grown on laminin or fibronectin. The laminin-dependent increase in surface GalTase was due to its expression onto the leading and trailing edges of migrating cells in association with actin-containing microfilaments assayed by double-label indirect immunofluorescence. On stationary cells, surface GalTase levels were low, but as cells began to migrate on laminin GalTase became polarized to the growing lamellipodia. GalTase was not detectable on lamellipodia or filopodia when cells migrated on fibronectin substrates. These results show that laminin-containing matrices induce the stable expression of GalTase onto cell lamellipodia and filopodia where it mediates subsequent cell spreading and migration. Since fibronectin was unable to induce GalTase expression onto lamellipodia, these studies also suggest that the extracellular matrix can selectively influence which intracellular components are maintained on the cell surface.  相似文献   

13.
Integrin-initiated extracellular signal-regulated kinase (ERK) activation by matrix adhesion may require focal adhesion kinase (FAK) or be FAK-independent via caveolin and Shc. This remains controversial for fibroblast and endothelial cell adhesion to fibronectin and is less understood for other matrix proteins and cells. We investigated Caco-2 intestinal epithelial cell ERK activation by collagen I and IV, laminin, and fibronectin. Collagens or laminin, but not fibronectin, stimulated tyrosine phosphorylation of FAK, paxillin, and p130(cas) and activated ERK1/2. Shc, tyrosine-phosphorylated by matrix adhesion in many cells, was not phosphorylated in Caco-2 cells in response to any matrix. Caveolin expression did not affect Caco-2 Shc phosphorylation in response to fibronectin. FAK, ERK, and p130(cas) tyrosine phosphorylation were activated after 10-min adhesion to collagen IV. FAK activity increased for 45 min after collagen IV adhesion and persisted for 2 h, while p130(cas) phosphorylation increased only slightly after 10 min. ERK activity peaked at 10 min, declined after 30 min, and returned to base line after 1 h. Transfection with FAK-related nonkinase, but not substrate domain deleted p130(cas), strongly inhibited ERK2 activation in response to collagen IV, indicating Caco-2 ERK activation is at least partly regulated by FAK.  相似文献   

14.
Primary tubular epithelial cells were isolated from renal cortex following enzymatic dissociation with collagenase. These cells were then grown in chemically defined media containing insulin, transferrin, selenium, tri-iodothyronine and either fibronectin or laminin. The tubular epithelial cells were studied ultrastructurally and compared to another epithelial cell type present in the renal cortex, the glomerular epithelial cell. In contrast to the constant morphology of glomerular epithelial cells grown in chemically defined media, tubular epithelial cell morphology depended on whether the cells were placed in fibronectin or laminin and on the age of the donor animal used for culture. Primary tubular cells grown in laminin formed colonies; cells grown from young animals were rounded, whereas cells grown from adult animals were flattened. Primary tubular cells grown in fibronectin were flattened regardless of age, but cells from young animals formed colonies while those from adult animals formed a monolayer. Despite these differences in gross morphology, scanning and transmission electron microscopy revealed similar ultrastructural features in primary tubular cells from young and adult animals grown in fibronectin or laminin. Quantitative adhesion studies demonstrated that secondary subcultured tubular cells adhered equally well to dimeric and multimeric forms of fibronectin, but not to laminin. Quantitative colony growth studies of subcultured secondary tubular cells showed that laminin supports colony formation of trypsinized tubular cells, while previous work has demonstrated that fibronectin supports colony formation of glomerular cells. These results are consistent with the hypothesis that different extracellular matrix molecules are involved in colony formation of different cell types, with fibronectin stimulating growth of glomerular cells and laminin supporting growth of tubular cells.  相似文献   

15.
The extracellular matrix (ECM) is a major player in the microenvironment governing morphogenesis. However, much is yet to be known about how matrix composition and architecture changes as it influences major morphogenetic events. Here we performed a detailed, 3D analysis of the distribution of two ECM components, fibronectin and laminin, during the development of the chick paraxial mesoderm. By resorting to whole mount double immunofluorescence and confocal microscopy, we generated a detailed 3D map of the two ECM components, revealing their supra-cellular architecture in vivo, while simultaneously retaining high resolution cellular detail. We show that fibronectin assembly occurs at the surface of the presomitic mesoderm (PSM), where a gradual increase in the complexity of the fibronectin matrix accompanies PSM maturation. In the rostral PSM, where somites form, fibronectin fibrils are thick and densely packed and some occupy the cleft which comes to separate the newly formed somite from the PSM. Our 3D approach revealed that laminin matrix assembly starts at the PSM surface as small dispersed patches, which are always localized closer to cells than the fibronectin matrix. These patches gradually grow and coalesce with neighboring patches, but do not generate a continuous laminin sheet, not even on epithelial somites and dermomyotome, suggesting that these epithelia develop in contact with a fenestrated laminin matrix. Unexpectedly, as the somite differentiates, its fibronectin and laminin matrices are maintained, thus initially containing both the epithelial dermomyotome and the mesenchymal sclerotome within the somite segment. Our analysis provides unprecedented details of the progressive in vivo assembly and 3D architecture of fibronectin and laminin matrices during paraxial mesoderm development. These data are consistent with the hypothesis that progressive ECM assembly and subsequent 3D organization are active driving and containing forces during tissue development.  相似文献   

16.
Rama 25, an epithelial cell line obtained from a dimethylbenzanthracene-induced rat mammary tumour differentiates spontaneously in culture forming elongated myoepithelial-like cells. The elongated cells form multilayered ridge structures from which cultures of elongated cells, relatively uncontaminated by epithelial cells, can be obtained. By using immunofluorescence techniques, both the elongated cells and the cells in ridges, but not undifferentiated Rama 25 cells, have been demonstrated to synthesize three basement membrane proteins, laminin, type IV collagen, and fibronectin. The identity of these basement membrane proteins has been confirmed by immunoprecipitation. These proteins appear to be located in a fibrillar extracellular matrix. We suggest that the ability to synthesize basement membrane proteins by mammary epithelial cells in vitro on plastic is a characteristic of myoepithelial-like cells.  相似文献   

17.
Adhesion of keratinocytes in a wound outgrowth to laminin 5 in the basement membrane via integrins alpha6beta4 and alpha3beta1 is distinct from adhesion to dermal collagen via alpha2beta1 or to fibronectin via alpha5beta1. Leading cells in the outgrowth are distinguished from following keratinocytes by deposition of laminin 5, failure to communicate via gap junctions and sensitivity to toxin B, an inhibitor of RhoGTPase. Laminin 5 deposited by leading keratinocytes onto dermal collagen dominates over dermal ligands and changes the cell signals required for adhesion from collagen-dependent to laminin-5-dependent. Thus, deposition of laminin 5 can instruct keratinocytes to switch from an activated phenotype to a quiescent and integrated epithelial phenotype.  相似文献   

18.
Hepatocytes are the source of plasma fibronectin (FN) which lacks the alternatively spliced EDI segment, distinctive of oncofetal FN. When hepatic or other epithelial cells are cultured on plastic, EDI inclusion is triggered. Here we report that EDI inclusion is inhibited when hepatic cells are cultured on a basement membrane-like extracellular matrix (ECM), demonstrating a new role for the ECM in the control of gene expression. The effect is duplicated by collagen IV and laminin but not by collagen I; is not observed with another alternatively spliced FN exon (EDII); and correlates with a decrease in cell proliferation, consistently with high EDI inclusion levels observed in many physiological and pathological proliferative processes.  相似文献   

19.
Interaction between endometrial stromal cells and extracellular matrix (ECM) components has a crucial role in the development of endometriosis. Endometrial stromal cells attach to the mesothelial surface of peritoneum by means of integrins during their initial implantation and growth in endometriosis. Similarly, interaction between integrin and the extracellular matrix is also crucial for the remodeling of the endometrium during early pregnancy. We hypothesized that adhesion of endometrial stromal cells to the extracellular matrix could suppress the immunologic reaction to implanting endometrial cells by inducing the expression of Fas ligand (FasL), a mediator of the apoptotic pathway. Western blot analysis of human endometrial stromal cells plated onto fibronectin, laminin, and collagen IV revealed higher levels of FasL protein expression compared with endometrial stromal cells that plated to BSA-coated plates (control). Immunocytochemistry results from endometrial stromal cells plated to extracellular matrix proteins demonstrated a similar up-regulation of FasL expression. Eutopic endometrial stromal cells from women with endometriosis demonstrated higher FasL expression on control plates and those coated with extracellular matrix proteins compared with those from women without endometriosis. Disruption of actin cytoskeleton in endometrial stromal cells by treatment with cytochalasin D blocked the increase of FasL protein expression that occurred in response to adhesion to the extracellular matrix. These results suggest that attachment of endometrial stromal cells during retrograde menstruation to a new environment such as peritoneum with increased expression of laminin, fibronectin, and collagen IV could lead to an increase in FasL expression. Induction of FasL expression by adhesion of endometrial stromal cells to the extracellular matrix may take part in the development of a relative immunotolerance by inducing apoptosis of cytotoxic T lymphocytes, which will allow further development of ectopic implants.  相似文献   

20.
Collagen XVII (COL17) is a transmembrane glycoprotein that is expressed on the basal surface of basal epidermal keratinocytes. Previous observations have led to the hypothesis that an interaction between COL17 and laminin 332, an extracellular matrix protein, contributes to the attachment of the basal keratinocyte to the basement membrane. In order to isolate and manipulate COL17 interactions with ECM components, we induced COL17 expression in two cells lines, SK-MEL1 and K562, that exhibit little or no capacity to attach to our test substrates, including laminin 332, types I and IV collagen, and fibronectin. Cells expressing high levels of COL17 preferentially adhered to a laminin 332 matrix, and, to a lesser extent, type IV collagen, while showing little or no binding to type I collagen or fibronectin. A quantitative analysis of cell adhesive forces revealed that, compared with COL17-negative cells, COL17-positive cells required over 7-fold greater force to achieve 50% detachment from a laminin 332 substrate. When a cell preparation (either K562 or SK-MEL1) with heterogeneous COL17 expression levels was allowed to attach to a laminin 332 matrix, the COL17-positive and COL17-negative cells differentially sorted to the bound and unbound cell fractions, respectively. COL17-dependent attachment to laminin 332 could be reduced or abolished by siRNA-mediated knock-down of COL17 expression or by adding to the assay wells specific antibodies against COL17 or laminin 332. These findings provide strong support for the hypothesis that cell surface COL17 can interact with laminin 332 and, together, participate in the adherence of a cell to the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号