首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of the NF-kappaB pathway often causes p65-p50 and p50-p50 dimers to be simultaneously present in the cell nucleus. A natural polymorphism at nucleotide -863 in the human TNF promoter (encoding tumor necrosis factor [TNF]) region provides an opportunity to dissect the functional interaction of p65-p50 and p50-p50 at a single NF-kappaB binding site. We found that this site normally binds both p65-p50 and p50-p50, but a single base change specifically inhibits p50-p50 binding. Reporter gene analysis in COS-7 cells expressing both p65-p50 and p50-p50 shows that the ability to bind p50-p50 reduces the enhancer effect of this NF-kappaB site. Using an adenoviral reporter assay, we found that the variant which binds p50-p50 results in a reduction of lipopolysaccharide-inducible gene expression in primary human monocytes. This finding adds to a growing body of experimental evidence that p50-p50 can inhibit the transactivating effects of p65-p50 and illustrates the potential for genetic modulation of inflammatory gene regulation in humans by subtle nucleotide changes that alter the relative binding affinities of different forms of the NF-kappaB complex.  相似文献   

2.
Many human connexin50 (Cx50) mutants have been linked to cataracts including two carboxyl terminus serine mutants that are known phosphorylation sites in the lens (Cx50S258F and Cx50S259Y). To examine the behavior of these mutants and the role of phosphorylation at these positions, we stably transfected HeLa cells with cataract-linked and phosphorylation-mimicking (Cx50S258D and Cx50S259D) Cx50 mutants. We observed that gap junctional plaques were rarely detected in Cx50S258F-expressing and Cx50S259Y-expressing cells compared with wild-type cells. In contrast, gap junction abundance and size were greatly increased for Cx50S258D and Cx50S259D mutants. Cx50S258F and Cx50S259Y supported very low levels of gap junctional coupling, whereas Cx50S258D and Cx50S259D supported extensive intercellular communication. Furthermore, Cx50 levels as detected by immunoblotting were lower in Cx50S258F and Cx50S259Y mutants than in the wild-type or the aspartate substitution mutants, and chloroquine or ammonium chloride treatment significantly increased Cx50S258F and Cx50S259Y protein levels, implying participation of the lysosome in their increased degradation. Alanine substitution of amino acids within a predicted tyrosine-based sorting signal in Cx50S258F and Cx50S259Y increased levels of gap junctional plaques and intercellular transfer of neurobiotin. These results suggest that the absence of phosphorylatable serines at these positions exposes a sorting signal leading to lysosomal degradation of Cx50, whereas phosphorylation at these sites conceals this signal and allows targeting of Cx50 to the plasma membrane and stabilization of gap junction plaques. We propose that in the lens, degradation of Cx50S258F and Cx50S259Y decreases Cx50 levels at the plasma membrane and consequently Cx50 function, leading to cataracts.  相似文献   

3.
4.
The toxicity of sixteen fungal metabolites produced by some entomopathogenic fungi or biological control fungi agents was evaluated on lepidopteran Spodoptera frugiperda (SF-9) cell line by Trypan blue dye exclusion and MTT-colorimetric assay, after 48 h of incubation. No statistical difference was found between IC50values (50% Inhibiting Concentration) and CC50 values (50% Cytotoxicity Concentration) obtained by MTT test and Trypan blue dye exclusion for each fungal metabolite. By MTT assay, the cytotoxicity ranking was fusarenon X (IC50 0.3 microM) = diacetoxyscirpenol (IC50 0.5 microM) = beauvericin (IC50 2.5 microM) = nivalenol (IC50 5.3 microM) = enniatin (IC50 6.6 microM) > or = gliotoxin (IC50 7.5 microM) > zearalenone (IC50 17.5 microM) > deoxynivalenol (IC50 47.6 microM). By Trypan blue dye exclusion the cytotoxicity ranking was fusarenon X (CC50 0.4 microM) = diacetoxyscirpenol (CC50 1.1 microM) beauvericin = (CC50 3.0 microM)=gliotoxin (CC50 4.0 microM) = enniatin (CC50 6.7 microM) > or = nivalenol (CC50 9.5 microM) > zearalenone (CC50 18.3 microM) > deoxynivalenol (CC50 45.0 microM). The comparison with other bioassays showed that the SF-9 insect cell line could represent a further tool to screen for the toxic effects of fungal metabolites especially for beauvericin, gliotoxin, and zearalenone.  相似文献   

5.
A study was made of the effects of excess dietary zinc on the antibody response to sheep red blood cells (SRBC) in mice. C57BL/6J mice were divided into 10 different dietary groups and exposed to diets containing zinc in normal (50 ppm) or excess (2000 ppm) concentrations during gestation/lactation/postweaning development in the sequences (1) 50/50/50; (2) 50/50/2000; (3) 2000/50/50; (4) 2000/2000/50; (5) 2000/50/2000; (6) 50/2000/50; (7) 50/2000/2000; (8) 2000/2000/2000; (9) 50/50/50 (pair-fed); and (10) chow/chow/chow. Mice in group 8 had severe signs of copper deficiency at 8 weeks of age, such as reduced plasma copper, lowered plasma hematocrit, and achromotrichia. Mice receiving 2000 ppm zinc during gestation had fewer offspring per litter (measured at 2 weeks of age) and more nonviable births than mice given 50 ppm zinc during gestation. The growth curve of mice exposed to excess zinc in the 50/50/2000 group was identical to that of the control (50/50/50) group. Growth curves for all other groups were reduced by varying amounts. The plaque-forming cell response to SRBC was reduced only in the groups receiving 50/2000/2000 and 2000/2000/2000 ppm zinc (P less than 0.05); this reduced response was not associated with atrophy of the lymphoid organs. Splenic cell surface markers and mitogenic responsiveness were similar in the 50/50/50 and 2000/2000/2000 groups. These results suggest that the immune response is more susceptible to dietary manipulation during development than after the immune response has been developed.  相似文献   

6.
7.
Mutations in Connexin50 (Cx50) cause cataracts in both humans and mice. The mechanism(s) behind how mutated connexins lead to a variety of cataracts have yet to be fully elucidated. Here, we tested whether the cataract inducing Cx50-S50P mutant interacts with wild-type Connexin43 (Cx43) to form mixed channels with attenuated function. Using dual whole-cell voltage clamp, immunofluorescent microscopy and in situ dye transfer analysis we identified a unique interaction between the mutant subunit and wild-type Cx43. In paired Xenopus oocytes, co-expression of Cx50-S50P with Cx43 reduced electrical coupling ≥ 90%, without a reduction in protein expression. In transfected cells, Cx50-S50P did not target to cell-cell interfaces by itself, but co-expression of Cx50-S50P with Cx43 resulted in its localization at areas of cell-cell contact. We used Cx43 conditional knockout, Cx50 knockout and Cx50-S50P mutant mice to examine this interaction in vivo. Mice expressing both Cx43 and Cx50-S50P in the lens epithelium revealed a unique expression pattern for Cx43 and a reduction in Cx43 protein. In situ dye transfer experiments showed that the Cx50-S50P mutant, but not the Cx50, or Cx43 conditional knockout, greatly inhibited epithelial cell gap junctional communication in a manner similar to a double knockout of Cx43 and Cx50. The inhibitory affects of Cx50-S50P lead to diminished electrical coupling in vitro, as well as a discernable reduction in epithelial cell dye permeation. These data suggest that dominant inhibition of Cx43 mediated epithelial cell coupling may play a role in the lens pathophysiology caused by the Cx50-S50P mutation.  相似文献   

8.
A 50-kDa protein, which binds to the growth-regulated gene (2A9) product, calcyclin in a calcium-dependent manner, was purified from bovine lung. Partial amino acid sequencing of the protein revealed it to be the bovine equivalent of rabbit lung CAP-50 (calcyclin-associated protein, 50 kDa), which is a member of the annexin family and binds to calcyclin in a calcium-dependent manner. Specific polyclonal antibodies to bovine lung CAP-50 were prepared. Comparative studies between CAP-50 and synexin (annexin VII) on the immunoreactivity against anti-CAP-50 antibodies and the ability of binding to calcyclin revealed that CAP-50 was a distinct molecule from synexin. Using specific polyclonal antibodies to bovine lung CAP-50, tissue distribution and subcellular distribution of CAP-50 were investigated. In most rat tissues, except those in the central nervous systems and kidney, CAP-50 is expressed at a high or moderate level. Both studies by subcellular fractionation and by indirect immunofluorescence staining of the rat embryonic fibroblast cell line, 3Y1, revealed that CAP-50 mainly localized in nuclei. Moreover, between the cells at interphase and at mitotic phase, different distributions of CAP-50 were observed. That is, in the cells at interphase, CAP-50 seemed to localize throughout the nucleoplasm. On the other hand, in the cells during mitosis, CAP-50 was concentrated at the loop-like structure around the mitotic apparatus. CAP-50 was found in isolated 3Y1 nuclei lacking outer nuclear membranes, and approximately 50% of CAP-50 was extracted from the nuclei by chelating calcium. Thus, CAP-50, a unique annexin, localizes in nuclei.  相似文献   

9.
Ezrin-radixin-moesin (ERM)-binding phosphoprotein 50 (EBP50) is a versatile membrane-cytoskeleton linking protein that binds to the COOH-tail of specific integral membrane proteins through its two PDZ domains. These EBP50 binding interactions have been implicated in sequestering interactive sets of proteins into common microdomains, regulating the activity of interacting proteins, and modulating membrane protein trafficking. With only two PDZ domains, it is unclear how EBP50 forms multiprotein complexes. Other PDZ proteins increase their breadth and diversity of protein interactions through oligomerization. Hypothesizing that EBP50 self-associates to amplify its functional capacity, far-Western blotting of cholangiocyte epithelial cell proteins with EBP50 fusion protein revealed that EBP50 binds to a 50-kDa protein. Far-Western blotting of EBP50 isolated by two-dimensional gel electrophoresis or immunoprecipitation demonstrates that the 50-kDa binding partner is itself EBP50. Further, co-transfection/co-precipitation studies show the self-association can occur in an intracellular environment. In vitro analysis of the EBP50-EBP50 binding interaction indicates it is both saturable and of relatively high affinity. Analysis of truncated EBP50 proteins indicates EBP50 self-association is mediated through its PDZ domains. The ability to self-associate provides a mechanism for EBP50 to expand its capacity to form multiprotein complexes and regulate membrane transport events.  相似文献   

10.
This study investigated the binding affinities of NF-kappaB p50 homodimer to the wild-type and single-nucleotide mutant Ig-kappaB sites by the unimolecular dsDNA microarray which was fabricated with a novel scheme. The importance of each nucleotide of Ig-kappaB site for the sequence-specific p50p50/Ig-kappaB interaction was thus evaluated. The results demonstrate that the nucleotides at different positions contribute differently to the p50p50/Ig-kappaB binding interaction. The G(1), G(2), and C(10) are most important for p50p50/Ig-kappaB binding interaction and determine the specificity of p50p50/Ig-kappaB interaction, which replacements with any other nucleotide could result in the similarly greatest binding affinity losses. Comparatively, the G(3), A(4), T(8), and C(9) are less important for p50p50/Ig-kappaB interaction and regulate the binding affinity, which substitutions with the variant nucleotide could change the binding affinity differently. The C(5) is least important for p50p50/Ig-kappaB interaction, the randomized nucleotide exchange of which little affects on p50p50/Ig-kappaB binding affinity. Among all possible single-nucleotide mutants, the T(8) to C mutation could strengthen p50p50/Ig-kappaB interaction. The T(7) acts differently from its symmetric C(5) and the axial T(6) is necessary for high-affinity p50p50/Ig-kappaB interaction. The unimolecular dsDNA microarray provides a reliable method for exploring the binding affinities of DNA-binding proteins with a larger number of DNA targets.  相似文献   

11.
Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.  相似文献   

12.
Protein kinase C phosphorylates the neurone-specific protein B-50 at a single Ser41 residue, which is also the point for a major proteolytic cleavage in vitro, and probably in vivo, that produces a B-50 phosphorylation-inhibiting N-terminal fragment and a large C-terminal metabolite B-60 (B-50(41-226]. The intact purified protein will bind to calmodulin in the absence of calcium, but the interaction has an absolute requirement for dephospho-B-50. In an attempt to unify two aspects of B-50 biochemistry, we have examined the interaction of B-50 binding to calmodulin and B-50 proteolysis. HPLC- and affinity-purified B-50 bound to calmodulin, but purified B-60 did not. To ensure that this effect was not due to the phosphorylation state of pure, isolated B-60, the metabolite was generated in vitro using a Triton extract of synaptosomal plasma membranes, which contains the as yet uncharacterized B-50 protease. B-60 derived from dephospho-B-50 also failed to bind calmodulin. The results demonstrate a direct connection between B-50 binding to calmodulin and B-50 proteolysis. The position of the proposed calmodulin-binding domain within intact B-50 is discussed in light of the failure of calmodulin to bind B-60.  相似文献   

13.
Glycylprolyl dipeptidase activity was measured in cells, extracellular vesicles (ECV) and the soluble extracellular protein fraction (EP) of batch cultures of strains W50 and W50/BEI. Total culture enzyme activity of W50 dropped with age whilst that of W50/BEI remained constant. Activity was highest in the cellular fraction, greater for W50/BEI than W50 and rose with culture age. Both strains showed similar ECV activities but these declined with culture age. The EP glycylprolyl dipeptidase activity of W50/BEI in older cultures rose to a level 13-fold greater than W50. The majority of extracellular activity was represented by the ECV for strain W50 but by EP for W50/BEI. Variable but incomplete attenuation of activity was achieved by dithiothreitol. ECV and EP activities were associated with a high molecular mass fraction, but a smaller fraction (molecular mass 30,000) was detected in W50/BEI EP.  相似文献   

14.
A mutant human connexin50 (hCx50), hCx50P88S, has been linked to cataracts inherited as an autosomal dominant trait. The functional, biochemical and cellular behavior of wild-type and mutant hCx50 were examined in transfected cells. hCx50P88S was unable to induce gap junctional currents by itself, and it abolished gap junctional currents when co-expressed with wild-type (wt) hCx50. Cells transfected with hCx50P88S showed cytoplasmic accumulations of Cx50 immunoreactivity in addition to staining at appositional membranes; these accumulations did not significantly co-localize with markers for the endoplasmic reticulum, Golgi apparatus, lysosomes, endosomes or vimentin filaments. Immunoelectron microscopy studies localized hCx50P88S to cytoplasmic membrane stacks in close vicinity to the endoplasmic reticulum. In contrast, aggresome-like accumulations were induced by treatment of wt hCx50-transfected cells with proteasomal inhibitors. The formation of hCx50P88S accumulations in transiently transfected cells was not blocked by treatment with Brefeldin A suggesting that they form before Cx50 transits through the Golgi apparatus to the plasma membrane. Treatment of HeLa-hCx50P88S cells with cycloheximide demonstrated the presence of a very stable pool of hCx50P88S. Taken together, these results suggest that the P to S mutation at amino acid residue 88 causes a defect that leads to decreased degradation and subsequent accumulation of hCx50P88S in a cellular structure different from aggresomes.  相似文献   

15.
Rad50 is a component of MRN (Mre11-Rad50-Nbs1), which participates in DNA double-strand break repair and DNA-damage checkpoint activation. Here, we sought to investigate the clinical and functional significance of Rad50 in high-grade serous ovarian cancer (HGSOC). We found that Rad50 was frequently upregulated in HGSOCs and enhanced Rad50 expression inversely correlated with patient survival. In addition, ectopic expression of Rad50 promoted proliferation/invasion and induced EMT of ovarian cancer cells, whereas knockdown of Rad50 led to decreased aggressive behaviors. Mechanistic investigations revealed that Rad50 induced aggressiveness in HGSOC via activation of NF-κB signaling pathway. Moreover, we identified CARD9 as an interacting protein of Rad50 in ovarian cancer cells and the activation of NF-κB pathway by Rad50 is CARD9 dependent. Our findings provide evidence that Rad50 exhibits oncogenic property via NF-κB activation in HGSOC.  相似文献   

16.
ABP-50 is the elongation factor-1 alpha (EF-1 alpha) of Dictyostelium discoideum (Yang et al.: Nature 347:494-496, 1990). ABP-50 is also an actin filament binding and bundling protein (Demma et al.: J. Biol. Chem. 265:2286-2291, 1990). In the present study we have investigated the compartmentalization of ABP-50 in both resting and stimulated cells. Immunofluorescence microscopy shows that in addition to being colocalized with F-actin in surface extensions in unstimulated cells, ABP-50 exhibits a diffuse distribution throughout the cytosol. Upon addition of cAMP, a chemoattractant, ABP-50 becomes localized in the filopodia that are extended as a response to stimulation. Quantification of ABP-50 in Triton-insoluble and -soluble fractions of resting cells indicates that 10% of the total ABP-50 is recovered in the Triton cytoskeleton, while the remainder is in the soluble cytosolic fraction. Stimulation with cAMP increases the incorporation of ABP-50 into the Triton cytoskeleton. The peak of incorporation of ABP-50 at 90 sec is concomitant with filopod extension. Immunoprecipitation of the cytosolic ABP-50 from unstimulated cells using affinity-purified polyclonal anti ABP-50 results in the coprecipitation of non-filamentous actin with ABP-50. Purified ABP-50 binds to G-actin with a Kd of approximately 0.09 microM. The interaction between ABP-50 and G-actin is inhibited by GTP but not by GDP, while the bundling of F-actin by ABP-50 is unaffected by guanine nucleotides. We conclude that a significant amount of ABP-50 is bound to either G- or F-actin in vivo and that the interaction between ABP-50 and F-actin in the cytoskeleton is regulated by chemotactic stimulation.  相似文献   

17.
18.
Insoluble lauryl pyridinium iodide [C12(50)] was synthesized as an antimicrobial agent. Escherichia coli cells were not killed by C12(50) but only adsorbed onto it. Though cells on C12(50) could not grow in nutrient agar, they possessed the ability to develop once they were liberated from C12(50). The adsorption of cells onto C12(50) was inhibited by iodide anions released from C12(50) itself. The ability of C12(50) to adsorb was decreased by the adsorbed cells, but C12(50) could be reactivated by washing with alkaline solutions. It was, therefore, suggested that this adsorption was mainly due to the electrostatic interaction between cells and C12(50). The adsorption of cells onto C12(50) was confirmed by scanning electron microscopy.  相似文献   

19.
The insecticide resistance status of the German cockroach, Blattella germanica (L.), against permethrin was evaluated with three different bioassay methods. The LT50 and KT50 in adults were measured by glass jar test, the LT50 and KT50 in nymphs were assessed by glass petri dish-test, and the LD50 in adults and nymphs was measured by topical application. The results indicate that in all three bioassays, cockroaches showed different degrees of resistance to permethrin. Resistance ratios of 6.7-, 12.8-, and 7.5-fold for KT50, LD50, and LT50, respectively, were obtained for adult cockroaches compared with those from a susceptible strain. Similarly, resistance ratio values of 17-fold for KT50, 8-fold for LD50, and 6.4-fold for LT50 were obtained for nymphs compared with those from a susceptible strain. Although both adults and nymphs exhibited a similar level of susceptibility to permethrin, adults showed a higher degree of susceptibility to topical application than to the other exposure method. The order of sensitivity (based on resistance ratio values) was topical application (LD50) > LT50 > KT50 in adults. For nymphs, the resistance ratio in the knockdown test was higher than in other tests (resistance ratio = 17-fold). Therefore, the order of test sensitivity based on comparisons of resistance ratio values was KT50 > topical application (LD50) > LT50 in nymphs. Topical application exhibited a higher sensitivity than the LT and KT methods in adults. Thus, the results suggest that topical application and knockdown testing methods are the most sensitive assays for measuring resistance of adult and nymphal German cockroaches, respectively, to permethrin.  相似文献   

20.
Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a putative tumor suppressor that is correlated with many human cancers. However, the function of EBP50 in pancreatic cancer (PC) has not been described. In this paper, the EBP50 expression level in PC tissues was characterized. In vitro, the effects of EBP50 down-regulation by siRNA in PC-2 and MiaPaCa-2 cells were evaluated. In addition, possible mechanisms that mediate the influence of EBP50 were examined. Our results show that the EBP50 expression pattern changes during transformation as there is a loss of the normal apical membrane distribution and an ectopic cytoplasmic over-expression of EBP50; furthermore, the EBP50 expression level is subsequently decreased during malignant progression. Down-regulation of EBP50 promoted cancer cell proliferation, increased the colony-forming ability of cells and accelerated the G1-to-S progression. Additionally, the loss of EBP50 accentuated β-catenin activity, increased cyclin E and phosphorylated Rb expression, and attenuated p27 expression compared to control cells. Our results suggest that EBP50 may function as a potential tumor suppressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号