首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We have found that the human leukemic cell line K562 (Lozzio, C.B., and Lozzio, B.B. (1975) Blood 45, 321-334) synthesizes a surface membrane glycoprotein which is identical or closely similar to the major red cell sialoglycoprotein, glycophorin A. The protein can be precipitated by specific anti-glycophorin A antiserum both from surface-labeled and metabolically labeled K562 cells. Cyanogen bromide cleavage of glycophorin A from red cells and the K562 cell protein gives apparently identical fragments, and the glycopeptides and oligosaccharides obtained after Pronase and mild alkaline treatment are closely similar. An antiserum made against intact K562 cells and absorbed with normal human white blood cells precipitated surface-labeled glycophorin A from erythrocytes. The amount of glycophorin A per cell in erythrocytes and K562 cells was very similar when determined by radioimmunoassay. The K562 cells contained blood group MN activity when tested with rabbit anti-M and anti-N sera. When incubated at 37 degrees C with rabbit anti-glycophorin A F(AB)2 fragments and fluorescent sheep anti-rabbit IgG, partial redistribution of glycophorin A (patching and capping) was seen in K562 cells but not in erythrocytes.  相似文献   

2.
The attachment kinetics of erythroid cells, such as human erythrocytes, their saponin ghosts, and erythroleukemic cells K562 to a glass surface has been studied in the presence of substances inhibiting spontaneous fluctuations of cell membranes. It has been shown that wheat germ agglutinin (WGA) slows down the attachment kinetics of K562 cells, as is the case in intact erythrocytes. Concanavalin A (Con A), which inhibits the attachment of erythrocytes to glass does not affect the adhesion of K562 cells to glass due to the absence of band 3 proteins in the membranes of K562 cells. Both lectins slow down the adhesion rate of saponin ghosts of human erythrocytes, as it takes place in intact erythrocytes. Suramin and the anionic dye ANS bind specifically to the actin protofilaments of the erythrocyte skeleton and also inhibit cell adhesion to glass. At the same time, these substances do not affect the oscillatory and adhesion activities of intact erythrocytes due to the impermeability of erythrocyte membranes for these drugs. The results obtained allow the conclusion that inhibition of erythrocyte adhesion by lectins is due to lectin binding to different constituents of the erythrocyte membrane--sialic acid moieties of glycophorin in the case of WGA and band 3 proteins in the case of Con A. The most probable mechanism of erythrocyte and K562 cell attachment to glass is the formation of the so-called local contacts between cells and the glass surface. It is also suggested that the cell surface oscillations facilitate the formation of cell contacts.  相似文献   

3.
Previous studies of the attachment of encephalomyocarditis (EMC) virus to human erythrocytes concluded that the glycophorins, a family of human erythrocyte sialoglycoproteins, act as EMC virus receptors. Evidence is presented that the major glycophorin species, glycophorin A, is the receptor for EMC virus attachment to human erythrocytes. Comparison of the structures of glycophorins A and B and sialoglycopeptides released by chymotrypsin and trypsin treatment of erythrocytes confirmed our previous suggestion (A. T. H. Burness and I. U. Pardoe, J. Gen. Virol. 64:1137-1148, 1983) that attachment of EMC virus to glycophorin A involves the region containing amino acids 35 to approximately 70 (numbered from the NH2 terminus), four of which (amino acids 37, 44, 47, and 50) are glycosylated. In addition, we provide evidence that the segment containing amino acids 35 to 39 with an oligosaccharide side chain on threonine-37 is particularly important for EMC virus attachment.  相似文献   

4.
Specific antibodies to human glycophorin A and spectrin were used to study the expression of these membrane proteins in normal and pathologic human bone marrow. In immunofluorescence experiments spectrin and glycophorin A are found in 50–60% of the nucleated cells in normal bone marrow. These two proteins are expressed at all stages of red cell differentiation and can be traced at least to the earliest morphologically recognizable nucleated red cell precursor, the proerythroblast; the two proteins are specific for cells of the red cell series and are not found to be expressed in lymphocytic, granulocytic cells or platelets. These conclusions were drawn from studies on bone marrow in patients with a temporary block in erythropoiesis at the level of stem cells or of the pronormoblast. Bone marrow from these individuals either lacked all nucleated cells stainable for glycophorin A and spectrin or contained only pronormoblasts. Similar findings were obtained on spleen cells from mice which were made severely anemic by multiple injections with N-acetyl-phenylhydrazine. Antibodies to a sialoglycoprotein isolated from mouse red cell membranes stain 70–80% of all cells in the spleen of anemic animals, while only 1–2% of such cells are seen in the spleen of normal animals. Spectrin and glycophorin A could be labeled metabolically and isolated using specific antibodies. The human tumor cell line K562 expresses both membrane proteins, but induction experiments with various agents thus far have failed to change their expression.  相似文献   

5.
The attachment of lymphocytic choriomeningitis virus (LCMV) to murine and primate cell lines was quantitated by a fluorescence-activated cell sorter assay in which binding of biotinylated virus was detected with streptavidin-fluorescein isothiocyanate. Cell lines that were readily infected by LCMV (e.g., MC57, Rin, BHK, Vero, and HeLa) bound virus in a dose-dependent manner, whereas no significant binding was observed to lymphocytic cell lines (e.g., RMA and WIL 2) that were not readily infected. Binding was specific and competitively blocked by nonbiotinylated LCMV. It was also blocked by LCMV-specific antiserum and a neutralizing monoclonal antibody to the virus glycoprotein GP-1 but not by antibodies specific for GP-2, indicating that attachment was likely mediated by GP-1. Treatment of cells with any of several proteases abolished LCMV binding, whereas phospholipases including phosphatidylinositol-specific phospholipase C had no effect, indicating that one or more membrane proteins were involved in virus attachment. These proteins were characterized with a virus overlay protein blot assay. Virus bound to protein(s) with a molecular mass of 120 to 140 kDa in membranes from cell lines permissive for LCMV but not from nonpermissive cell lines. Binding was specific, since unlabeled LCMV, but not the unrelated enveloped virus herpes simplex virus type 1, competed with 125I-labeled LCMV for binding to the 120- to 140-kDa band. The proteinaceous nature of the LCMV-binding substance was confirmed by the lack of virus binding to proteinase K-treated membrane components. By contrast, glycosidase treatment of membranes did not abolish virus binding. However, in membranes treated with endoglycosidase F/N-glycosidase F, and/or neuraminidase and in membranes from cells grown in tunicamycin, the molecular mass of the LCMV-binding entity was reduced. Hence, LCMV attachment to rodent fibroblastic cell lines is mediated by a glycoprotein(s) with a molecular mass of 120 to 140 kDa, with complex N-linked sugars that are not involved in virus binding.  相似文献   

6.
A Tavakkol  A T Burness 《Biochemistry》1990,29(47):10684-10690
Sialic acid residues are required in cellular receptors for many different mammalian viruses. Sialic acid could have a direct role, being an integral part of the virus binding site on the receptor. Alternatively, negatively charged sialic acid could have an indirect role, being responsible for holding the receptor in the required configuration for virus recognition, for instance, by interacting with positively charged amino acid residues found in the polypeptide chain of receptors. We have investigated the role of sialic acid in virus attachment by studying the interaction of the small RNA virus encephalomyocarditis (EMC) with glycophorin A, its receptor on human erythrocytes. In several experiments, influenza virus A was used for control purposes. Blocking positive charges on glycophorin either in lysine residues by acetylation or in arginine residues with butanedione did not affect its interaction with EMC virus. In contrast, blocking negatively charged carboxyl groups in sialic acid residues by amidation destroyed the ability of glycophorin to inhibit EMC virus attachment suggesting an important role for this part of sialic acid in EMC virus attachment. Removal of the polyhydroxy side chain in sialic acid residues of glycophorin by mild oxidation with periodate followed by reduction with borohydride had little effect on its interaction with EMC virus. Further, sialic acid species with either an acetyl or glycolyl group attached to the amino group on position 5 interacted equally well with EMC virus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have investigated the interaction of targeted liposomes with human erythrocytes, and K562 cells, a human leukemic line which expresses both glycophorin A and Fc receptors. Liposomes conjugated to monoclonal anti-human glycophorin A bind to human erythrocytes in 80-fold greater amounts than liposomes conjugated to a non-specific monoclonal antibody. Binding is inhibited by soluble anti-glycophorin but not by its Fab fragment. In contrast, binding of antibody-conjugated liposomes to K562 cells is very high irrespective of the specificity of the antibody. Liposomes conjugated to a nonspecific monoclonal antibody interact with K562 cells via an Fc receptor, and binding is inhibited by soluble human IgG. Liposomes conjugated to anti-human glycophorin A interact with K562 cells via an Fc receptor and glycophorin A. Binding is not inhibited by either human IgG or anti-glycophorin Fab alone. Binding is only partially inhibited by anti-glycophorin, or by human IgG in the presence of anti-glycophorin Fab, and completely inhibited only by human IgG in the presence of anti-glycophorin. Simultaneous binding of targeted liposomes to two cell membrane antigens is therefore partially resistant to inhibition by single soluble ligands even when they are present in large excess. We conclude that simultaneous binding to more than one receptor may be of considerable advantage for in vivo applications of targeted liposomes.  相似文献   

8.
The major sialoglycoprotein in the human red cell surface membrane, glycophorin A is encoded by a single gene. However, this gene gives rise to three species of glycophorin A mRNA of sizes about 1.0, 1.7 and 2.8 kilobases in reticulocytes, foetal liver cells and erythroleukaemic K562 cells. In an investigation of how the three mRNAs originated, we showed by primer extension analysis that all three mRNAs in K562 cells had identical 5' termini and, by nucleotide sequencing of correlated cDNAs, that they had identical coding regions, except for the well-known glycophorin AM-AN polymorphism. However, we found also by sequencing the cDNAs that the mRNAs apparently differed from each other in the lengths of their 3' untranslated regions. This was confirmed by Northern blot analysis which also provided evidence that the three mRNAs originated by use of different polyadenylation signals of which seven were found in the longest cDNA we analyzed.  相似文献   

9.
Glycophorins of human erythroleukemic K562 cells   总被引:1,自引:0,他引:1  
Glycophorins related to alpha glycophorin, of the human erythrocyte membrane, were isolated from human erythroleukemic K562 cells. The glycophorins were purified using sodium dodecyl sulfate (SDS)/trichloroacetic acid fractionation and Folch and hot phenol extractions. 0.1-0.2 micrograms was obtained/10(8) cells, or approximately a 15% yield. SDS-gel electrophoresis revealed a pattern similar to erythrocyte alpha glycophorin except for the slower mobility of the glycophorin monomer. Two populations of K562 glycophorins, present in nearly equivalent amounts, were distinguished by their binding to Lens culinaris lectin agarose. The two populations exhibited similar gel electrophoretic patterns except for the presence of delta-like glycophorin exclusively in the population that did not bind to L. culinaris lectin. Immunoblotting revealed a lack of reaction of the major alpha and delta-like glycophorin bands in all K562 glycophorins with M or N erythrocyte glycophorin-specific monoclonal antibodies. Only minor species of intermediate electrophoretic mobility in glycophorins not binding to L. culinaris showed a reaction with these antibodies. Both populations of glycophorins incorporated radiolabeled glucosamine, mannose, and fucose and contained O-glycosidically linked tri- and tetrasaccharides, present in a ratio of approximately 1:1 indicating a significant degree of hyposialylation when compared to erythrocyte alpha glycophorin. No precursor/product relationship was demonstrated between the major forms of two populations. K562 cell surface labeling with lactoperoxidase revealed that only the glycophorins that exhibited binding to L. culinaris were accessible to iodination and could be the only species expressed at the cell surface.  相似文献   

10.
Enterovirus 70 (EV70) is a recently emerged human pathogen belonging to the family Picornaviridae. The ability of EV70 to infect a wide variety of nonprimate cell lines in vitro is unique among human enteroviruses. The importance of virus receptors as determinants of viral host range and tropism led us to study the host cell receptor for this unusual picornavirus. We produced a monoclonal antibody (MAb), EVR1, which bound to the surface of HeLa cells and protected them against infection by EV70 but not by poliovirus or by coxsackievirus B3. This antibody also inhibited the binding of [35S]EV70 to HeLa cells. MAb EVR1 did not bind to monkey kidney (LLC-MK2) cells, nor did it protect these cells against virus infection. In Western immunoassays and in immunoprecipitations, MAb EVR1 identified a HeLa cell glycoprotein of approximately 75 kDa that is attached to the cell membrane by a glycosyl-phosphatidylinositol (GPI) anchor. Decay-accelerating factor (DAF, CD55) is a 70- to 75-kDa GPI-anchored membrane protein that is involved in the regulation of complement and has also been shown to function as a receptor for several enteroviruses. MAb EVR1 bound to Chinese hamster ovary (CHO) cells constitutively expressing human DAF. Anti-DAF MAbs inhibited EV70 binding to HeLa cells and protected them against EV70 infection. Transient expression of human DAF in murine NIH 3T3 cells resulted in binding of labelled EV70 and stably, transformed NIH 3T3 cells expressing DAF were able to support virus replication. These data indicate that the HeLa cell receptor for EV70 is DAF.  相似文献   

11.
The 12E7 murine monoclonal antibody recognizes a protease-sensitive component of human red cells, platelets and lymphocytes which could not be detected on granulocytes. Scatchard analyses indicated that the 125I-labelled antibody binds to 1000, 4000 and 27,000 antigen sites on each red cell, platelet and lymphocyte respectively, with a binding constant ranging from 4 x 10(7) to 9 x 10(7) M-1. The membrane components recognized by the monoclonal antibody were characterized by immunostaining on nitrocellulose sheets. A 28 kDa sialoglycoprotein was visualized following electrophoretic transfer of the red cell and lymphocyte membrane proteins separated by SDS/polyacrylamide-gel electrophoresis. Another component of 25 kDa was also clearly identified in the lymphocyte and platelet lysates, but was barely detectable in the red cell membrane preparations. Enzyme treatment of intact platelets, as well as analysis of the membrane and cytosolic preparations from these cells, have shown that the 25 kDa component was of cytoplasmic origin. The mobility of the 28 kDa membrane component is decreased following neuraminidase treatment of intact blood cells, but these cells still react normally with the monoclonal antibody, indicating that sialic acids are not required for binding. The 28 kDa component is present on red cell membranes prepared from S-s-U-, En(a-) and Gerbich(-) individuals, demonstrating that it is a new sialoglycoprotein not derived from glycophorins A, B, C or D. The 28 kDa component was totally solubilized with 0.1% Triton X-100 from red cell membranes and behaves like the other red cell membrane sialoglycoproteins since it was extracted in the aqueous phase following chloroform/methanol/water or butanol/water partitionings. The 28 kDa component could be partially purified by h.p.l.c. gel permeation chromatography and preparative SDS/polyacrylamide-gel electrophoresis. The material finally obtained strongly inhibits the 12E7 monoclonal as well as human anti-Xga antibodies, suggesting either that the 28 kDa glycoprotein carries both antigens or that the 12E7 and Xga-active molecules copurified.  相似文献   

12.
Studies of phosphorylation in membranes of intact human erythrocytes were performed by incubating erythrocytes in inorganic [32P]phosphate. Analysis of membrane proteins by polyacrylamide gel electrophoresis showed a pattern of phosphorylation similar to that observed when ghost membranes were incubated with [gamma-32P]ATP. Membrane lipid phosphorylation was also similar in intact cells and ghosts. The most heavily phosphorylated lipid, polyphosphoinositide, was closely associated with glycophorin A, the major erythrocyte membrane sialoglycoprotein obtained when the sialoglycoprotein fraction was isolated by the lithium diiodosalicylate-phenol partition procedure. Only 1 molecule of glycophorin A out of every 100 was found to be phosphorylated, and the phosphate exchange occurred specifically in the COOH-terminal intracellular portion of glycophorin A. These studies show that the human erythrocyte can be used as a model for membrane phosphorylation in an intact cell system.  相似文献   

13.
Summary Incubation of HeLa cells with Encephalomyocarditis virus (EMC) induces permeability of the cell membrane to protein toxins, such as alpha sarcin. To induce permeability to this toxin only 5 min incubation of cells with virus is needed. On the other hand, less than 1 min exposure of the susceptible cells to alpha sarcin produces maximal inhibition of protein synthesis. EMC virus treated with UV-light, although unable to replicate, can still induce the entrance of alpha sarcin into HeLa cells, but the virion loses this capacity after heating at 60 °C for 10 min. These findings suggest that an integral viral genome is not necessary to make the cells permeable to alpha sarcin, and that a virion protein might be involved in this phenomenon. Although human interferon prevents productive EMC infection, it does not affect the virus-induced entrance of alpha sarcin into the cells. The plasma membrane of cells that have been treated with virion particles can recover its initial lack of permeability to alpha sarcin after 2 h at 37 °C. Poliovirus modifies membrane permeability in human HeLa cells, but it has no effect on mouse L cells. This fact suggests that viral attachment to specific cell surface receptors is necessary to induce permeability, since receptors to poliovirus are only present in primate cells.  相似文献   

14.
Two sublines of the human leukemia cell line K562 including the original cell line and three clones have been investigated for their erythroid features. All of them produce embryonic and fetal hemoglobins, glycophorin A, spectrin and true acetylcholinesterase, but to a varying extent among the cell lines. The Hb and glycophorin contents were correlated in the different K562 cell lines, whereas acetylcholinesterase was independently expressed from these two other erythroid markers. Hb accumulation is enhanced by exposure of the cells to 100 microM hemin without a significant modification of the expression of the other erythroid markers. Butyrate greatly increased the activity of acetylcholinesterase, slightly enhanced the production of hemoglobin, but did not modify the expression of glycophorin and spectrin. 12-O-tetradecanoyl-phorbol-13-acetate (TPA) induced an almost complete disappearance of glycophorin, reduced the synthesis of Hb by K562 cells and also abolished the action of hemin on Hb accumulation. Therefore, all the different K562 cell lines exhibit clear erythroid features including acetylcholinesterase. Butyrate or hemin did not induce terminal differentiation of K562 cells, whereas TPA significantly diminished the erythroid phenotype.  相似文献   

15.
Erythrocytes of the rare human blood group En(a?) lack the major sialoglycoprotein, glycophorin A, and the cell population heterozygous for the En(a) antigen contain half the normal amount of glycophorin A. With such cells we have studied whether glycophorin A influences the phospholipid composition and the availability of aminophospholipids to external labeling reagents. We here demonstrate that the amounts of all phospholipids are closely similar in normal and variant membranes. However, using the amino-reactive reagent trinitrobenzenesulfonate, we show that phosphatidylethanolamine is more easily labeled in intact En(a?) cells as compared to normal cells, whereas phosphatidylethanolamine shows an intermediate labeling in En(a) heterozygous cells.  相似文献   

16.
Erythrocytes of the rare human blood group En(a--) lack the major sialoglycoprotein, glycophorin A, and the cell population heterozygous for the En(a) antigen contain half the normal amount of glycophorin A. With such cells we have studied whether glycophorin A influences the phospholipid composition and the availability of aminophospholipids to external labeling reagents. We here demonstrate that the amounts of all phospholipids are closely similar in normal and variant membranes. However, using the amino-reactive reagent trinitrobenzenesulfonate, we show that phosphatidylethanolamine is more easily labeled in intact En(a--) cells as compared to normal cells, whereas phosphatidylethanolamine shows an intermediate labeling in En(a) heterozygous cells.  相似文献   

17.
Structural differences between platelet and endothelial cell thrombospondin (TBSP) were found in two protease-resistant domains (70 and 18 kDa). The 70 kDa fragment is involved in the binding of TBSP to fibrinogen and the 18 kDa fragment in the attachment to various cultured cells. Despite these structural differences, platelet and endothelial cell TBSP bound with the same affinity to fibrinogen and mediated the attachment of smooth muscle cells but not of endothelial cells.  相似文献   

18.
Nuclear extract of human erythroleukemic cell line K562 contains a 70 kDa protein which is gradually reduced when cells are induced to express globin genes by 25 microM hemin. When globin synthesis was inhibited by cycloheximide (100 micrograms/ml) or Actinomycin D (1 microgram/ml), the disappearance of this protein was prevented. The 70 kDa nuclear protein exhibited strong binding to G gamma and A gamma globin promoters but not to beta-globin promoter. This suggests that this 70 kDa nuclear protein may be involved in the regulation of fetal globin gene expression.  相似文献   

19.
Retrovirus infection is initiated by the binding of virus envelope glycoprotein to a receptor molecule present on cell membranes. To characterize a receptor for feline leukemia virus (FeLV), we extensively purified the viral envelope glycoprotein, gp70, from culture supernatants of FeLV-61E (subgroup A)-infected cells by immunoaffinity chromatography. Binding of purified 125I-labeled gp70 to the feline T-cell line 3201 was specific and saturable, and Scatchard analysis revealed a single class of receptor binding sites with an average number of 1.6 x 10(5) receptors per cell and an apparent affinity constant (Ka) of 1.15 x 10(9) M-1. Cross-linking experiments identified a putative gp70-receptor complex of 135 to 140 kDa. Similarly, coprecipitation of 125I-labeled cell surface proteins with purified gp70 and a neutralizing but noninterfering anti-gp70 monoclonal antibody revealed a single cell surface protein of approximately 70 kDa. These results indicate that FeLV-A binds to feline T cells via a 70-kDa cell surface protein, its presumptive receptor.  相似文献   

20.
When K562 cells were infected with Newcastle disease virus (NDV) or human parainfluenza type 2 virus (hPIV-2), polykaryocyte formation could not be detected. Failure of multinucleated giant cell formation in K562 cells infected with either NDV or hPIV-2 is due to disturbance of the viral envelope-cell fusion step or to defect in the cell-cell fusion step, respectively. Especially, NDV completely replicated in K562 cells, and the hemagglutinin-neuraminidase and fusion proteins expressed on the cell surface of NDV-infected K562 cell were fully functional for fusion inducing activity. Therefore, the cell membranes of K562 cells are considered to be resistant to virus-induced cell fusion. Membrane fusion is regulated by many host factors including membrane fluidity, cytoskeletal systems, and fusion regulatory proteins system. An unknown regulatory mechanism of virus-induced cell fusion may function on the cell surface of K562 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号