首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effect of rifampin on five mollicutes (Spiroplasma citri, Spiroplasma melliferum, Spiroplasma apis, Acholeplasma laidlawii, and Mycoplasma mycoides) was compared with that on Escherichia coli. We found that, in contrast to wild-type E. coli, mollicutes were insensitive to rifampin. DNA-dependent RNA polymerases from S. melliferum and S. apis were purified to the stage where the enzymes were dependent on the addition of exogenous templates for activity. The enzymes were then tested for their sensitivity to rifampin. Spiroplasmal enzymes were at least 1,000 times less sensitive to rifampin than the corresponding E. coli enzyme. This result provides a molecular basis for the resistance of mollicutes to rifampin. The RNA polymerase of S. melliferum was further purified and its subunit composition was investigated. The RNA polymerase has one small and two large subunits. The structure of S. melliferum RNA polymerase therefore resembles that of the eubacterial enzymes in spite of its insensitivity to rifampin.  相似文献   

2.
Rifampin-resistant RNA polymerase in spirochetes   总被引:1,自引:0,他引:1  
Abstract Various free-living and host-associated spirochetes isolated by methods not involving rifampin were resistant to relatively high concentrations of this antibiotic. The lowest concentrations of rifampin that were inhibitory for the spirochetes ranged from 50 to more than 200 μ g/ml, depending on the species. The spirochete strains examined were at least 10-fold more resistant to rifampin than Escherichia coli and 10 000-fold more resistant than Staphylococcus aureus . The results support the conclusion that rifampin resistance is a general characteristic of spirochetes. Resistance of Spirochaeta aurantia to rifampin was not the result of detoxification of the antibiotic in the culture medium. The activity of spirochete DNA-dependent RNA polymerase in vitro was completely resistant to 10 μg of rifampin per ml, a concentration that totally inhibited E. coli RNA polymerase. Higher concentrations decreased the spirochetal activity. Thus, rifampin resistance may be due to a low affinity of spirochete RNA polymerase for the antibiotic.  相似文献   

3.
4.

Background  

Mutations in rpoB, the gene encoding the β subunit of DNA-dependent RNA polymerase, are associated with rifampin resistance in Mycobacterium tuberculosis. Several studies have been conducted where minimum inhibitory concentration (MIC, which is defined as the minimum concentration of the antibiotic in a given culture medium below which bacterial growth is not inhibited) of rifampin has been measured and partial DNA sequences have been determined for rpoB in different isolates of M. tuberculosis. However, no model has been constructed to predict rifampin resistance based on sequence information alone. Such a model might provide the basis for quantifying rifampin resistance status based exclusively on DNA sequence data and thus eliminate the requirements for time consuming culturing and antibiotic testing of clinical isolates.  相似文献   

5.
R Lathe 《Journal of bacteriology》1977,131(3):1033-1036
The firA (Ts)200 mutation not only eliminates the resistance to rifampin of certain genetically resistant strains, but, moreover, renders ribonucleic acid synthesis thermolabile. The firA gene has been mapped by P1 tranduction and is located extremely close to the structural gene for deoxyribonucleic acid polymerase III at 4 min on the Escherichia coli linkage map.  相似文献   

6.
7.
An assessment was made of the relative contributions of a spontaneous mutation to rifampin resistance and a cryptic plasmid, pTA2, to competitive nodulation of Medicago sativa by a strain of Rhizobium meliloti. This was facilitated by use of rifampin-resistant derivatives of this strain in which pTA2 was originally present, cured, or reintroduced. Both curing of pTA2 and spontaneous mutation to rifampin resistance significantly influenced nodulating competitiveness, but the effect of rifampin resistance was greater and such that the contribution of pTA2 was evident only in cases in which paired competitors had the common rifampin resistance background. The data suggest that rifampin-resistant derivatives contain an altered RNA polymerase insensitive to the action of rifampin. All R. meliloti derivatives had symbiotic characteristics and phage susceptibility patterns similar to those of the wild type. Plasmid pTA2 transfer or other genetic interchange was not detected in nodules of M. sativa inoculated with paired competitors.  相似文献   

8.
Mutations causing rifampin resistance in vegetative cells of Bacillus subtilis 168 have thus far been mapped to a rather restricted set of alterations at either Q469 or H482 within cluster I of the rpoB gene encoding the beta subunit of RNA polymerase. In this study, we demonstrated that spores of B. subtilis 168 exhibit a spectrum of spontaneous rifampin resistance mutations distinct from that of vegetative cells. In addition to the rpoB mutations Q469K, Q469R, and H482Y previously characterized in vegetative cells, we isolated a new mutation of rpoB, H482R, from vegetative cells. Additional new rifampin resistance mutations arising from spores were detected at A478N and most frequently at S487L. The S487L change is the predominant change found in rpoB mutations sequenced from rifampin-resistant clinical isolates of Mycobacterium tuberculosis. The observations are discussed in terms of the underlying differences of the DNA environment within dormant cells and vegetatively growing cells.  相似文献   

9.
Evidence for gene silencing of Haemophilus influenzae involved a beta-subunit of RNA polymerase. The gene presumed silenced was rifampin resistance. The evidence that it was silencing, rather than dominance of a rifampin-sensitive marker, was that it took place when the rifampin resistance marker was on both a plasmid and the chromosome, without the presence of a rifampin-sensitive marker, as judged by lack of transformation of a rifampin-resistant cell to rifampin sensitivity by the plasmid. In addition, three compounds that are known to decrease gene silencing in eukaryotes (trichostatin A, sodium butyrate and 5-azacytidine) also decreased the presumed silencing in H. influenzae. Silencing of rifampin-resistant Escherichia coli did not take place with the plasmid from H. influenzae.  相似文献   

10.
11.
12.

Background  

Rifampin is a first line antituberculosis drug active against bacilli in logarithmic and stationary phase, which interferes with RNA synthesis by binding to bacterial RNA polymerase. Tubercle bacilli achieve resistance to rifampin by accumulation of mutations in a short-81 bp region of the rpoB gene. Among many mutations identified in the rpoB gene, few were verified by molecular genetic methods as responsible for resistance to rifampin (RMP).  相似文献   

13.
14.
In Escherichia coli cells carrying the srnB+ gene of the F plasmid, rifampin, added at 42 degrees C, induces the extensive rapid degradation of the usually stable cellular RNA (Ohnishi, Y., (1975) Science 187, 257-258; Ohnishi, Y., Iguma, H., Ono, T., Nagaishi, H. and Clark, A.J. (1977) J. Bacteriol. 132, 784-789). We have studied further the necessity for rifampin and for high temperature in this degradation. Streptolydigin, another inhibitor of RNA polymerase, did not induce the RNA degradation. Moreover, the stable RNA of some strains in which RNA polymerase is temperature-sensitive did not degrade at the restrictive temperature in the absence of rifampin. These data suggest that rifampin has an essential role in the RNA degradation, possibly by the modification of RNA polymerase function. A protein (Mr 12 000) newly synthesized at 42 degrees C in the presence of rifampin appeared to be the product of the srnB+ gene that promoted the RNA degradation. In a mutant deficient in RNAase I, the extent of the RNA degradation induced by rifampin was greatly reduced. RNAase activity of cell-free crude extract from the RNA-degraded cells was temperature-dependent. The RNAase was purified as RNAase I in DEAE-cellulose column chromatography and Sephadex G-100 gel filtration. Both in vivo and with purified RNAase I, a shift of the incubation mixture from 42 to 30 degrees C, or the addition of Mg2+ ions, stopped the RNA degradation. Thus, an effect on RNA polymerase seems to initiate the expression of the srnB+ gene and the activation of RNAase I, which is then responsible for the RNA degradation of E. coli cells carrying the srnB+ gene.  相似文献   

15.
Escherichia coli K-12 mutants that are resistant to bacteriophage chi, defective in motility, and unable to grow at high temperature (42 degrees C) were isolated from among those selected for rifampin resistance at low temperature (30 degrees C) after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Genetic analysis of one such mutant indicated the presence of two mutations that probably affect the beta subunit of ribonucleic acid (RNA) polymerase: one (rif) causing rifampin resistance and the other (Ts-74) conferring resistance to phage chi (and loss of motility) and temperature sensitivity for growth. Observations with an electron microscope revealed that the number of flagella per mutant cell was significantly reduced, suggesting that the Ts-74 mutation somehow affected flagella formation at the permissive temperature. When a mutant culture was transferred from 30 to 42 degrees C, deoxyribonucleic acid synthesis accelerated normally, but RNA or protein synthesis was enhanced relatively little. The rate of synthesis of beta and beta' subunits of RNA polymerase was low even at 30 degrees C and was further reduced at 42 degrees C, in contrast to the parental wild-type strain. Expression of the lactose and other sugar fermentation operons, as well as lysogenization with phage lambda, occurred normally at 30 degrees C, suggesting that the mutation does not cause general shut-off of gene expression regulated by cyclic adenosine 3',5'-monophosphate.  相似文献   

16.
A class of mutations that confer resistance to rifampin in Salmonella typhimurium and Escherichia coli also suppresses the thermosensitivity of chromosome initiation in dnaA mutants. Ribonucleic acid polymerase is resistant to rifampin in vitro in these suppressive mutants, and the suppressors of dnaA cannot be separated from the rpoB mutations by transduction. It is concluded, therefore, that certain rpoB mutations may suppress the DnaA phenotype.  相似文献   

17.
18.
Deoxyribonucleic acid-dependent ribonucleic acid polymerase mutants of Bacillus subtilis strain Marburg were isolated after mutagenesis of spores with ethyl methane sulfonate. Genetic analysis by PBS1-mediated transduction and by transformation indicated that mutations responsible for all of the four phenotypic classes studied (rifampin resistance, streptovaricin resistance, streptolydigin resistance, and temperature sensitivity) were clustered close to the cysA14 locus. Three-factor transformation analysis has indicated the most probable marker order as follows: Rif(R)(Stv)(R)-Std(R)-Ts(418)-Ts(427). In addition, further characterization of the classical group I reference marker, cysA14, is reported.  相似文献   

19.
The frequency of individual genetic mutations conferring drug resistance (DR) to Mycobacterium tuberculosis has not been studied previously in Central America, the place of origin of many immigrants to the United States. The current gold standard for detecting multidrug-resistant tuberculosis (MDR-TB) is phenotypic drug susceptibility testing (DST), which is resource-intensive and slow, leading to increased MDR-TB transmission in the community. We evaluated multiplex allele-specific polymerase chain reaction (MAS-PCR) as a rapid molecular tool to detect MDR-TB in Panama. Based on DST, 67 MDR-TB and 31 drug-sensitive clinical isolates were identified and cultured from an archived collection. Primers were designed to target five mutation hotspots that confer resistance to the first-line drugs isoniazid and rifampin, and MAS-PCR was performed. Whole-genome sequencing confirmed DR mutations identified by MAS-PCR, and provided frequencies of genetic mutations. DNA sequencing revealed 70.1% of MDR strains to have point mutations at codon 315 of the katG gene, 19.4% within mabA-inhA promoter, and 98.5% at three hotspots within rpoB. MAS-PCR detected each of these mutations, yielding 82.8% sensitivity and 100% specificity for isoniazid resistance, and 98.4% sensitivity and 100% specificity for rifampin resistance relative to DST. The frequency of individual DR mutations among MDR strains in Panama parallels that of other TB-endemic countries. The performance of MAS-PCR suggests that it may be a relatively inexpensive and technically feasible method for rapid detection of MDR-TB in developing countries.  相似文献   

20.
Electron microscopy was used to analyze sporulating cells and spores of Bacillus subtilis mutants (Rif(r)) which are resistant to rifampin, an inhibitor of ribonucleic acid polymerase. The spores of Rif-18 are pleomorphic and frequently exhibit terminal knobs. These knobs first occur during late stage IV and early stage V of sporulation and are extensions of the inner and outer spore coats. Since the rifampin resistance and altered spore morphology of Rif-18 are 100% cotransformable, these data suggest that the altered spore morphology is the result of an alteration in ribonucleic acid polymerase genes. The morphology and physical dimensions are also reported for spores from Rif-11, Rif-15, and Rif-21. Significant differences in size from the wild type were observed for these mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号