首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of nerve growth factor (NGF), dibutyryl cyclic AMP (db cAMP), and cholera toxin on neurofilament protein expression in cultures of PC12 rat pheochromocytoma cells were examined using an enzyme-linked immunoadsorbent assay (ELISA). Morphological differentiation induced by NGF was associated with up to 30-fold increases in the level of neurofilament protein recognised by monoclonal antibody RT97. A more rapid response was apparent from primed as compared to naive PC12 cells. Cholera toxin and db cAMP both induced morphological differentiation of naive PC12 cells, but failed to promote neurite regeneration from primed cells. Neither response was associated with a significant induction of neurofilament protein. Both cholera toxin and db cAMP, but not B-cholera toxin nor antibodies to the toxin receptor, were found to inhibit the neurofilament protein response induced by NGF. Primed cells were more susceptible to this inhibition, and both cholera toxin and db cAMP inhibited neurite regeneration from these cells. These data suggest that increased intracellular cyclic AMP can suppress the expression of neuronal differentiation antigens induced by NGF, and are consistent with a role for neurofilament protein in promoting or facilitating the formation of a stable neuritic network.  相似文献   

2.
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human neural cell adhesion molecule (NCAM) or chick N-cadherin as a culture substrate for PC12 cells. NCAM and N-cadherin in the monolayer directly promote neurite outgrowth from PC12 cells via a G-protein-dependent activation of neuronal calcium channels. In the present study we show that ganglioside GM1 does not directly activate this pathway in PC12 cells. However, the presence of GM1 (12.5-100 micrograms/ml) in the co-culture was associated with a potentiation of NCAM and N-cadherin-dependent neurite outgrowth. Treatment of PC12 cells with GM1 (100 micrograms/ml) for 90 min led to trypsin-stable increases in both beta-cholera toxin binding to PC12 cells and an enhanced neurite outgrowth response to N-cadherin. The ganglioside response could be fully inhibited by treatment with pertussis toxin. These data are consistent with exogenous gangliosides enhancing neuritic growth by promoting cell adhesion molecule-induced calcium influx into neurons.  相似文献   

3.
Li  R; Kong  Y; Ladisch  S 《Glycobiology》1998,8(6):597-603
The PC12 rat pheochromocytoma cell line is an established model for nerve growth factor (NGF)-induced neurite formation. It has been shown that when gangliosides are added to the culture medium of PC12 cells, NGF-induced neurite formation of PC12 cells is enhanced. To determine the role of endogenous cellular gangliosides themselves in NGF-elicited neurite formation, we depleted cellular gangliosides using the new specific glucosylceramide synthase inhibitor, d, l-threo-1-phenyl-2- hexadecanoylamino-3-pyrrolidino-1-propanol.HCl (PPPP). 0.5-2 microM PPPP rapidly inhibited ganglioside synthesis and depletedcellular gangliosides. Nonetheless, over a concentration range of 5-100 ng/ml NGF, in both low serum and serum-free medium, neurite formation was normal. Even pretreatment of PC12 cells for up to 6 days with 1 microM PPPP followed by cotreatment with PPPP and NGF for 10 days, still did not inhibit neurite formation. The conclusion that ganglioside depletion did not block neurite formation stimulated by NGF was supported by the lack of effect of PPPP, under these same conditions, on cellular acetylcholine esterase activity, a neuronal differentiation marker (73.8 +/- 12.1 versus 67.2 +/- 4.6 nmol/min/mg protein at 50 ng/ml NGF; control versus 1 microM PPPP). These findings, together with previous studies showing enhancement of NGF-induced neurite formation by exogenous gangliosides, underscore the vastly different effects that exogenous gangliosides and endogenous gangliosides may have upon cellular functions.   相似文献   

4.
Polyclonal antibodies to ganglioside GM1 have been prepared and characterised by direct and competitive enzyme-linked immunoassay. An immunoglobulin fraction was prepared from a rabbit antisera showing high specificity and antibody titre for GM1 relative to the other major brain gangliosides. The anti-GM1 immunoglobulin fraction and B-cholera toxin specifically labelled neurons in primary cultures of embryonic chick dorsal root ganglia and there was a good correlation between the relative increase in binding of anti-GM1 immunoglobulin and B-cholera toxin following neuraminidase treatment of a variety of cell types. At antibody concentrations that show saturable binding to endogenous ganglioside in the neuronal membrane, the anti-GM1 immunoglobulin fraction did not interfere with the nerve growth factor (NGF)-mediated fibre outgrowth and neuronal survival as indexed by measurement of neurofilament protein levels. Similarly, at levels in excess of those shown to stimulate thymocyte proliferation, B-cholera toxin was also without effect. These data are not consistent with GM1 in the neuronal membrane functioning as a receptor molecule for NGF and/or other differentiation factors present in the tissue culture media.  相似文献   

5.
Abstract: Exogenous gangliosides, especially ganglioside GM1 (GM1), seem to potentiate the action of nerve growth factor (NGF). We have examined the possible regulation of the NGF signaling pathway in PC12 cells by the B subunit of cholera toxin (CTB), which binds to endogenous GM1 specifically and with a high affinity. CTB treatment (1 μg/ml) enhanced NGF-induced neurite outgrowth from PC12 cells, NGF-induced activation of ribosomal protein S6 kinase, and NGF-induced stimulation of trk phosphorylation. CTB plus NGF also caused a greater inhibition of [3H]-thymidine incorporation into DNA than did NGF alone. These enhancing effects of CTB were blocked by the presence of cytochalasin B in the culture medium but were not affected by the presence of colchicine or by the depletion of Ca2+ in the medium. 125I-NGF binding experiments revealed that CTB treatment did not affect the specific binding of NGF to the cells. These results strongly suggest that the binding of cell surface GM1 by CTB modulates the pathway of intracellular signaling initiated by NGF and that the association of CTB with a cytoskeletal component is essential for these effects.  相似文献   

6.
Control of Thy-1 Glycoprotein Expression in Cultures of PC12 Cells   总被引:6,自引:3,他引:3  
The effects of nerve growth factor (NGF) and cholera toxin on the expression of the Thy-1 glycoprotein were examined in cultures of naive and primed PC12 cells using an enzyme-linked immunoadsorbent assay (ELISA). With primed PC12 cells, NGF induced a rapid increase in Thy-1 expression over a time course similar to that of neurite regeneration, with half-maximal and maximal increases apparent at 0.6 and 6 ng/ml NGF. Cholera toxin and dibutyryl cyclic AMP, but not B-cholera toxin or antibodies to the toxin receptor, were found to inhibit NGF-induced increases in Thy-1. Morphological differentiation of naive PC12 cells induced by NGF, but not cholera toxin, was also associated with increased expression of Thy-1. Despite showing a synergistic effect on morphological differentiation, cholera toxin was again found to inhibit NGF-induced increases in Thy-1 expression in cultures of naive PC12 cells. These data suggest that agents that interact directly or indirectly with adenylate cyclase may regulate the responsiveness of PC12 cells to NGF, and as such modulate the expression of the Thy-1 glycoprotein.  相似文献   

7.
The acidic glycosphingolipid, ganglioside GM1, which is the binding site for cholera toxin on many cell types, was identified by chemical and by flow cytometric analyses of mouse interleukin 3-dependent, bone marrow culture-derived mast cells (BMMC). Ganglioside GM1 and other acidic glycosphingolipids were isolated from BMMC by chloroform/methanol extraction and chromatography on DEAE-Sephadex and were analyzed by thin layer chromatography. The presence of ganglioside GM1 in the BMMC extract was demonstrated by its co-migration with ganglioside GM1 standard in thin layer chromatography and by the binding of peroxidase-labeled cholera toxin B subunit to both molecules. As assessed by fluorescence flow cytometric analysis of the binding of fluorescein-conjugated cholera toxin B subunit, the majority of BMMC expressed ganglioside GM1 on their surface, and the total presentation per cell increased as cells progressed from the G1 to S to G2 + M phases of the cell cycle. The addition of increasing amounts of cholera toxin starting with 0.08 microgram/ml to BMMC cultured in 50% WEHI 3-conditioned medium containing IL 3 for 48 hr caused the adhesion of BMMC to the tissue culture flasks to increase in a dose-related manner, from less than 1% adherent cells in cultures without toxin to a plateau value of approximately 17% adherent in the presence of 1.25 micrograms/ml of toxin. The histamine content of BMMC increased from 26.7 +/- 3.59 ng/10(6) cells (mean +/- SD, n = 4) for control cultures to 201 +/- 17.4 ng/10(6) cells (mean +/- SD, n = 4) for nonadherent cells and to 588 +/- 89.4 ng/10(6) cells (mean +/- SD, n = 4) for adherent cells after 48 hr of culture in 0.31 microgram/ml cholera toxin, which was the optimal dose for nonadherent and adherent populations. The content of another preformed intragranular mediator, beta-hexosaminidase, did not increase appreciably in the presence of cholera toxin (n = 3). The increase in the histamine content of BMMC after the addition of 0.31 microgram/ml cholera toxin was detectable at 4 hr, plateaued by 24 to 48 hr, and gradually declined over the next 6 days. Cholera toxin also augmented the histamine content of BMMC in the presence of purified synthetic IL 3. Preincubation of whole cholera toxin with purified ganglioside GM1 inhibited the histamine-augmenting effects of cholera toxin on BMMC, indicating that the effect was not due to a contaminant, and neither the A nor B subunit of cholera toxin alone increased the histamine content of BMMC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Prompted by the therapeutic potential of the neuroimmunophilin FK506-binding protein (FKBP) ligand, GPI-1046, in the treatment of nerve injuries and neurodegenerative diseases, a novel series of non-cyclic derivatives of GPI-1046 were designed and synthesized. Computer modeling analysis revealed that these relatively linear derivatives could energy-favorably bind to FKBP12 with an analogous binding mode to GPI-1046. The neurotrophic activity of the target compounds was assessed in chick dorsal root ganglion (DRG) cultures. As a result, 6 out of 11 test compounds at either or both concentrations of 1 pM and 100 pM significantly promoted neurite outgrowth in DRGs in the presence of 0.15 ng/ml nerve growth factor (NGF). Compound 5c at 100 pM exhibited the greatest neurotrophic effect in promoting both the number and length of neurite processes. However, in the absence of exogenously added NGF, all test compounds, including GPI-1046, failed to afford any positive effect on DRGs. This study suggests the intriguing potential of these compounds for further investigation.  相似文献   

9.
Abstract: The G4 glycoprotein is found on the earliest developing neurite tracts of the chick embryo. An ELISA is introduced here to quantify the amount of G4-expressing neurites in the picogram range. In this double-sandwich assay, an anti-G4 monoclonal antibody fixes the G4 antigen to the plastic surface, which then is detected by a polyclonal antiserum; nonspecific background is decreased by competitive displacement. The sensitivity of the assay allows us to follow quantitatively the very first neurite growth in embryonic heads, trunks, retinae, and brains. G4-based neurite growth is shown to occur earlier in heads than in trunks; in brain it is nearly 10-fold higher than in the retina by embryonic day 8. By determination of acetylcholinesterase (AChE) activities from the same homogenates, our earlier histochemical findings are verified now on a quantitative basis, again showing that AChE consistently precedes G4 antigen. Moreover, as an in vitro example, the G4 ELISA is applied to the nerve growth factor (NGF) standard bioassay on dorsal root ganglia; the half-maximal response is reached at ∼10 ng/ml of NGF for G4-based neurite growth and at ∼1 ng/ml of NGF for AChE expression, respectively.  相似文献   

10.
Cocultures of septal and hippocampal tissues taken from 6- to 7-day-old rats were maintained in culture for up to 30 days in the presence and absence of nerve growth factor (NGF), and their Chol-1 contents determined at varying time intervals by a modified enzyme-linked immunosorption assay (ELISA). The major brain gangliosides were determined densitometrically after spraying chromatograms with resorcinol reagent. There was little change in the contribution of the major gangliosides to the total ganglioside content of the explants either with time or the presence or absence of NGF, the only exception being an NGF-insensitive fall in the contribution of GM1 to about 60% of its initial value at 20 and 30 days. By contrast, the concentration of Chol-1 expressed either per unit weight of ganglioside sialic acid or protein increased considerably in culture and this increase was enhanced by NGF. The effect of NGF resembles that on other cholinergic markers, choline acetyltransferase and acetylcholinesterase, and may be attributed to an NGF-stimulated hippocampal ingrowth of cholinergic fibres and enhanced survival of cholinergic septal neurons. The Chol-1 concentration finally attained in the presence of NGF and the time course of its increase parallel those previously found in vivo and indicate the potential usefulness of septal-hippocampal cocultures for investigating the function of Chol-1.  相似文献   

11.
《The Journal of cell biology》1984,98(3):1010-1016
Neurite outgrowth of C 1300 neuroblastoma cells, which were dispersed from adherent cultures or grown in suspension, was studied on different protein-coated surfaces. Of 29 different surface structures studied, including surfaces treated with various fibronectins, lectins, glycosidases, or glycosyltransferases capable of stimulating fibroblast spreading, only the surfaces coated with plasma fibronectin or with a protein mixture secreted by C6 glioma cells displayed an extensive activity in the sprouting assay. Neurite outgrowth was inhibited by brain gangliosides and by colominic acid (a sialic acid polymer). A 50% inhibition of neurite outgrowth of N18 neuroblasts induced by the glioma cell proteins was observed at the following approximate concentration: 100 microM (0.2 mg/ml) GD1A ganglioside, 20 microM (0.04 mg/ml) GT1B ganglioside, and 5 mg/ml colominic acid. Specificity of inhibition was suggested by the finding that a few polyanionic substances tested were not inhibitory in the sprouting assay, and that the type of gangliosides inhibiting sprouting were found to be major sialoglycolipids of the neuroblasts. A hypothesis is discussed, according to which neurite outgrowth of neuroblasts is stimulated by adhesion involving interactions of the adhesion-mediating protein with cell surface carbohydrates characteristic of brain gangliosides.  相似文献   

12.
13.
Retrograde trophic influences originating in the skeletal musculature have been postulated to be involved in regulating survival and differentiation of embryonic motor neurons and reactive terminal sprouting of mature motor fibres. We have previously described the use of a quantitative immunoassay for neurofilament protein to bioassay in vitro the cell-type-specific neuronotrophic activity of nerve growth factor (NGF) on sensory ganglion neurons. In the present study, the effect of media conditioned by adult human muscle cells (MCM) on the in vitro development of chicken spinal neurons has been studied using a similar approach. Significant increases in neurofilament protein levels in 7-day chicken embryonic spinal cord cultures were found with doses of MCM protein as low as 0.4 microgram/ml, with a dose-response relationship yielding maximal and half-maximal effects at 4 and 1 microgram/ml, respectively. Maximal increases in neurofilament protein levels were associated with an approximate two-fold increase in neuronal cell survival. MCM also induced increases in choline acetyltransferase activity in chick spinal cord cultures. In both the absence and presence of NGF, MCM did not increase neurofilament protein expression in primary cultures of sensory neurons.  相似文献   

14.
Neurotrophic factors, such as nerve growth factor (NGF), have been shown to promote the differentiation of neural crest neuroblasts into sympathetic neurons, whereas glucocorticoids promote the endocrine phenotype of adrenal medullary chromaffin cells. This pluripotency is preserved to some extent in adult chromaffin cells, with NGF and other neurotrophic factors influencing the differentiation of these cells. In this study, the effects of glial cell line-derived neurotrophic factor (GDNF) on explanted chromaffin tissue have been investigated. The localization of mRNAs corresponding to the two components of the GDNF receptor, GDNF family receptor alpha 1 (GFRalpha1) and Ret, were demonstrated in adult adrenal medullary ganglion cells. GFRalpha1 mRNA was expressed in explanted chromaffin tissue at levels dependent on the presence of serum in the medium but decreased on the addition of blocking antibodies against transforming growth factor beta (TGFbeta). However, TGFbeta1 (1 ng/ml) did not upregulate GFRalpha1 mRNA expression when added to serum-free medium. GDNF induced neurite formation from chromaffin cells, as measured by the ratio of neurite-bearing versus total number of chromaffin cells in primary cultures of adult adrenal medulla. The most potent dose inducing neurites from chromaffin cells was 100 ng/ml GDNF. However, this dose was not as efficient as that seen when chromaffin cells were stimulated with NGF (100 ng/ml). Thus, adrenal medullary cells express mRNAs for the GDNF receptor components Ret and GFRalpha1, increase their expression upon being cultured in serum-containing medium and respond to GDNF treatment with an increase in the number of cells that develop nerve processes.  相似文献   

15.
A rapid, sensitive, and high-capacity assay has been developed to quantify ligand-induced receptor tyrosine kinase activation in terms of receptor phosphorylation. The assay, termed a “kinase receptor activation” or KIRA-ELISA, utilizes two separate microtiter plates, one for cell culture and ligand stimulation, and the other for receptor capture and phosphotyrosine ELISA. The assay was developed for analysis of neurotrophin-induced trkA, trkB, or trkC activation. It utilizes a trkA, trkB, or trkC receptor fused with a 26-amino-acid polypeptide flag derived from HSV glycoprotein D (gD.trkA, B, or C, respectively) on the amino-terminus, stably transfected into CHO cells. Stimulated receptors were solubilized with Triton X-100 buffer and then captured in ELISA wells coated with gD-specific mAb. The degree of receptor autophosphorylation was quantified by anti-phosphotyrosine ELISA. Reproducible standard curves were generated with an EC50of approximately 16 ng/ml NGF for gD.trkA KIRA, 11 ng/ml for NT4/5 and 20 ng/ml for BDNF in gD.trkB KIRA, and 9.4 ng/ml for NT3 in gD.trkC KIRA. When the gD.trkA KIRA assay was used to quantify serum NGF or NT3 following administration to rats, the assay agreed well with currently existing ELISA assays. When the gD.trkA KIRA assay was used to test several NGF variants, as well as NGF stability samples, the capacity of the assay to quantify ligand bioactivity compared well with the more widely used radioreceptor binding and PC 12 cell survival assays. The gD.trk KIRA assays show great potential as rapid bioassays, capable of quantitative, consistent, and stability indicating analyses.  相似文献   

16.
A rat pheochromocytoma (PC12) cell line (designated MMTV-M17-5) expressing a dominant inhibitory mutant Ha-ras (Ha-ras Asn 17) protein was used to study nerve growth factor (NGF) induced neurite regeneration. Expression of the mutant p21 completely blocked NGF stimulated process formation in these cells. In contrast, neurite outgrowth induced by NGF treatment of primed MMTV-M17-5 cells was not significantly affected by the presence of Ha-ras Asn 17 protein. These observations suggest that, while ras function is required for NGF induced neuronal differentiation of PC12 cells, it is not needed to mediate NGF stimulated neurite regeneration.  相似文献   

17.
When grown in the absence of astroglial cells, purified mouse cerebellar granule neurons survive less than 36 hr and do not extend neurites. Here we report that low concentrations of basic fibroblast growth factor (bFGF, 1-25 ng/ml) maintained the viability and promoted the differentiation of purified granule neurons. The effect of bFGF on granule cell neurite outgrowth was dose dependent. Neurite outgrowth was stimulated markedly in the presence of 1-25 ng/ml bFGF, but effects were not seen below 1 ng/ml or above 50 ng/ml. When affinity-purified antibodies against bFGF (1-5 micrograms/ml) were added either to purified granule cells or to co-cultures of neurons and astroglial cells, process extension by granule neurons was severely impaired. The inhibition of neurite outgrowth in the presence of anti-bFGF antibodies was reversed by the addition of 25 ng/ml of exogenous bFGF. In addition to neuronotrophic effects, bFGF influenced the rate of growth of the astroglial cells. This result depended on whether the astroglia were grown in isolation from neurons, where low doses of bFGF (10-25 ng) stimulated glial growth, or in coculture with neurons, where much higher doses of bFGF (100-250 ng/ml) were needed for glial mitogenesis. Immunoprecipitation of lysates from 35S-labeled cerebellar astroglial cells with anti-bFGF antibodies revealed a single band after SDS-PAGE at 18,000 Da, the molecular weight of bFGF. These results indicate that glial cells synthesize bFGF and are possibly an endogenous source of bFGF in cerebellar cultures. Thus, astroglial cells synthesize soluble factors needed for neuronal differentiation.  相似文献   

18.
Rat clonal pheochromocytoma PC12h cells were found to bind beta-galactosidase modified with specific glycosides. The enzyme modified with p-aminophenyl beta-D-glucoside was most effectively bound to the cells, followed by alpha-D-mannoside and alpha-D-glucoside. The binding was dependent on the number of PC12h cells, the incubation interval, and the pH; the maximal binding at 4 degrees C was obtained by incubation with 75 micrograms of cell protein for 15 min at pH 4.0. The binding proved to be a saturable and receptor-mediated process, and the apparent Km value and the maximal binding capacity of the cells with beta-D-glucosylated beta-galactosidase were 1.03 +/- 0.06 microM and 333 +/- 24 pmol/min/mg of protein, respectively. When the cells were cultured in the presence of nerve growth factor (NGF), GM1, GM2, and a ganglioside mixture, marked morphological differentiation was observed in the presence of NGF, and the specificity of the binding was also affected. By supplementation of NGF in the culture medium, the cells lost the selectivity of the glycoside binding, whereas cells cultured with GM1 supplement showed increased binding of the specific glycosides.  相似文献   

19.
Hormonal modulation of neuronal cells behaviour in vitro   总被引:1,自引:0,他引:1  
In this study we have investigated the effect of insulin and/or of nerve growth factor (NGF) on enzyme activities of cholinergic neurotransmission, in cultured embryonic rat mesencephali. Our data show that choline-O-acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity display a prominent change in the embryonic brain tissues as a function of time in vitro. The change depends on the age of embryos from which the brain cell cultures have been set up. Namely, ChAT activity increases in the cultures taken from 13-17-day-old embryos as a function of time in vitro. AChE activity shows a striking decrease if the cultures have been set up from the older embryos (17-day-old), while AChE activity increases in the cultures prepared from 13-day-old embryos continuously. Insulin (amount ranging 10-27 micrograms/ml) causes a significant inhibition in the ChAT activity in comparison with the increased enzyme activity measured in control cultures (insulin ranging from 1 to 100 ng). AChE activity of 13-day-old embryos was not influenced by insulin (20-27 micrograms/ml) but the same amount of insulin prevents the decrease of AChE activity in cultured brain cells originating from 17-day-old-embryos. Biochemical studies of NGF treated cultures (30 ng/ml) revealed that nerve growth factor resulted in 5-12-fold increase in specific activity of the cholinergic enzyme, choline acetyltransferase (ChAT). NGF did not influence the AChE activity in cultured brain cells (13-17-day-old).  相似文献   

20.
The incorporation of radioactive precursors into gangliosides and other glycolipids, glycoproteins, and total lipids has been studied in rat pheochromocytoma PC12 cells. Starting with the same PC12 cell pool, cultures displaying different degrees of neuritic expression in response to nerve growth factor (NGF) and combinations of serum ganglioside GM1 were produced. Attempts were then made to correlate neuritic regulation with biochemical performances of these cells. NGF stimulates the incorporation of [3H]galactose into gangliosides and other glycolipids and glycoproteins and [14C]acetate into total lipids, regardless of the serum concentration. NGF both increased their initial labeling rates and promoted additional and more extensive labeling from culture day 4 onward. Unexpectedly, exogenous GM1 also elicited an increase in ganglioside labeling as well as that of the other lipid classes, but not of glycoproteins. The GM1-induced increase was evident at higher serum concentrations (1%) regardless of the presence or absence of NGF, but not apparent in low (0.15%) serum. Serum levels themselves did not affect labeling patterns in the absence of NGF and GM1. GM1-induced stimulation of labeling reflects an increase in the synthetic activities of the cells, and not increased precursor uptake or reduced product degradation. For all constituents stimulated by GM1, concurrent treatment with NGF produces cumulative effects, suggesting independent mechanisms of action by the two molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号