首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of moderate and severe hypoxia on quantitative regional morphometric indexes of the total and perfused arteriolar and capillary network were studied in the rat brain to determine whether diffusion distances were reduced in hypoxia. Fluorescein isothiocyanate (FITC)-labeled dextran was injected into the femoral vein of conscious control and hypoxic rats. After 20 s, the animal was decapitated and the head was frozen in liquid N2. Sections from eight brain regions were photographed to detect the perfused microvessels and then stained for alkaline phosphatase to visualize the total vascular network. There were significant increases in percent perfused arteriolar and capillary morphology between the two groups of hypoxic animals and control animals. In control rats, the percent of capillaries perfused averaged 45.6 +/- 0.6% (mean +/- SE). In moderate hypoxia 63.4 +/- 1.8% of the vessels were perfused and in severe hypoxia 89.4 +/- 0.1% were perfused. The percentage of arterioles perfused changed similarly. There were no significant differences in any index of total or percent perfused arteriolar or capillary morphometry among the regions within any group. During severe hypoxia, a greater percentage of the capillary reserves was utilized. These results demonstrate a uniform response to hypoxia in the capillary and arteriolar network of the conscious rat brain.  相似文献   

2.
The mechanism underlying the increased insulin binding found in hepatic plasma membranes from streptozotocin-diabetic rats was evaluated by measuring insulin binding to intact and Triton X-100-soluble extracts of plasma membranes prepared from the livers of control rats and rats administered streptozotocin (85 mg/kg). In addition, to assess whether the cellular content of hepatic insulin receptors is also increased in diabetic animals, we measured insulin-binding activity in intact and soluble extracts of total hepatic cellular membrane preparations (100,000 X g cellular pellets). The data indicate that while insulin binding is increased (52 +/- 3%) in intact hepatic plasma membranes from diabetic rats compared to control rats, there is no comparable increase in insulin binding in intact total cellular membranes or in Triton X-100-soluble extracts of plasma membranes or total cellular membranes. We therefore conclude that the enhanced insulin binding found in the livers of diabetic rats is the result of a local redistribution of plasma membrane insulin receptors from cryptic to exposed sites. Finally, the data suggest the presence of a negative modulator of insulin-binding affinity in intact plasma and total cellular membranes.  相似文献   

3.
Ovarian dysfunction in streptozotocin-induced diabetic rats   总被引:1,自引:0,他引:1  
The effect of streptozotocin diabetes on some ovarian functions in adult rats was examined. Diabetic diestrus animals showed reduced ovary weight and lower circulating levels of progesterone. Scatchard plots of binding data derived from ovarian particulate fractions of normal and streptozotocin diabetic rats revealed the presence of one class of binding sites with high affinity for 125I-hCG. The apparent association constant of the hCG receptors of diabetic ovaries was comparable to that of normal gonads. However, a marked decrease (42%) in the number of hCG binding sites was found in diabetic animals. With isolated luteal cells similar results were obtained, and the administration of insulin to streptozotocin diabetic rats restored to normality the number of hCG binding sites. The maximal response of progesterone production by luteal cells from control ovaries was obtained with 10(-10) M hCG. A 100-fold higher concentration of hCG was required for the maximum stimulation of cAMP synthesis. The cAMP response of cells from diabetic rats was significantly higher than that of control cells. However, luteal cells from diabetic rats showed some loss of sensitivity in the synthesis of progesterone during incubation with hCG. Most of the alterations seen in diabetic female rats could be restored with insulin therapy, indicating that insulin plays an important role in the regulation and maintenance of normal reproductive functions. It is suggested that the diminution of the LH receptor population causes the disruption of normal luteal cell function. This fact could be responsible for some of the reproductive alterations in the diabetic female rat.  相似文献   

4.
In the present study, we focused on the insulin-receptor binding in circulating erythrocytes of N-benzoyl-D-phenylalanine (NBDP) and metformin in neonatal streptozotocin (nSTZ)-induced male Wistar rats. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors in NBDP and metformin-treated diabetic rats. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (53.0 +/- 3.1%) than in NBDP (62.0 +/- 3.1%), metformin (66.0 +/- 3.3%) and NBDP and metformin combination-treated (72.0 +/- 4.2%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with NBDP and metformin-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from NBDP and metformin-treated diabetic rats having NBDP 2.0 +/- 0.10 x 10(-10) M(-1) (Kd1); 12.0 +/- 0.85 x 10(-8) M(-1) (Kd2), Metformin 2.1 +/- 0.15 x 10(-10) M(-1) (Kd1); 15.0 +/- 0.80 x 10(-8) M(-1) (Kd2), NBDP and metformin 2.7 +/- 0.10 x 10(-10) M(-1) (Kd1); 20.0 +/- 1.2 x 10(-8) M(-1) (Kd2) compared with 0.9 +/- 0.06 x 10(-10) M(-1) (Kd1); 6.0 +/- 0.30 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in nSTZ induced diabetic control rats. Treatment with NBDP along with metformin significantly improved specific insulin binding, with receptor number and affinity binding reaching almost normal non-diabetic levels. The data presented here show that NBDP along with metformin increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.  相似文献   

5.
A study was made of the action of various concentrations of ATP on insulin ability to bind to the receptors of the liver and muscle membranes in control and streptozocin-induced diabetes animals. Specific binding of 125I-insulin to the receptors of the liver and muscle membranes was shown to rise in animals with streptozocin-induced diabetes as compared to control. This effect was most pronounced in the muscle membranes. Preincubation of the membranes with ATP did not affect insulin binding to the liver and muscle receptors of control animals. However, hormone binding to the liver receptors of diabetic rats was drastically suppressed by ATP (10(-3) M). Less ATP concentrations (10(12) M) produced an additional inhibitory action which was not marked. ATP led to decreased insulin binding to the muscle receptors of diabetic rats only at extremely low concentrations (10(-12) M). The data obtained may be of importance for regulation of membrane phosphorylation in the states characteristic of insulin resistance.  相似文献   

6.
Insulin binding and basal and insulin-stimulated uptake of α-aminoisobutyric acid were measured in isolated hepatocytes from young control rats as well as from older spontaneously obese, 72h-starved, and nonketotic streptozotocin-diabetic rats. Isolated hepatocytes from older spontaneously obese rats are similar to those from younger smaller rats in size, maximal insulin responsiveness, the dose–response relationship for insulin-stimulated aminoisobutyrate uptake, and the number and affinity of insulin receptors. Hepatocytes from 72h-fasted rats have similar numbers of insulin receptors per cell as cells from young control animals, but are significantly smaller, have an enhanced basal rate of aminoisobutyrate uptake, and are insulin resistant with regard to maximal insulin-stimulated uptake of aminoisobutyrate at 0.1mm-aminoisobutyrate. Because of the decreased maximal response to insulin, the concentration of insulin that elicits a half-maximal response of aminoisobutyrate uptake is decreased. Hepatocytes from diabetic animals, like those from starved rats, have significantly greater basal rates of aminoisobutyrate uptake; whereas the maximal absolute insulin response is the same as control cells, the percentage response is smaller. These cells bind significantly more insulin than do control cells. The increase in insulin binding is reflected in a shift to the left of the dose–response curve for insulin-stimulated uptake of aminoisobutyrate. These studies indicate that there is no insulin resistance with regard to uptake of aminoisobutyrate in hepatocytes from older obese rats. Furthermore, the insulin resistance observed in hepatocytes from starved rats occurs despite an increase in the number of receptors per unit surface area and cannot be explained by alterations in the interaction between insulin and its receptor. The enhanced insulin binding per unit surface area, however, is reflected in the shift to the left of the dose–response curve for insulin. This is also true for hepatocytes from diabetic animals, in which insulin binding per cell is increased.  相似文献   

7.
Fibroblastic cultures from the skin of nondiabetic and diabetic (db/db) mice have been used to investigate alterations in the biological responses of diabetic cells to insulin. Confluent cultures from the skin of both nondiabetic and diabetic animals possess specific receptors for insulin. Diabetic fibroblasts exhibit only 36% as much specific binding of insulin as nondiabetic fibroblasts, because of a decrease in the total number of binding sites, without a change in binding affinity. Insulin caused a time- and dose-dependent increase in the rate of 2-deoxy D-glucose (dGlc) uptake and in ornithine decarboxylase (ODC) activity of both nondiabetic and diabetic fibroblasts. In nondiabetic cells, half-maximal increase in dGlc uptake was obtained with 0.3 nM insulin, and a maximum increase of 120% was obtained with 4.1 nM insulin. In contrast, diabetic cultures required 0.8 nM insulin for a half-maximal increase in dGlc uptake, and maximum stimulation with 4.1 nM insulin was only 50% above control levels. With 4-fold higher insulin concentrations, ODC activity of diabetic cells was only 40% that of nondiabetic cells. In nondiabetic cells, down regulation of insulin receptors by insulin abolished the ability of insulin to stimulate dGlc uptake. These results demonstrate that cells cultured from diabetic animals, which possess a decreased number of insulin receptors, also exhibit decreased stimulation of deoxy D-glucose uptake and ornithin decarboxylase activity by insulin.  相似文献   

8.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood-brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (-23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 microM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [(3)H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood-brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

9.
In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals.  相似文献   

10.
The brain stems (BS) of streptozotocin (STZ)-diabetic rats were studied to see the changes in neurotransmitter content and their receptor regulation. The norepinephrine (NE) content determined in the diabetic brain stems did not show an increase, while epinephrine (EPI) content increased significantly compared with control. The NE to EPI turnover showed a significant increase. The alpha2 adrenergic receptor kinetics revealed that the receptor affinity was significantly reduced during diabetes. In insulin treated rats the NE content decreased while EPI content remained increased as in the diabetic state. Insulin treatment increased the Bmax for alpha2 adrenergic receptors significantly while the increase in Kd reversed to normal. Unlabelled clonidine inhibited [3H]NE binding in BS of control diabetic and insulin treated diabetic rats showed that alpha2 adrenergic receptors consisted of two populations of binding sites with Hill slopes significantly away from unity. In diabetic animals the ligand bound weaker to the low affinity site than in controls. Insulin treatment reversed this alteration to control levels. The displacement analysis using (-)-epinephrine against [3H]yohimbine in control and diabetic animals revealed two populations of receptor affinity states. In control animals, when GTP analogue added with epinephrine, the curve fitted for a single affinity model; but in the diabetic BS this effect was not observed. In both the diabetic and control BS the effects of monovalent cations on affinity alterations were intact. Our data thus show that alpha2 adrenergic receptors have a reduced affinity due to an altered post receptor affinity regulation The serotonin (5-HT) content in the brain stem increased. Its precursor (5-hydroxy) tryptophan (5-HTP) showed an increase and its breakdown metabolite (5-hydroxy) indoleacetic acid (5-HIAA) showed a significant decrease. This showed that in serotonergic nerves there is a disturbance in both synthetic and breakdown pathways which lead to an increased 5-HT. The high affinity serotonin receptor numbers remained unaltered with a decrease in the receptor affinity. The insulin treatment reversed these altered serotonergic receptor kinetic parameters to control level. Thus our study shows a decreased serotonergic receptor function. These changes in adrenergic and serotonergic receptor function were suggested to be important in insulin function during STZ diabetes.  相似文献   

11.
Characteristics of lipoprotein receptors of the isolated liver parenchymal cells prepared from the streptozotocin-induced diabetic rats were investigated. Streptozotocin-induced diabetic rats fed 1.0% cholesterol showed the exaggerated hypercholesterolemia as compared to control rats fed 1.0% cholesterol. The present study was designed to elucidate the role of lipoprotein receptor mechanisms of liver parenchymal cells in the diabetic dyslipoproteinemia. 125I-labeled lipoproteins (rat beta-VLDL, human LDL2 or rat HDL3) were incubated with liver parenchymal cells isolated by liver perfusion using collagenase. According to the Scatchard analysis, the apparent dissociation constant (kd) and maximum beta-VLDL binding (Bmax) for the higher affinity binding site in the diabetic rats (n = 6) were (11.9 +/- 5.1) X 10(2) ng/ml and 307.5 +/- 145.2 ng/10(6) cells, respectively. These binding characteristics of the diabetic rats were not significantly different from the control rats. Furthermore, there were no significant differences in the binding characteristics of human LDL2 and rat HDL3 between the diabetic rats and the control rats. The data presented suggest that significant role of alteration of lipoprotein receptor characteristics in liver parenchymal cells is not played in the diabetic dyslipoproteinemia.  相似文献   

12.
Insulin is an important modulator of growth and metabolic function in the central nervous system. The aim of this study was to investigate the influence of swimming physical training (at 32 degrees +/- 1 degree C, 1 hr/day, 5 days/week, with an overload equivalent to 5% of the body weight, for 4 weeks) on brain insulin concentrations in alloxan induced type 1 diabetic rats. Training attenuated hyperglycemia but had no effect on insulinemia in diabetic rats. Hematocrit and blood albumin values remained without changes. Brain insulin did not change in diabetic rats. However, physical training increased the concentration in both control and diabetic rats. It is concluded that in the present experimental conditions, diabetes had no influence on brain insulin, however moderate physical training increased the hormone in both control and diabetic animals.  相似文献   

13.
Urinary epidermal growth factor (EGF) excretion was calculated as ng EGF per mg creatinine and ng EGF per 24 hr. It was increased 4-9 fold in rats with genetic (BB) or streptozotocin-induced diabetes. It decreased to 2-3 fold control values in insulin-treated animals. In contrast, EGF concentration in serum was lower in diabetic than in control rats (360 +/- 72 vs 524 +/- 150 pg/ml, P .086); EGF level in plasma was unchanged (319 +/- 67 vs 313 +/- 96 pg/ml). In diabetic rats EGF content was increased in submaxillary glands (1018 +/- 259 vs 738 +/- 122 pg/mg protein, P .060) but unchanged in the kidneys (70 +/- 18 vs 65 +/- 6 pg/mg protein in controls). EGF binding to the liver microsomes in diabetic rats was decreased by 30-40% and was not restored by insulin therapy. Binding to the kidneys also showed a tendency to decrease in diabetic animals. The EGF excretion and receptor binding were normal in obese normoglycemic Zucker fa/fa rats. We suggest that hyperglycemia and/or glucosuria may affect EGF synthesis and/or excretion in the kidneys and EGF synthesis or accumulation in the megakaryocytes. The mechanism of decreased EGF receptor binding remains to be clarified.  相似文献   

14.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood–brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (−23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 μM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [3H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood–brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

15.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood–brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (−23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 μM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [3H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood–brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

16.
The mechanisms by which insulin deficiency affects muscle glucose transport were investigated. Epitrochlearis muscles from rats with streptozotocin-induced diabetes and from controls were incubated in vitro for 0.5-14 h. The incubation was shown not to impair muscle energy stores or tissue oxygenation. Diabetes decreased basal 3-O-methylglucose transport by 40% (p less than 0.01), and insulin-stimulated (20 milli-units/ml) glucose transport capacity by 70% (p less than 0.001). In vitro incubation gradually normalized insulin responsiveness (3.77 +/- 0.38 before versus 8.97 +/- 0.65 mumol X ml-1 X h-1 after 12 h of incubation). Basal glucose transport remained significantly reduced. The reversal of the insulin responsiveness did not require the presence of rat serum and, furthermore, took place even in the absence of insulin. In fact, insulin responsiveness was higher after incubation (14 h) with no insulin than with 100 microunits/ml insulin (9.85 +/- 0.59 versus 8.06 +/- 0.59 mumol X ml-1 X h-1, p less than 0.05). Glucose at 30 mM did not affect the normalization of the insulin-stimulated glucose transport capacity, whereas incubation in serum from diabetic rats resulted in a slightly (26%) blunted reversal (7.60 +/- 0.39 versus 8.89 +/- 0.45 mumol X ml-1 X h-1 with diabetic versus control serum for 14 h, p less than 0.05; before incubation the value was 3.87 +/- 0.40). Inhibition of protein synthesis by cycloheximide blocked the normalization by 80%. These results suggest the presence in diabetic serum of some labile factor that might inhibit the glucose transport system. The results indicate that the decreased insulin-stimulated glucose transport capacity, in the insulin-deficient diabetic muscle, is not a direct consequence of the lack of insulin or of high glucose concentrations.  相似文献   

17.
The studies reported here were undertaken to examine the antihyperglycemic activity of an ethanolic extract of Artemisia dracunculus L., called Tarralin in diabetic and non-diabetic animals. In genetically diabetic KK-A(gamma) mice, Tarralin treatment by gavage (500 mg/kg body wt./day for 7 days) lowered elevated blood glucose levels by 24% from 479+/-25 to 352+/-16 mg/dl relative to control animals. In comparison, treatment with the known antidiabetic drugs, troglitazone (30 mg/kg body wt./day) and metformin (300 mg/kg body wt./day), decreased blood glucose concentrations by 28% and 41%, respectively. Blood insulin concentrations were reduced in the KK-A(gamma) mice by 33% with Tarralin, 48% with troglitazone and 52% with metformin. In (STZ)-induced diabetic mice, Tarralin treatment, (500 mg/kg body wt./day for 7 days), also significantly lowered blood glucose concentrations, by 20%, from 429+/-41 to 376+/-58 mg/dl relative to control. As a possible mechanism, Tarralin was shown to significantly decrease phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression by 28% in STZ-induced diabetic rats. In non-diabetic animals, treatment with Tarralin did not significantly alter PEPCK expression, blood glucose or insulin concentrations. The extract was also shown to increase the binding of glucagon-like peptide (GLP-1) to its receptor in vitro. These results indicate that Tarralin has antihyperglycemic activity and a potential role in the management of diabetic states.  相似文献   

18.
We used the partial protection exerted by suitable dosages of nicotinamide against the beta-cytotoxic effect of streptozotocin (STZ) to create an experimental diabetic syndrome in adult rats that appears closer to type II diabetes mellitus than other available animal models. The dosage of 230 mg/kg of nicotinamide given intraperitoneally 15 min before STZ administration (65 mg/kg i.v.) yielded animals with hyperglycemia (187.8 +/- 17.8 vs. 103.8 +/- 2.8 mg/dL in controls; P < 0.001) and preservation of plasma insulin levels. This study assessed the relationship between endothelial dysfunction and agonist-induced contractile responses in such rats. In the thoracic aorta, the acetylcholine (ACh) induced relaxation was significantly reduced and the noradrenaline (NA) induced contractile response was significantly increased in diabetic rats compared with age-matched control rats. In the superior mesenteric artery, the ACh-induced relaxation was similar in magnitude between diabetic and age-matched control rats; however, the ACh-induced endothelium-derived hyperpolarizing factor (EDHF) type relaxation was significantly weaker in diabetic rats than in the controls. The phenylephrine (PE) induced contractile response was not different between the two groups. The plasma concentration of NOx (NO2- + NO3-) was significantly lower in diabetic rats than in control rats. We conclude that vasomotor activities in conduit arteries are impaired in this type II diabetes model.  相似文献   

19.
In this study, the internalization mechanism of basic fibroblast growth factor (bFGF) at the blood-brain barrier (BBB) was investigated using a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4 cells) as an in vitro model of the BBB and the corresponding receptor was identified using immunohistochemical analysis. The heparin-resistant binding of [125I]bFGF to TM-BBB4 cells was found to be time-, temperature-, osmolarity- and concentration-dependent. Kinetic analysis of the cell-surface binding of [125I]bFGF to TM-BBB4 cells revealed saturable binding with a half-saturation constant of 76 +/- 24 nm and a maximal binding capacity of 183 +/- 17 pmol/mg protein. The heparin-resistant binding of [125I]bFGF to TM-BBB4 was significantly inhibited by a cationic polypeptide poly-L-lysine (300 micro m), and compounds which contain a sulfate moiety, e.g. heparin and chondroitin sulfate-B (each 10 micro g/mL). Moreover, the heparin-resistant binding of [125I]bFGF in TM-BBB4 cells was significantly reduced by 50% following treatment with sodium chlorate, suggesting the loss of perlecan (a core protein of heparan sulfate proteoglycan, HSPG) from the extracellular matrix of the cells. This type of binding is consistent with the involvement HSPG-mediated endocytosis. RT-PCR analysis revealed that HSPG mRNA and FGFR1 and FGFR2 (tyrosine-kinase receptors for bFGF) mRNA are expressed in TM-BBB4 cells. Moreover, immunohistochemical analysis demonstrated that perlecan is expressed on the abluminal membrane of the mouse brain capillary. These results suggest that bFGF is internalized via HSPG, which is expressed on the abluminal membrane of the BBB. HSPG at the BBB may play a role in maintaining the BBB function due to acceptance of the bFGF secreted from astrocytes.  相似文献   

20.
Pancreatic islets were isolated from the fetuses of normal rats and rats made diabetic by the iv administration of streptozotocin (STZ) on either Day 3 or 5 of pregnancy. Of the rats made diabetic on Day 3, one group also received insulin injections at the appearance of glucosuria. Maternal blood glucose on Day 20 of gestation was significantly different in the diabetic rats (405 +/- 27 mg/dl) from the normal (97 +/- 1 mg/dl) and insulin-treated diabetic rats (69 +/- 9 mg/dl). While fetal weight was significantly decreased in the STZ-treated rats (2.64 +/- 0.13 g vs 3.52 +/- 0.05 g for the control group, P less than 0.005), fetal glucose was significantly higher in the STZ-treated than in normal pups (342 +/- 11 vs 35 +/- 1 mg/dl, P less than 0.005). Both fetal weight and glucose were normalized by insulin treatment: 3.16 +/- 0.18 g and 31 +/- 7 mg/dl, respectively. Insulin release from fetal islets of diabetic dams was blunted after a week in culture both in basal and stimulated conditions. After 2 weeks in culture, there was partial recovery in the insulin response to glucose but it did not equal to that measured in fetal islets from the normal and insulin-treated diabetic rats. These data suggest maternal hyperglycemia severely impairs fetal weight and insulin release from fetal rat islets in vitro, and correction of the hyperglycemia by insulin treatment not only improves fetal weight and glucose concentrations, but it also normalizes insulin release from fetal rat islets in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号