首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biofilm formation on catheters is thought to contribute to persistence of catheter-associated urinary tract infections (CAUTI), which represent the most frequent nosocomial infections. Knowledge of genetic factors for catheter colonization is limited, since their role has not been assessed using physicochemical conditions prevailing in a catheterized human bladder. The current study aimed to combine data from a dynamic catheterized bladder model in vitro with in vivo expression analysis for understanding molecular factors relevant for CAUTI caused by Escherichia coli. By application of the in vitro model that mirrors the physicochemical environment during human infection, we found that an E. coli K-12 mutant defective in type 1 fimbriae, but not isogenic mutants lacking flagella or antigen 43, was outcompeted by the wild-type strain during prolonged catheter colonization. The importance of type 1 fimbriae for catheter colonization was verified using a fimA mutant of uropathogenic E. coli strain CFT073 with human and artificial urine. Orientation of the invertible element (IE) controlling type 1 fimbrial expression in bacterial populations harvested from the colonized catheterized bladder in vitro suggested that the vast majority of catheter-colonizing cells (up to 88%) express type 1 fimbriae. Analysis of IE orientation in E. coli populations harvested from patient catheters revealed that a median level of ∼73% of cells from nine samples have switched on type 1 fimbrial expression. This study supports the utility of the dynamic catheterized bladder model for analyzing catheter colonization factors and highlights a role for type 1 fimbriae during CAUTI.  相似文献   

2.
Type I fimbriae commonly expressed by Escherichia coli mediate initial attachment of bacteria to host epithelial cells. However, the role of type I fimbriae in the adherence of porcine enterotoxigenic E. coli (ETEC) to host receptors is unclear. In this study, we examined the role of type I fimbriae in the adherence and biofilm formation of F18ac+ ETEC by constructing mutant strains with deletion of type I fimbrial major subunit (fimA) or minor subunit (fimH). The data indicated that the isogenic ΔfimA and ΔfimH mutants showed significantly lower adherence to porcine epithelial IPEC-1 and IPEC-J2 cells as compared to the F18ac+ ETEC parent strain. In addition, the adherence of F18ac+ ETEC to both cell lines was blocked by the presence of 0.5% D-mannose in the cell culture medium. In addition, both mutant strains impaired their ability to form biofilm in vitro. Interestingly, the deletion of fimA or fimH genes resulted in remarkable up-regulation of the expression of adhesin involved in diffuse adherence (AIDA-I). These results indicated that type I fimbriae may be required for efficient adherence of F18ac+ ETEC to pig epithelial cells and, perhaps, biofilm formation.  相似文献   

3.
Chaperone-usher (CU) fimbriae are adhesive surface organelles common to many Gram-negative bacteria. Escherichia coli genomes contain a large variety of characterised and putative CU fimbrial operons, however, the classification and annotation of individual loci remains problematic. Here we describe a classification model based on usher phylogeny and genomic locus position to categorise the CU fimbrial types of E. coli. Using the BLASTp algorithm, an iterative usher protein search was performed to identify CU fimbrial operons from 35 E. coli (and one Escherichia fergusonnii) genomes representing different pathogenic and phylogenic lineages, as well as 132 Escherichia spp. plasmids. A total of 458 CU fimbrial operons were identified, which represent 38 distinct fimbrial types based on genomic locus position and usher phylogeny. The majority of fimbrial operon types occupied a specific locus position on the E. coli chromosome; exceptions were associated with mobile genetic elements. A group of core-associated E. coli CU fimbriae were defined and include the Type 1, Yad, Yeh, Yfc, Mat, F9 and Ybg fimbriae. These genes were present as intact or disrupted operons at the same genetic locus in almost all genomes examined. Evaluation of the distribution and prevalence of CU fimbrial types among different pathogenic and phylogenic groups provides an overview of group specific fimbrial profiles and insight into the ancestry and evolution of CU fimbriae in E. coli.  相似文献   

4.
Urinary tract infections caused by Escherichia coli are very common health problem in the developed countries. The virulence of the uropathogenic E. coli Dr+ IH11128 is determined by Dr fimbriae, which are homopolymeric structures composed of DraE subunits with the DraD protein capping the fiber. In this study, we have analyzed the structural and biochemical properties of biofilms developed by E. coli strains expressing Dr fimbriae with or without the DraD tip subunit and the surface-exposed DraD protein. We have also demonstrated that these E. coli strains form biofilms on an abiotic surface in a nutrient-dependent fashion. We present evidence that Dr fimbriae are necessary during the first stage of bacterial interaction with the abiotic surface. In addition, we reveal that the DraD alone is also sufficient for the initial surface attachment at an even higher level than Dr fimbriae and that chloramphenicol is able to reduce the normal attachment of the analyzed E. coli. The action of chloramphenicol also shows that protein synthesis is required for the early events of biofilm formation. Additionally, we have identified reduced exopolysaccharide coverage in E. coli that express only Dr fimbrial polyadhesins at the cell surface with or without the DraD capping subunit.  相似文献   

5.
Enterotoxigenic F4-fimbriated Escherichia coli is associated with diarrheal disease in neonatal and postweaning pigs. The F4 fimbriae mediate attachment of the bacteria to the pig intestinal epithelium, enabling an efficient delivery of diarrhea-inducing enterotoxins to the target epithelial cells. There are three variants of F4 fimbriae designated F4ab, F4ac and F4ad, respectively, having different antigenic and adhesive properties. In the present study, the binding of isolated F4ab, F4ac and F4ad fimbriae, and F4ab/ac/ad-fimbriated E. coli, to glycosphingolipids from erythrocytes and from porcine small intestinal epithelium was examined, in order to get a comprehensive view of the F4-binding glycosphingolipids involved in F4-mediated hemagglutination and adhesion to the epithelial cells of porcine intestine. Specific interactions between the F4ab, F4ac and F4ad fimbriae and both acid and non-acid glycosphingolipids were obtained, and after isolation of binding-active glycosphingolipids and characterization by mass spectrometry and proton NMR, distinct carbohydrate binding patterns were defined for each fimbrial subtype. Two novel glycosphingolipids were isolated from chicken erythrocytes, and characterized as GalNAcα3GalNAcß3Galß4Glcß1Cer and GalNAcα3GalNAcß3Galß4GlcNAcß3Galß4Glcß1Cer. These two compounds, and lactosylceramide (Galß4Glcß1Cer) with phytosphingosine and hydroxy fatty acid, were recognized by all three variants of F4 fimbriae. No binding of the F4ad fimbriae or F4ad-fimbriated E. coli to the porcine intestinal glycosphingolipids occurred. However, for F4ab and F4ac two distinct binding patterns were observed. The F4ac fimbriae and the F4ac-expressing E. coli selectively bound to galactosylceramide (Galß1Cer) with sphingosine and hydroxy 24:0 fatty acid, while the porcine intestinal glycosphingolipids recognized by F4ab fimbriae and the F4ab-fimbriated bacteria were characterized as galactosylceramide, sulfatide (SO3-3Galß1Cer), sulf-lactosylceramide (SO3-3Galß4Glcß1Cer), and globotriaosylceramide (Galα4Galß4Glcß1Cer) with phytosphingosine and hydroxy 24:0 fatty acid. Finally, the F4ad fimbriae and the F4ad-fimbriated E. coli, but not the F4ab or F4ac subtypes, bound to reference gangliotriaosylceramide (GalNAcß4Galß4Glcß1Cer), gangliotetraosylceramide (Galß3GalNAcß4Galß4Glcß1Cer), isoglobotriaosylceramide (Galα3Galß4Glcß1Cer), and neolactotetraosylceramide (Galß4GlcNAcß3Galß4Glcß1Cer).  相似文献   

6.
7.
Conclusions The E. coli adhesions show a remarkable tissue tropism in the human urinary tract. This obviously relates to the known compartmentation of glycoconjugates in the kidney. To function as a virulence factor in human urinary tract infections, an adhesin must evidently recognize such receptors at uroepithelia that are not excreted in soluble form in urine. This prerequisite is filled by P fimbriae but not by type-1 or S fimbriae. Most of the tissue interactions of E.coli adhesins involve binding to carbohydrate receptors, whereas the binding of the 075X adhesin to type IV collagen appears to rely on protein-protein interactions. Binding of P fimbriae to immobilized fibronectin is independent of the lectin activity of the fimbriae and suggests of an additional function for the fimbrillin in mediating interaction with matrix and basement membrane proteins. Such interaction might be useful after colonization and disruption of epithelial surfaces, when the lectin activity of the fimbriae is not any more important.  相似文献   

8.
The influence of type 1 fimbriae, mannose-sensitive structures, on biofilm development and maturation has been examined by the use of three isogenic Escherichia coli K12 strains: wild type, fimbriated, and non-fimbriated. Experiments with the three strains were done in minimal medium or Luria–Bertani broth supplemented with different concentrations of d-mannose. The investigation consisted of: (1) characterizing the bacterial surface of the three strains with respect to hydrophilicity and surface charge, (2) investigating the effect of type 1 fimbriae on bacterial adhesion rate and reversibility of initial adhesion on glass surfaces, and (3) verifying the role of type 1 fimbriae and exopolysaccharides (EPS) in biofilm maturation. The results suggest that type 1 fimbriae are not required for the initial bacterial adhesion on glass surfaces as the non-fimbriated cells had higher adhesion rates and irreversible deposition. Type 1 fimbriae, however, are critical for subsequent biofilm development. It was hypothesized that in the biofilm maturation step, the cells synthesize mannose-rich EPS, which functions as a ‘conditioning film’ that can be recognized by the type 1 fimbriae.  相似文献   

9.
Type 3 fimbriae are adhesive organelles found in enterobacterial pathogens. The fimbriae promote biofilm formation on biotic and abiotic surfaces; however, the exact identity of the receptor for the type 3 fimbriae adhesin, MrkD, remains elusive. We analyzed naturally occurring structural and functional variabilities of the MrkD adhesin from Klebsiella pneumoniae and Escherichia coli isolates of diverse origins. We identified a total of 33 allelic variants of mrkD among 90 K. pneumoniae isolates and 10 allelic variants among 608 E. coli isolates, encoding 11 and 9 protein variants, respectively. Based on the level of accumulated silent variability between the alleles, mrkD was acquired a relatively long time ago in K. pneumoniae but recently in E. coli. However, unlike K. pneumoniae, mrkD in E. coli is actively evolving under a strong positive selection by accumulation of mutations, often targeting the same positions in the protein. Several naturally occurring MrkD protein variants from E. coli were found to be significantly less adherent when tested in a mannan-binding assay and showed reduced biofilm-forming capacity. Functional examination of the MrkD adhesin in flow chamber experiments determined that it interacts with Saccharomyces cerevisiae cells in a shear-dependent manner, i.e., the binding is catch-bond-like and enhanced under increasing shear conditions. Homology modeling strongly suggested that MrkD has a two-domain structure, comprising a pilin domain anchoring the adhesin to the fimbrial shaft and a lectin domain containing the binding pocket; this is similar to structures found in other catch-bond-forming fimbrial adhesins in enterobacteria.  相似文献   

10.
11.
Since Escherichia coli isolated from compromised patients with symptomatic urinary tract infections (UTIs) express fewer virulence factors than those isolated from healthy controls, the question arises whether this is also the case for diabetic patients with asymptomatic bacteriuria (ASB). Polymerase chain reaction (PCR) assays were conducted on 111E. coli strains, isolated from the urine of diabetic women with ASB, using primers for the major subunit A and the G-adhesin (I, II, and III) of P fimbriae, type 1 fimbriae, S fimbriae, afimbrial adhesin, cytotoxic necrotizing factor (CNF), and aerobactin. Phenotypically, hemolysis, mannose-sensitive hemagglutination, mannose-resistant hemagglutination and O:K:H-serotypes were determined. Furthermore, we investigated the associations between virulence factors and patient characteristics (including deterioration of renal function). Type 1 fimbriae were the most prevalent virulence factor (86% by genotyping and 59% phenotypically). Except for a lower prevalence of known uropathogenic O-serotypes, we found the same number of virulence factors in our compromised patient group as listed in the literature in noncompromised patients with ASB. Certain virulence factors (type 1 and S fimbriae and CNF) of the causative E. colicorrelated with the risk of a decline in renal function. In conclusion, the number of virulence factors in E. coli isolated from the urine of diabetic women with ASB are comparable with the results found in other (noncompromised) patients with ASB. Furthermore, certain virulence factors of E. colimight contribute to a decline in renal function.  相似文献   

12.
Nitrogen-fixing Klebsiella and Enterobacter strains isolated from several plants were assayed for fimbriae and for adhesion to plant roots in vitro. All eight Klebsiella strains formed type 3 fimbriae, and five strains also formed type 1 fimbriae; all 21 Enterobacter strains had type 1 fimbriae. Three strains of Klebsiella carrying either type 1, type 3, or no fimbriae were used as model organisms in developing an in vitro adhesion test. Adhesion was assayed with bacterial cells labeled with [3H]leucine. Fifteen N2-fixing strains and the three model strains were compared for adhesion to the roots of seven grasses and five cereals. Type 3-fimbriated Klebsiella strains adhered better than the other strains, and type 3 fimbriae appeared to be major adhesins for the Klebsiella strains. Although variations between plants were observed, no host specificity for bacterial adhesion was found.  相似文献   

13.
Escherichia coli was used as a model to study initial adhesion and early biofilm development to abiotic surface. Tn10 insertion mutants of Escherichia coli K-12 W3110 were selected for altered abilities to adhere to a polystyrene surface. Seven insertion mutants that showed a decrease in adhesion harbored insertions in genes involved in lipopolysaccharide (LPS) core biosynthesis. Two insertions were located in the rfaG gene, two in the rfaP gene, and three in the galU gene. These adhesion mutants were found to exhibit a deep-rough phenotype and to be reduced, at different levels, in type 1 fimbriae production and motility. The loss of adhesion exhibited by these mutants was associated with either the affected type 1 fimbriae production and/or the dysfunctional motility. Apart from the pleiotropic effect of the mutations affecting LPS on type 1 fimbriae and flagella biosynthesis, no evidence for an involvement of the LPS itself in adhesion to polystyrene surface could be observed. Received: 1 December 1998 / Accepted: 3 April 1999  相似文献   

14.
Although most Salmonella serovars are able to infect a range of animal hosts, some have acquired the ability to cause systemic infections of specific hosts. For example, Salmonella enterica serovar Choleraesuis is primarily associated with systemic infection in swine. Adherence to host epithelial cells is considered a prerequisite for initial infection, and fimbrial appendages on the outer membrane of the bacteria are implicated in this process. Although type 1 fimbriae encoded by the fim gene cluster are commonly found in Salmonella serovars, it is not known whether S. Choleraesuis produces this fimbrial type and if and how fimbriae are involved in pathogenesis. In the present study, we demonstrated that only four out of 120 S. Choleraesuis isolates from pigs with salmonellosis produced type 1 fimbriae as assayed by the yeast agglutination test and electron microscopy. One of the 116 non-type 1 fimbria-producing isolates was transformed with plasmids carrying different fim genes from S. Typhimurium LB5010, a type 1 fimbria-producing strain. Our results indicate that non-type 1 fimbria-producing S. Choleraesuis required only an intact fimH to regain the ability to produce fimbrial appendages. Sequence comparison revealed six amino acid variations between the FimH of the non-type 1 fimbria-producing S. Choleraesuis isolates and those of the type 1 fimbria-producing S. Choleraesuis isolates. S. Choleraesuis that produced type 1 fimbriae contained FimH with an amino acid sequence identical to that of S. Typhimurium LB5010. Site-directed mutagenesis leading to the replacement of the non-conserved residues revealed that a change from glycine to valine at position of 63 (G63V) resulted in a non-type 1 fimbria-producing S. Choleraesuis being able to express type 1 fimbriae on its outer membrane. It is possible that this particular amino acid change prevents this polypeptide from proper interaction with other Fim subunits required for assembly of an intact type 1 fimbrial shaft in S. Choleraesuis; however, it remains to be determined if and how the absence of type 1 fimbriae production is related to the systemic infection of the swine host by S. Choleraesuis.  相似文献   

15.
Adherence of type-1-fimbriate Salmonella enterica and Escherichia coli to immobilized proteins of the extracellular matrix and reconstituted basement membranes was studied. The type-1-fimbriate strain SH401 of S. enterica serovar Enteritidis showed good adherence to laminin, whereas the adherence to fibronectin, type I, type III, type IV or type V collagens was poor. Only minimal adherence to the matrix proteins was seen with a non-fimbriate strain of S. enterica serovar Typhimurium. A specific and mannoside-inhibitable adhesion to laminin was exhibited by the recombinant E. coli strain HB101(plSF101) possessing fim genes of Typhimurium. Adherence to laminin of strain SH401 was inhibited by Fab fragments against purified SH401 fimbriae, and a specific binding to laminin, of the purified fimbriae, was demonstrated using fimbriae-coated fluorescent microparticles. Periodate treatment of laminin abolished the bacterial adhesion as well as the fimbrial binding. Specific adhesion to immobilized laminin was also shown by the type-1 -fimbriate E. coli strain 2131 and the recombinant strain E. coli HB101(pPKL4) expressing the cloned type-1-fimbriae genes of E. coli. Adhesion to laminin of strain HB101(pPKL4) was inhibited by mannoside, and no adherence was seen with the fimH mutant E. coli HB101(pPKL5/pPKL53) lacking the fimbrial lectin subunit. The type-1 fimbriate strains also adhered to reconstituted basement membranes from mouse sarcoma cells and human placenta. Adhesion of strains HB101(plSF101) and HB101(pPKL4) to both basement membrane preparations was inhibited by mannoside. We conclude that type-1 fimbriae of S. enterica and E. coli bind to oMgomannoside chains of the lamjnjn network in basement membranes.  相似文献   

16.
Type 1 fimbriae are a crucial factor for the virulence of uropathogenic Escherichia coli during the first steps of infection by mediating adhesion to epithelial cells. They are also required for the consequent colonization of the tissues and for invasion of the uroepithelium. Here, we studied the role of the specialized signal transduction system CRP-cAMP in the regulation of type 1 fimbriation. Although initially discovered by regulating carbohydrate metabolism, the CRP-cAMP complex controls a major regulatory network in Gram-negative bacteria, including a broad subset of genes spread into different functional categories of the cell. Our results indicate that CRP-cAMP plays a dual role in type 1 fimbriation, affecting both the phase variation process and fimA promoter activity, with an overall repressive outcome on fimbriation. The dissection of the regulatory pathway let us conclude that CRP-cAMP negatively affects FimB-mediated recombination by an indirect mechanism that requires DNA gyrase activity. Moreover, the underlying studies revealed that CRP-cAMP controls the expression of another global regulator in Gram-negative bacteria, the leucine-responsive protein Lrp. CRP-cAMP-mediated repression is limiting the switch from the non-fimbriated to the fimbriated state. Consistently, a drop in the intracellular concentration of cAMP due to altered physiological conditions (e.g. growth in presence of glucose) increases the percentage of fimbriated cells in the bacterial population. We also provide evidence that the repression of type 1 fimbriae by CRP-cAMP occurs during fast growth conditions (logarithmic phase) and is alleviated during slow growth (stationary phase), which is consistent with an involvement of type 1 fimbriae in the adaptation to stress conditions by promoting biofilm growth or entry into host cells. Our work suggests that the metabolic sensor CRP-cAMP plays a role in coupling the expression of type 1 fimbriae to environmental conditions, thereby also affecting subsequent attachment and colonization of host tissues.  相似文献   

17.
18.
Saliva is known to modulate the adhesion of bacteria in the oral cavity. The present work was performed to assess the effect of salivary components on the adhesion of Escherichia coli to a model oral surface. Several genetically engineered E. coli strains were used to examine the role of type 1 fimbriation in the interaction of these strains with salivary components in solution or adsorbed to hydroxyapatite. High (MG1) and low (MG2) molecular weight salivary mucins, and secretory immunoglobulin A (sIgA), were found to interact with the surface of E. coli, and these interactions were independent of the expression of fimbriae or capsule. In contrast, fimbriated strains of E. coli adhered to a greater extent to saliva-coated synthetic hydroxyapatite (HAP) than did nonfimbriated strains. Testing of salivary components separated by gel filtration chromatography revealed that only high-molecular-weight components promoted adhesion of E. coli to HAP. Additional studies found that purified MG2 and sIgA promoted the adhesion of E. coli to HAP. Expression of type 1 fimbriae enhanced adhesion, while mannose inhibited adhesion of fimbriated strains, to saliva-coated HAP and to HAP coated with MG2 and sIgA. We conclude that salivary MG2 and sIgA may provide receptors for the adhesion of type 1 fimbriated E. coli to oral surfaces. Received: 10 February 1996 / Accepted: 11 March 1996  相似文献   

19.
A group-selection model for the evolutionary origin of phase-variation in E. coli is proposed. Populations of commensal strains of E. coli populating mammalian hosts modulate its immune defenses through population-level control of the expression of fimbriae. At any time only a proportion of the population expresses these cell-surface adhesins. Collectively they elicit a host-based nutrient release if the fimbriae expression is low. Too high levels of fimbriation would provoke an inflammatory response and thus intolerable conditions for the cells. The optimal level of fimbriation is a group property and its evolution is difficult to explain by naive individual selection scenarios. This article presents a computational model to simulate the evolution of fimbriae. The two main conclusions of this contribution are: (i) the evolution of this group property requires the population to be partitioned into weakly interacting sub-populations. (ii) Given certain scenarios evolution consistently under-performs, in the sense that it does not find the optimal level of fimbriation.  相似文献   

20.
The genetic organization of the determinants of type 1, K88ab, K99 fimbriae and P(pap)pili of Escherichia coli is presented. The functions of the various gene products are described and a model for the process of fimbriae biogenesis is presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号