首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
Studies have been considered, which concern identification of regulatory genes in adult newts and their expression during retinal and lens regeneration. B.L. Astaurov repeatedly urged to join efforts of geneticists and embryologists in studies of the mechanisms underlying biological phenomena. This was also true for studies of regeneration. Such studies became possible only after introduction of molecular biology methods. Studies of the mechanisms underlying regeneration have been recently carried out jointly by geneticists and developmental biologists. This review presented at the conference dedicated to the 100th anniversary of B.L. Astaurov deals with these aspects in studies of regeneration.__________Translated from Ontogenez, Vol. 36, No. 4, 2005, pp. 292–299.Original Russian Text Copyright © 2005 by Mitashov.  相似文献   

2.
In his pioneering work on mutation tetraptera in Drosophila melanogaster, B.L. Astaurov discovered spontaneous modifications based on variability in gene expression. This new approach to the phenomenon of modifications should be considered as the first stimulus to development of the general theory of variability. Contemporary classification of variability based predominantly on phenomenology encounters many contradictions. The same specific molecular mechanisms may be responsible, for example, for both hereditary and nonhereditary variability depending on the taxonomic status. Some mechanisms responsible for both mutations and modifications or for mutations, recombination, and ontogenetic variability have been considered from this viewpoint. It may well be more productive to consider different types of variability with respect to the main genetic processes: replication and expression of genetic material.  相似文献   

3.
This review describes current research on the preventive effect of dietary vitamin B(6) against colon tumorigenesis and its possible mechanisms. Studies in cell culture have demonstrated that high levels of vitamin B(6) suppress growth of some cancer cells. From these studies it has been considered that supraphysiological doses of vitamin B(6) suppress tumor growth and metastasis. However, recent rodent study has indicated that azoxymethane-induced colon tumorigenesis in mice is suppressed by moderate doses of dietary vitamin B(6.) Epidemiological studies also support an inverse relationship between vitamin B(6) intake and colon cancer risk. Potential mechanisms underlying the preventive effect of dietary vitamin B(6) have been suggested to include the suppression of cell proliferation, oxidative stress, nitric oxide (NO) synthesis, and angiogenesis.  相似文献   

4.
In his pioneering work on mutation tetraptera in Drosophila melanogaster, B.L. Astaurov discovered spontaneous modifications based on variability in gene expression. This new approach to the phenomenon of modifications should be considered as the first stimulus to development of the general theory of variability. Contemporary classification of variability based predominantly on phenomenology encounters many contradictions. The same specific molecular mechanisms may be responsible, for example, for both hereditary and nonhereditary variability depending on the taxonomic status. Some mechanisms responsible for both mutations and modifications or for mutations, recombination, and ontogenetic variability have been considered from this viewpoint. It may well be more productive to consider different types of variability with respect to the main genetic processes: replication and expression of genetic material.__________Translated from Ontogenez, Vol. 36, No. 4, 2005, pp. 274–279.Original Russian Text Copyright © 2005 by Inge-Vechtomov.  相似文献   

5.
One of the most compelling questions in evolutionary biology is why some animals can regenerate injured structures while others cannot. Appendage regeneration appears to be common when viewed across the metazoan phylogeny, yet this ability has been lost in many taxa to varying degrees. Within species, the capacity for regeneration also can vary ontogenetically among individuals. Here we argue that appendage regeneration along the secondary body axis may be constrained by fundamental traits such as body size, aging, life stage, and growth pattern. Studies of the molecular mechanisms affecting regeneration have been conducted primarily with small organisms at early life stages. Such investigations disregard the dramatic shifts in morphology and physiology that organisms undergo as they age, grow, and mature. To help explain interspecific and intraspecific constraints on regeneration, we link particular fundamental traits to specific molecular mechanisms that control regeneration. We present a new synthesis for how these fundamental traits may affect the molecular mechanisms of regeneration at the tissue, cellular, and genomic levels of biological organization. Future studies that explore regeneration in organisms across a broad phylogenetic scale, and within an ontogenetic framework, will help elucidate the proximate mechanisms that modulate regeneration and may reveal new biomedical applications for use in regenerative medicine.  相似文献   

6.
H. Zhao  J. Li  W. P. Robinson 《Biometrics》2001,57(4):1074-1079
Genetic studies of uniparental disomy (UPD) employing many markers have helped geneticists to gain a better understanding of the molecular mechanisms underlying nondisjunction. However, most existing methods cannot simultaneously analyze all genetic markers and consistently incorporate crossover interference; they thus fail to make the most use of genetic information in the data. In the present article, we describe a hidden Markov model for multilocus uniparental disomy data. This method is based on the chi-square model for the crossover process and can simultaneously incorporate all marker information including untyped and uninformative markers. We then apply this novel method to analyze a set of UPD15 data.  相似文献   

7.
Since Caenorhabditis elegans was chosen as a model organism by Sydney Brenner in 1960's, genetic studies in this organism have been instrumental in discovering the function of genes and in deciphering molecular signaling network. The small size of the organism and the simple nervous system enable the complete reconstruction of the first connectome. The stereotypic developmental program and the anatomical reproducibility of synaptic connections provide a blueprint to dissect the mechanisms underlying synapse formation. Recent technological innovation using laser surgery of single axons and in vivo imaging has also made C. elegans a new model for axon regeneration. Importantly, genes regulating synaptogenesis and axon regeneration are highly conserved in function across animal phyla. This mini-review will summarize the main approaches and the key findings in understanding the mechanisms underlying the development and maintenance of the nervous system. The impact of such findings underscores the awesome power of C. elegans genetics.  相似文献   

8.
The broad applications of somatic embryogenesis, both in basic and applied research, have stimulated studies on the determination of in vitro conditions for the induction of somatic embryos and their conversion into plants. As a result, efficient protocols on SE induction and plant regeneration have recently become available for many plant species, including Arabidopsis thaliana (L.) Heynh., a model plant in genetics and embryogenesis.Studies on factors controlling in vitro plant morphogenesis are highly desirable not only for the development of improved regeneration systems, but also for the analysis of molecular mechanisms underlying plant embryogenesis. This review focuses on the conditions influencing the induction of embryogenic potential in in vitro cultured plant cells. The roles of explant type, endo- and exogenous plant growth regulators and stress factors in the induction of somatic embryogenesis are especially emphasized. Possible mechanisms by which different factors induce or modify embryogenic competence in cultured plant cells are also discussed. Since the production of genetically solid and true-to-type plants is desired, especially for transformation and micropropagation practice, the problem of the genetic characteristics of regenerants, in terms of their chimerism and somaclonal variation, is discussed in some detail.Special consideration is given to A. thaliana– a major model plant species for classical genetics and genomics. Recent availability of efficient embryogenic cultures in this organism makes it possible to benefit from advanced genomic research of Arabidopsis to study plant embryogenesis on the molecular level.  相似文献   

9.

Background and Purpose  

Studies by molecular biologists and geneticists have shown that tumors of human colon cancer are developed from colon stem cells through two mechanisms: The chromosomal instability and the micro-satellite instability. The purpose of this paper is therefore to develop a new stochastic and state space model for carcinogenesis of human colon cancer incorporating these biological mechanisms.  相似文献   

10.
The enteric nervous system (ENS) has been explored by developmental neurobiologists and medical researchers for decades. Whereas developmental biologists have been unravelling the molecular mechanisms underlying the migration, proliferation and differentiation of the neural crest derivatives that give rise to the ENS, human geneticists have been uncovering the genetic basis for diseases of the ENS, notably Hirschsprung's disease. Here we discuss the exciting recent advances, including novel transgenic and genetic tools, a broadening range of model organisms, and the pursuit of ENS stem cells as a therapeutic tool, that are bringing these fields closer together.  相似文献   

11.
BackgroundTherapeutics specific to neural injury have long been anticipated but remain unavailable. Axons in the central nervous system do not readily regenerate after injury, leading to dysfunction of the nervous system. This failure of regeneration is due to both the low intrinsic capacity of axons for regeneration and the various inhibitors emerging upon injury. After many years of concerted efforts, however, these hurdles to axon regeneration have been partially overcome.Scope of reviewThis review summarizes the mechanisms regulating axon regeneration. We highlight proteoglycans, particularly because it has become increasingly clear that these proteins serve as critical regulators for axon regeneration.Major conclusionsStudies on proteoglycans have revealed that glycans not only assist in the modulation of protein functions but also act as main players—e.g., as functional ligands mediating intracellular signaling through specific receptors on the cell surface. By regulating clustering of the receptors, glycans in the proteoglycan moiety, i.e., glycosaminoglycans, promote or inhibit axon regeneration. In addition, proteoglycans are involved in various types of neural plasticity, ranging from synaptic plasticity to experience-dependent plasticity.General significanceAlthough studies on proteins have progressively facilitated our understanding of the nervous system, glycans constitute a new frontier for further research and development in this field. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.  相似文献   

12.
This review discusses the prevalence and potential for interactive effects between herbivory and competition on plant growth and biomass, and it is apparent that such effects typically arise when there is a mismatch between the spatial scale of herbivore behaviour (food or patch choice) and the spatial heterogeneity of the plant community. Historically, such interactive effects have been examined using two approaches. Studies using the first approach have excluded plant neighbors and herbivores in a factorial experiment, and scored effects on plant biomass. Studies using the second approach have observed herbivore abundance or herbivory on plants with or without plant neighbors, and have identified a large number of mechanisms underlying such interactive effects. The two types of studies have produced somewhat conflicting results, where interactive effects have been commonly observed in studies using the second approach and only rarely in studies using the first approach. This is most likely a consequence of a biased choice of study systems, where studies using the first approach have primarily studied mammalian herbivory while studies using the second approach have been more focussed on insect herbivory. Moreover, studies using the first approach have typically been very small-scale manipulations and this probably precludes most possible interactive effects in systems with mammalian herbivory. This points to the fact that studies examining interactive effects of herbivory and plant competition should more carefully consider the behaviour and life history of herbivores included in the study prior to the design of removal experiments.  相似文献   

13.
Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying mechanisms for beneficial effect on cardiac function, and safety issues.  相似文献   

14.
The accessibility of embryonic and adult neurons within invertebrate nervous systems has made them excellent subjects for neurobiological study. The ability to readily identify individual neurons, together with their great capacity for regeneration, has been especially beneficial to investigations of synapse formation and the specificity of neuronal connectivity. Many invertebrate neurons survive for long periods following isolation into primary cell culture. In addition, they readily extend new neuritic arbors and form electrical and chemical connections at sites of contact. Thus, cell culture approaches have allowed neuroscientists greater access to, and resolution of, events underlying neurite outgrowth and synaptogenesis. Studies of identified neuromuscular synapses ofHelisoma have determined a number of signaling mechanisms involved in transsynaptic communication at sites of neuron-target contact. At these sites, both anterograde and retrograde signals regulate the transformation of growth cones into functional presynaptic terminals. We have found that specific muscle targets induce both global and local changes in neurotransmitter secretion and intracellular calcium handling. Here we review recent studies of culturedHelisoma synapses and discuss the mechanisms thought to govern chemical synapse formation in these identified neurons and those of other invertebrate species.  相似文献   

15.
The ability to regenerate tissues and limbs in its most robust form is seen in many non-mammalian species. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivalling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. The adult MRL mouse regrows cartilage, skin, hair follicles and myocardium with near perfect fidelity and without scarring. This is seen in the ability to close through-and-through ear holes, which are generally used for lifelong identification of mice, and the anatomic and functional recovery of myocardium after a severe cryo-injury. We present histological, biochemical and genetic data indicating that the enhanced breakdown of scar-like tissue may be an underlying factor in the MRL regenerative response. Studies as to the source of the cells in the regenerating MRL tissue are discussed. Such studies appear to support multiple mechanisms for cell replacement.  相似文献   

16.
Reciprocal effects are due to genetic effects of the parents (i.e. maternal and paternal effects), cytoplasmic effects and parent-of-origin effects. However, in Zea mays L. the extent to which reciprocal effects exist, or can be attributed to specific underlying components, remains an area of interest and study. Reciprocal effects have been reported by several investigators for various agronomic characters in different types of maize materials for grain and silage usage. Maize geneticists and breeders have recognized reciprocal effects as one source of genetic variability, but the lack of consistency in the observation of these effects, particularly due to stress conditions, has prevented a systematic exploitation of these effects in practical breeding programs. There is mounting molecular evidence for underlying mechanisms in maize, which could be responsible for both the existence, and the instability of reciprocal effects. In this study, we developed population of reciprocal backcrosses based on an initial set of recombinant inbred lines. This population was used for dissecting reciprocal effects into the underlying components (maternal, cytoplasmic and parent-of-origin) effects. We also developed statistical framework to identify and map contributions of specific nuclear chromosomal regions to reciprocal effects. We showed that differences in maternal parents, endosperm DNA and maternally transmitted factors collectively influence reciprocal effects early during the season, and that their influence diluted at later stages. We also found evidence that parent-of-origin effects in the sporophyte DNA existed at all stages and played an important role in establishing differences between reciprocal backcrosses at later developmental stages.  相似文献   

17.
影响油菜子叶外植体不定芽高频率再生的因素   总被引:29,自引:0,他引:29  
采用7个甘蓝型和2个白菜型油菜品种研究了影响子叶外植体芽再生的一些因素和不同基因型的子叶外植体的离子体培养反应和芽再生能力。结果表明,苗龄4d的幼苗叶子含2,4-D0.5-1.2mg/L和6-BA0.2mg/L的培养基培养2或6d后再转到分化培养基上培养,芽再生率34%-46%。  相似文献   

18.
Sea urchins exhibit a very different life history from humans and short-lived model animals and therefore provide the opportunity to gain new insight into the complex process of aging. Sea urchins grow indeterminately, regenerate damaged appendages, and reproduce throughout their lifespan. Some species show no increase in mortality rate at advanced ages. Nevertheless, different species of sea urchins have very different reported lifespans ranging from 4 to more than 100?years, thus providing a unique model to investigate the molecular, cellular, and physiological mechanisms underlying both lifespan determination and negligible senescence. Studies to date have demonstrated maintenance of telomeres, maintenance of antioxidant and proteasome enzyme activities, and little accumulation of oxidative cellular damage with age in tissues of sea urchin species with different lifespans. Gene expression studies indicate that key cellular pathways involved in energy metabolism, protein homeostasis, and tissue regeneration are maintained with age. Taken together, these studies suggest that long-term maintenance of mechanisms that sustain tissue homeostasis and regenerative capacity is essential for indeterminate growth and negligible senescence, and a better understanding of these processes may suggest effective strategies to mitigate the degenerative decline in human tissues with age.  相似文献   

19.
双歧杆菌原生质体的制备与回复研究   总被引:6,自引:0,他引:6  
进行了双歧杆菌原生质体的制备与回复相关技术研究 ,为其基因操作及相关研究提供技术基础。采用浓度分别为 1 ,5 ,1 0mg/LMutanolysin(变溶菌素 )对长双歧杆菌进行脱壁处理 ,以探讨其原生质体形成与时间和酶浓度的关系 ,然后选用较适宜的酶浓度 ( 5mg/LMutanolysin)制备其原生质体 ,并将其倾入自制的双层再生培养基上 ,观察其在不同环境条件下培养时的回复生长情况。结果表明 ,长双歧杆菌的细胞壁对Mu tanolysin较为敏感 ,用浓度为 5mg/L的Mutanolysin处理长双歧杆菌 40min ,在普通光学显微镜下即可见90 %的原生质体形成 ,当Mutanolysin浓度为 1 0mg/L时 ,只需 2 5min其原生质体形成率就达此值。制备的长双歧杆菌原生质体倾入自制的双层再生培养基中 ,在厌氧条件下能很好地回复生长。  相似文献   

20.
机体在组织器官受到损伤时,细胞凋亡和机体对凋亡细胞的清除在组织再生中有着密不可分的联系,其背后促进受损组织器官再生的机制一直是研究热点所在。近期研究发现,巨噬细胞在清除凋亡细胞,维持机体稳态以及促进组织器官修复再生中起到了重要作用。本文主要从凋亡的信号通路、巨噬细胞的极化特点以及凋亡细胞与巨噬细胞的相互作用这3个方面对近期研究进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号