首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Penicillin-binding proteins in Proteus species.   总被引:1,自引:0,他引:1       下载免费PDF全文
Penicillin-binding proteins in three species of Proteus, Proteus mirabilis, P. morganii, and P. rettgeri, were investigated by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. Penicillin-binding proteins in these Proteus species were compared with those in Escherichia coli K-12. An approximate correlation between penicillin-binding proteins in E. coli and those in Proteus species was shown by several criteria: electrophoretic mobilities; affinities of several beta-lactam antibiotics which show characteristic patterns of binding to penicillin-binding proteins in E. coli; relation between affinities of antibiotics to the proteins and effects on morphological changes in Proteus species; location of beta-lactamase activity among penicillin-binding proteins; and thermostability. The electrophoretic mobilities and several other characteristics of penicillin-binding proteins among the Proteus species examined were found to be similar from species to species and differed only slightly from those of E. coli.  相似文献   

2.
Penicillin-binding proteins differ greatly in heat sensitivity and sensitivity to detergents. The partial purification of penicillin-binding 1A and 1B proteins from Escherichia coli is described.  相似文献   

3.
Penicillin-binding proteins in Borrelia burgdorferi.   总被引:1,自引:0,他引:1       下载免费PDF全文
Penicillin-binding proteins were identified in Borrelia burgdorferi membranes. A 94-kilodalton penicillin-binding protein was the first to be labeled with tritiated penicillin and was the first band to disappear in a competition experiment. Its binding ability was destroyed when membranes were preboiled. In addition, several of these penicillin-binding proteins comigrated with bands previously identified as surface proteins.  相似文献   

4.
A 12-membered Treponema pallidum repeat (Tpr) protein family has been identified in T. pallidum subsp. pallidum, the causative agent of syphilis. The subfamily I Tpr proteins (C, D, F, and I) possess conserved sequence at the N- and C-termini and central regions that differentiate the members. These proteins may be important in the immune response during syphilis infection and in protective immunity. Strong antibody responses have been observed toward some of the subfamily I Tpr proteins during infection with different syphilis isolates. Some sequence variation has also been identified in one subfamily I Tpr member, TprD, among T. pallidum subsp. pallidum isolates. In this study, we examined sequences in the remaining subfamily I Tpr proteins among strains. Both TprF and TprI were conserved among T. pallidum subsp. pallidum isolates.While some heterogeneity was identified in TprC. We further examined the immune response and protective capacity of TprF protein in this paper. We demonstrate that the N-terminal conserved region of the subfamily I Tpr proteins elicits strong antibody and T-cell responses during infection, and immunization with this region attenuates syphilitic lesion development upon infectious challenge.  相似文献   

5.
Syphilis, a sexually transmitted infection caused by the spirochetal bacterium Treponema pallidum, remains a global public health problem. T. pallidum is believed to be an extracellular pathogen and, as such, the identification of T. pallidum outer membrane proteins that could serve as targets for opsonic or bactericidal antibodies has remained a high research priority for vaccine development. However, the identification of T. pallidum outer membrane proteins has remained highly elusive. Recent studies and bioinformatics have implicated four treponemal proteins as potential outer membrane proteins (TP0155, TP0326, TP0483 and TP0956). Indirect immunofluorescence assays performed on treponemes encapsulated within agarose gel microdroplets failed to provide evidence that any of these four molecules were surface-exposed in T. pallidum. Second, recombinant fusion proteins corresponding to all four candidate outer membrane proteins were used separately, or in combination, to vaccinate New Zealand White rabbits. Despite achieving high titers (>1:50,000) of serum antibodies, none of the rabbits displayed chancre immunity after intradermal challenge with viable T. pallidum.  相似文献   

6.
The outer membranes from Treponema pallidum subsp. pallidum and Treponema vincentii were isolated by a novel method. Purified outer membranes from T. pallidum and T. vincentii following sucrose gradient centrifugation banded at 7 and 31% (wt/wt) sucrose, respectively. Freeze fracture electron microscopy of purified membrane vesicles from T. pallidum and T. vincentii revealed an extremely low density of protein particles; the particle density of T. pallidum was approximately six times less than that of T. vincentii. The great majority of T. vincentii lipopolysaccharide was found in the outer membrane preparation. The T. vincentii outer membrane also contained proteins of 55 and 65 kDa. 125I-penicillin V labeling demonstrated that t. pallidum penicillin-binding proteins were found exclusively with the protoplasmic cylinders and were not detectable with purified outer membrane material, indicating the absence of inner membrane contamination. Isolated T. pallidum outer membrane was devoid of the 19-kDa 4D protein and the normally abundant 47-kDa lipoprotein known to be associated with the cytoplasmic membrane; only trace amounts of the periplasmic endoflagella were detected. Proteins associated with the T. pallidum outer membrane were identified by one- and two-dimensional electrophoretic analysis using gold staining and immunoblotting. Small amounts of strongly antigenic 17- and 45-kDa proteins were detected and shown to correspond to previously identified lipoproteins which are found principally with the cytoplasmic membrane. Less antigenic proteins of 65, 31 (acidic pI), 31 (basic pI), and 28 kDa were identified. Compared with whole-organism preparations, the 65- and the more basic 31-kDa proteins were found to be highly enriched in the outer membrane preparation, indicating that they may represent the T. pallidum rare outer membrane proteins. Reconstitution of solubilized T. pallidum outer membrane into lipid bilayer membranes revealed porin activity with two estimated channel diameters of 0.35 and 0.68 nm based on the measured single-channel conductances in 1 M KCl of 0.40 and 0.76 nS, respectively.  相似文献   

7.
The periplasmic flagella of many spirochetes contain multiple proteins. In this study, two-dimensional electrophoresis, Western blotting (immunoblotting), immunoperoxidase staining, and N-terminal amino acid sequence analysis were used to characterize the individual periplasmic flagellar proteins of Treponema pallidum subsp. pallidum (Nichols strain) and T. phagedenis Kazan 5. Purified T. pallidum periplasmic flagella contained six proteins (Mrs = 37,000, 34,500, 33,000, 30,000, 29,000, and 27,000), whereas T. phagedenis periplasmic flagella contained a major 39,000-Mr protein and a group of two major and two minor 33,000- to 34,000-Mr polypeptide species; 37,000- and 30,000-Mr proteins were also present in some T. phagedenis preparations. Immunoblotting with monospecific antisera and monoclonal antibodies and N-terminal sequence analysis indicated that the major periplasmic flagellar proteins were divided into two distinct classes, designated class A and class B. Class A proteins consisted of the 37-kilodalton (kDa) protein of T. pallidum and the 39-kDa polypeptide of T. phagedenis; class B included the T. pallidum 34.5-, 33-, and 30-kDa proteins and the four 33- and 34-kDa polypeptide species of T. phagedenis. The proteins within each class were immunologically cross-reactive and possessed similar N-terminal sequences (67 to 95% homology); no cross-reactivity or sequence homology was evident between the two classes. Anti-class A or anti-class B antibodies did not react with the 29- or 27-kDa polypeptides of T. pallidum or the 37- and 30-kDa T. phagedenis proteins, indicating that these proteins are antigenically unrelated to the class A and class B proteins. The lack of complete N-terminal sequence homology among the major periplasmic flagellar proteins of each organism indicates that they are most likely encoded by separate structural genes. Furthermore, the N-terminal sequences of T. phagedenis and T. pallidum periplasmic flagellar proteins are highly conserved, despite the genetic dissimilarity of these two species.  相似文献   

8.
Treponema pallidum subsp. pallidum, the spirochete that causes syphilis, is unusual in a number of respects, including its small genome size, inability to grow under standard in vitro culture conditions, microaerophilism, apparent paucity of outer membrane proteins, structurally complex periplasmic flagella, and ability to evade the host immune responses and cause disease over a period of years to decades. Many of these attributes are related ultimately to its protein content. Our knowledge of the activities, structure, and immunogenicity of its proteins has been expanded by the application of recombinant DNA, hybridoma, and structural fractionation techniques. The purpose of this monograph is to summarize and correlate this new information by using two-dimensional gel electrophoresis, monoclonal antibody reactivity, sequence data, and other properties as the bases of polypeptide identification. The protein profiles of the T. pallidum subspecies causing syphilis, yaws, and endemic syphilis are virtually indistinguishable but differ considerably from those of other treponemal species. Among the most abundant polypeptides are a group of lipoproteins of unknown function that appear to be important in the immune response during syphilitic infection. The periplasmic flagella of T. pallidum and other spirochetes are unique with regard to their protein content and ultrastructure, as well as their periplasmic location. They are composed of three core proteins (homologous to the other members of the eubacterial flagellin family) and a single, unrelated sheath protein; the functional significance of this arrangement is not understood at present. Although the bacterium contains the chaperonins GroEL and DnaK, these proteins are not under the control of the heat shock regulon as they are in most organisms. Studies of the immunogenicity of T. pallidum proteins indicate that many may be useful for immunodiagnosis and immunoprotection. Future goals in T. pallidum polypeptide research include continued elucidation of their structural locations and functional activities, identification and characterization of the low-abundance outer membrane proteins, further study of the immunoprotective and immunodiagnostic potential of T. pallidum proteins, and clarification of the roles of treponemal proteins in pathogenesis.  相似文献   

9.
10.
Soluble lytic transglycosylase B1 from Pseudomonas aeruginosa was coupled to Sepharose and used to immobilize interaction partners from membrane protein extracts. Penicillin-binding protein 2 (PBP2) was identified as a binding partner, suggesting that the two proteins function together in the biosynthesis of peptidoglycan. By use of an engineered truncated derivative, the N-terminal module of PBP2 was found to confer the binding properties.  相似文献   

11.
A rapid method for screening the affinity of proteins to dye-modified resins is described. Performing the binding and elution of the protein extracts in a batch-wise manner and eluting the bound proteins with SDS-PAGE denaturation buffer speed up the screening process and allow the analysis of large collections of dyes. Penicillin-binding protein 4 of Escherichia coli was used as a model enzyme to determine the influences of pH, metal ions, and ionic strength (0 to 500 mM NaCl) on its binding behavior using a collection of 98 dye-affinity resins.  相似文献   

12.
Penicillin-binding proteins (PBPs) 5 and 6 of Escherichia coli released the bound penicilloyl moiety at an intermediate rate relative to, e.g., Staphylococcus aureus PBPs 4 (rapid) and 1 or 2 (slow). Each of these E. coli PBPs released the bound penicilloyl moiety as both penicilloic acid (hydrolysis) and phenylacetyl glycine (scission of the C-5--C-6 bond followed by hydrolysis).  相似文献   

13.
14.
The outer membrane of Treponema pallidum, the non-cultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of gram-negative bacteria contain abundant immunogenic membrane-spanning beta-barrel proteins mainly involved in nutrient transport. The absence of orthologs of gram-negative porins and outer membrane nutrient-specific transporters in the T. pallidum genome predicts that nutrient transport across the outer membrane must differ fundamentally in T. pallidum and gram-negative bacteria. Here we describe a T. pallidum outer membrane protein (TP0453) that, in contrast to all integral outer membrane proteins of known structure, lacks extensive beta-sheet structure and does not traverse the outer membrane to become surface exposed. TP0453 is a lipoprotein with an amphiphilic polypeptide containing multiple membrane-inserting, amphipathic alpha-helices. Insertion of the recombinant, non-lipidated protein into artificial membranes results in bilayer destabilization and enhanced permeability. Our findings lead us to hypothesize that TP0453 is a novel type of bacterial outer membrane protein which may render the T. pallidum outer membrane permeable to nutrients while remaining inaccessible to antibody.  相似文献   

15.
The inhibition of elongation of Bacillus megaterium KM growing in the presence of low concentrations of nocardicin A resulted in the production of osmotically stable, actively dividing coccal-shaped cells. Saturation of penicillin-binding proteins 3a and 3b with nocardicin A in vivo at these concentrations was correlated with the inhibition of cell elongation. Analysis of the DD-carboxypeptidase activity of isolated vegetative membranes of B. megaterium KM in vitro indicated that penicillin-binding protein 4 is not a DD-carboxypeptidase under the assay conditions used. Penicillin-binding proteins were analysed by two-dimensional gel electrophoresis and the suitability of lysozyme treatment of cells as a method of membrane preparation was investigated with regard to the detection of proteins with highly labile penicillin-binding activities in vitro.  相似文献   

16.
The effects of the nonionic detergent Triton X-114 on the ultrastructure of Treponema pallidum subsp. pallidum are presented in this study. Treatment of Percoll-purified motile T. pallidum with a 1% concentration of Triton X-114 resulted in cell surface blebbing followed by lysis of blebs and a decrease in diameter from 0.25-0.35 micron to 0.1-0.15 micron. Examination of thin sections of untreated Percoll-purified T. pallidum showed integrity of outer and cytoplasmic membranes. In contrast, thin sections of Triton X-114-treated treponemes showed integrity of the cytoplasmic membrane but loss of the outer membrane. The cytoplasmic cylinders generated by detergent treatment retained their periplasmic flagella, as judged by electron microscopy and immunoblotting. Recently identified T. pallidum penicillin-binding proteins also remained associated with the cytoplasmic cylinders. Proteins released by Triton X-114 at 4 degrees C were divided into aqueous and hydrophobic phases after incubation at 37 degrees C. The hydrophobic phase had major polypeptide constituents of 57, 47, 38, 33-35, 23, 16, and 14 kilodaltons (kDa) which were reactive with syphilitic serum. The 47-kDa polypeptide was reactive with a monoclonal antibody which has been previously shown to identify a surface-associated T. pallidum antigen. The aqueous phase contained the 190-kDa ordered ring molecule, 4D, which has been associated with the surface of the organisms. Full release of the 47- and 190-kDa molecules was dependent on the presence of a reducing agent. These results indicate that 1% Triton X-114 selectively solubilizes the T. pallidum outer membrane and associated proteins of likely outer membrane location.  相似文献   

17.
Penicillin-binding proteins 1A and 1B of Escherichia coli are the major peptidoglycan transglycosylase-transpeptidases that catalyse the polymerisation and insertion of peptidoglycan precursors into the bacterial cell wall during cell elongation. The nucleotide sequence of a 2764-base-pair fragment of DNA that contained the ponA gene, encoding penicillin-binding protein 1A, was determined. The sequence predicted that penicillin-binding protein 1A had a relative molecular mass of 93 500 (850 amino acids). The amino-terminus of the protein had the features of a signal peptide but it is not known if this peptide is removed during insertion of the protein into the cytoplasmic membrane. The nucleotide sequence of a 2758-base-pair fragment of DNA that contained the ponB gene, encoding penicillin-binding protein 1B, was also determined. Penicillin-binding protein 1B consists of two major components which were shown to result from the use of alternative sites for the initiation of translation. The large and small forms of penicillin-binding protein 1B were predicted to have relative molecular masses of 94 100 and 88 800 (844 and 799 amino acids). The amino acid sequences of penicillin-binding proteins 1A and 1B could be aligned if two large gaps were introduced into the latter sequence and the two proteins then showed about 30% identity. The amino acid sequences of the proteins showed no extensive similarity to the sequences of penicillin-binding proteins 3 or 5, or to the class A or class C beta-lactamases. Two short regions of amino acid similarity were, however, found between penicillin-binding proteins 1A and 1B and the other penicillin-binding proteins and beta-lactamases. One of these included the predicted active-site serine residue which was located towards the middle of the sequences of penicillin-binding proteins 1A, 1B and 3, within the conserved sequence Gly-Ser-Xaa-Xaa-Lys-Pro. The other region was 19-40 residues to the amino-terminal side of the active-site serine and may be part of a conserved penicillin-binding site in these proteins.  相似文献   

18.
Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions.  相似文献   

19.
Treponemicidal activity against Treponema pallidum, Nichols strain, by anti-endoflagellar antibodies and the presence of antigenic interrelationships between the endoflagella of Treponema phagedenis biotype Reiter (TPR) and T. pallidum have been demonstrated. SDS-PAGE profiles of purified endoflagella from both organisms were similar, identifying five polypeptide bands for TPR (37,000, 33,000 doublet, 30,000, and 27,000 daltons) and five polypeptide bands for T. pallidum (35,000, 33,000 doublet, 30,000, and 27,000 daltons). Antiserum against TPR endoflagella identified identical bands on Western blots of TPR, T. pallidum, and the respective endoflagellar preparations. Western blots confirmed the presence of antibodies in normal human serum (NHS) against the 33,000 dalton treponemal endoflagellar proteins. The complement-dependent treponemicidal activity of NHS against T. pallidum was completely removed by absorption with purified TPR endoflagella. Furthermore, rabbit antisera against TPR endoflagella were reactive in the Treponema pallidum immobilization (TPI) test. These findings demonstrate that anti-endoflagellar antibodies are treponemicidal against T. pallidum. A possible mechanism for this activity is discussed in relation to the subsurface location of endoflagella.  相似文献   

20.
A physical map of the chromosome of Treponema pallidum subsp. pallidum (Nichols), the causative agent of syphilis, was constructed from restriction fragments produced by NotI, SfiI, and SrfI. These rare-cutting restriction endonucleases cleaved the T. pallidum genome into 16, 8, and 15 fragments, respectively. Summation of the physical lengths of the fragments indicates that the chromosome of T. pallidum subsp. pallidum is approximately 1,030 to 1,080 kbp in size. The physical map was constructed by hybridizing a variety of probes to Southern blots of single and double digests of T. pallidum genomic DNA separated by contour-clamped homogeneous electric field electrophoresis. Probes included cosmid clones constructed from T. pallidum subsp. pallidum genomic DNA, restriction fragments excised from gels, and selected genes. Physical mapping confirmed that the chromosome of T. pallidum subsp. pallidum is circular, as the SfiI and SrfI maps formed complete circles. A total of 13 genes, including those encoding five membrane lipoproteins (tpn47, tpn41, tpn29-35, tpn17, and tpn15), a putative outer membrane porin (tpn50), the flagellar sheath and hook proteins (flaA and flgE), the cytoplasmic filament protein (cfpA), 16S rRNA (rrnA), a major sigma factor (rpoD), and a homolog of cysteinyl-tRNA synthetase (cysS), have been localized in the physical map as a first step toward studying the genetic organization of this noncultivable pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号