首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The presence and extent of hybridization within the Chenopodium album aggregate (Amaranthaceae) is still unclear. Although many hybrid combinations have been described, their existence in the field has never been systematically studied and verified. The main aim of this study was to ascertain the extent of interspecific hybridization between the diploid species C. ficifolium and C. suecicum using highly variable nuclear microsatellite markers. Due to the absence of such kind of molecular markers for the whole C. album group, we divided the analysis into two steps: (1) Eleven microsatellite loci designed for the closely related species C. quinoa were cross-amplified in five Eurasian species of the C. album diploid–polyploid complex, i.e. C. album s.s. (6x), C. striatiforme (4x), C. strictum (4x), C. ficifolium (2x) and C. suecicum (2x); (2) For the detection of interspecific hybridization between C. ficifolium and C. suecicum, we sampled 480 individuals from five localities in Central Europe. We also investigated morphological differences between the parental taxa and their hybrid and devised a key for their determination. Analysis of variation in microsatellite loci using Bayesian methods, PCoA and Neighbour-joining tree identified 32 F1 hybrids. These F1 hybrids, described here as C. paradoxum Mandák, formed a cluster between well-differentiated parental species, combining the morphological characters of both their parents. Moreover, genetic analyses also recognized several F2 or backcross hybrids, whose delimitation, mainly from C. suecicum and F1 hybrids, based on morphological characters, is problematic.  相似文献   

2.
As traditionally circumscribed, Cuscuta sect. Denticulatae is a group of three parasitic plant species native to the deserts of Western USA (Cuscuta denticulata, Cuscuta nevadensis) and the central region of Baja California, Mexico (Cuscuta veatchii). Molecular phylogenetic studies confirmed the monophyly of this group and suggested that the disjunct C. veatchii is a hybrid between the other two species. However, the limited sampling left the possibility of alternative biological and methodological explanations. We expanded our sampling to multiple individuals of all the species collected from across their entire geographical ranges. Sequence data from the nuclear and plastid regions were used to reconstruct the phylogeny and find out if the topological conflict was maintained. We obtained karyotype information from multiple individuals, investigated the morphological variation of the group thorough morphometric analyses, and compiled data on ecology, host range, and geographical distribution. Our results confirmed that C. veatchii is an allotetraploid. Furthermore, we found previously unknown autotetraploid population of C. denticulata, and we describe a new hybrid species, Cuscuta psorothamnensis. We suggest that this newly discovered natural hybrid is resulting from an independent (and probably more recent) hybridization event between the same diploid parental species as those of C. veatchii. All the polyploids showed host shift associated with hybridization and/or polyploidy and are found growing on hosts that are rarely or never frequented by their diploid progenitors. The great potential of this group as a model to study host shift in parasitic plants associated with recurrent allopolyploidy is discussed.  相似文献   

3.
Rhizomatosae is a taxonomic section of the South American genus Arachis, whose diagnostic character is the presence of rhizomes in all its species. This section is of particular evolutionary interest because it has three polyploid (A. pseudovillosa, A. nitida and A. glabrata, 2n?=?4x?=?40) and only one diploid (A. burkartii, 2n?=?2x?=?20) species. The phylogenetic relationships of these species as well as the polyploidy nature and the origin of the tetraploids are still controversial. The present study provides an exhaustive analysis of the karyotypes of all rhizomatous species and six closely related diploid species of the sections Erectoides and Procumbentes by cytogenetic mapping of DAPI/CMA heterochromatin bands and 5S and 18–26S rDNA loci. Chromosome banding showed variation in the DAPI heterochromatin distribution pattern, which, together with the number and distribution of rDNA loci, allowed the characterization of all species studied here. The bulk of chromosomal markers suggest that the three rhizomatous tetraploid species constitute a natural group and may have at least one common diploid ancestor. The cytogenetic data of the diploid species analyzed evidenced that the only rhizomatous diploid species—A. burkartii—has a karyotype pattern different from those of the rhizomatous tetraploids, showing that it is not likely the genome donor of the tetraploids and the non-monophyletic nature of the section Rhizomatosae. Thus, the tetraploid species should be excluded from the R genome, which should remain exclusively for A. burkartii. Instead, the karyotype features of these tetraploids are compatible with those of different species of the sections Erectoides and Procumbentes (E genome species), suggesting the hypothesis of multiple origins of these tetraploids. In addition, the polyploid nature and the group of diploid species closer to the tetraploids are discussed.  相似文献   

4.
5.
Polyploidization has long been recognized as one of the most important driving forces of plant evolution. Aconitum subgenus Lycoctonum (Ranunculaceae) has a wide distribution range and well-known background of polyploidy, thereby providing a potentially valuable model to explore polyploid origin and evolutionary history. However, the phylogeny of subg. Lycoctonum has not yet been completely resolved. In the current study, 29 species including diploid, tetraploid and hexaploid species were sampled in subg. Lycoctonum. Using four cpDNA regions (ndhF-trnL, psbA-trnH, psbD-trnT and trnT-L) and two nrDNA regions (internal transcribed spacer, ITS, and external transcribed spacer, ETS), phylogenetic relationship was first reconstructed for the polyploid species within subg. Lycoctonum. In combination with nuclear diversification rate estimation, cpDNA haplotype network, ancestral area reconstruction as well as morphological and karyotypic evidence, potential origin and divergence time were further assessed among the polyploid species. Hybridization was inferred for A. angustius and A. finetianum was suggested to be the potential maternal progenitor, due to their close phylogenetic relationship, highly similar morphologies and overlapping distribution range. Local origin was inferred for tetraploids in the Hengduan Mountains (HDM) with eight groups of chromosomes of four homeologous, which diverged approximately 3.00 Ma in the same period of the orogeny of the HDM. The hexaploid A. apetalum was inferred to suffer from geographical isolation due to the formation of the Qinghai–Tibetan Plateau (QTP) and the HDM. Hybridization and heterogeneous habitats in the HDM were suggested to play an important role in the polyploidization in subg. Lycoctonum.  相似文献   

6.
Cortinarius is one of the most species-rich genera of mushroom-forming fungi. Based on phylogenetic and morphological evidence, Cortinarius, sect. Riederi, is introduced at sectional level (= subsect. Riederi sensu Brandrud & Melot). The taxonomy, phylogeny, ecology and distribution of not only mainly European but also including some North American taxa of this section are treated, which includes nine species and two varieties. Of these, three taxa are described as new (C. burlinghamiae, C. pallidoriederi and C. argenteolilacinus var. dovrensis). The sect. Riederi species possess morphological features similar to Phlegmacium group(s) and forms a phylogenetically isolated lineage, with no supported affinity to other phlegmacioid groups. Three taxa are known from both Europe and North America, two species are known only from North America and five only from Europe. Altogether, eight of the ten taxa are associated with conifers or northern (boreal-subalpine) deciduous trees (Betula spp.). Only two species occur in more temperate forests (Fagus forests), and no species have so far been found in thermophilous Quercus forests  相似文献   

7.
A first step in protecting groups of similarly structured organisms is to place them into discrete taxa. Molecular genetics and phylogeny allow us to rebuild the evolutionary history of these taxa. The Neotropics has roughly 34% of Earth’s primate diversity. However, the systematics of Neotropical primates is complex and controversial. The untufted (gracile) capuchins are traditionally classified as four species: Cebus albifrons, C. capucinus, C. olivaceus, and C. kaapori. Of these, Cebus albifrons has confusing intraspecific systematics with a large number of fragmented and isolated populations throughout its geographical distribution, and up to 13 morphological subspecies. The number of taxa of this species in Ecuador, some areas of northern and eastern Colombia, and Trinidad Island is particularly debated. Primatologists have defined two taxa of C. albifrons in Ecuador: a trans-Andean population: C. a. aequatorialis (or C. aequatorialis) and a cis-Andean population: C. a. yuracus (or C. yuracus). To better understand the systematics of this species, we sequenced the mitogenomes of 136 Cebus albifrons, two Cebus olivaceus, and one Cebus kaapori. Our phylogenetic analyses revealed at least nine significantly different haplogroups of C. albifrons in Ecuador, four of which contained exemplars from both the trans-Andean Pacific Ecuador and the cis-Andean Ecuadorian Amazon. The splits of these Ecuadorian haplogroups, and the initial diversification within them, occurred during the Middle to Late Pliocene and the beginning of the Pleistocene. Individuals we analyzed from Vichada Department in eastern Colombia were genetically distinct from other groups of C. albifrons, agreeing with morphological studies which consider it a full subspecies (C. a. albifrons). Phylogenetic analyses showed two different gracile capuchin taxa on Trinidad Island: C. a. trininatis and C. o. brunneus. We conclude that a large portion of the gracile capuchin taxa form a unique species with a complex of populations and subspecies. The species has conserved its reproductive integrity by repeated episodes of reticulation and high levels of gene flow.  相似文献   

8.
Capitulate inflorescence is a specific, strongly adaptive and rare feature in the genus Campanula. We studied morphologically eight capitulate Campanula taxa from the Balkans (1537 individuals/52 populations) and one more species from Caucasus at the molecular level (using chloroplast markers trnGUCC-trnSGCU and psbA-trnH, 130 individuals/58 populations) to assess their relations and evolutionary histories. Although all studied taxa were well circumscribed at both the morphological and molecular levels (except morphologically distinct but genetically invariable C. moesiaca which acquired its single haplotype via past cytoplasmic introgression from C. cervicaria), their relations inferred from the two datasets were incongruent possibly due to the homoplasy of morphological characters frequently reported in Campanula. Interspecific hybridization and introgression affected majority of studied species and may be more common in Campanula than previously thought. These processes, along with incomplete lineage sorting and retention of ancestral polymorphisms, hampered our phylogenetic reconstructions and prevented us to fully resolve species relations, and to support monophyletic origin of capitulate Campanula species. Nonetheless, several cryptic taxa were delineated, and C. daucoides was described as a new capitulate Campanula species. Different evolutionary histories and multiple glacial refugia were inferred for all species represented by multiple samples (except C. moesiaca). According to our dating, their speciation was in most cases triggered by various geo-historic events such as the uplift of the Alpide belt, Messinian Salinity Crisis, or desiccation of the Pannonian Sea/Pliocene Lakes from the central Balkans, while their further diversification was mainly driven by the onset of the Quaternary and cycles of glacials/interglacials.  相似文献   

9.
2C DNA content and ploidy level variation of Prunus spinosa and closely related taxa together with Prunus domestica L. and Prunus insititia L. was studied in Slovakia. The aim of the study was to define genome sizes and find differences between closely related taxa within Prunus spinosa sensu lato mentioned in previous works. According to our results, investigated taxa can be divided into three groups according to ploidy level: Prunus spinosa, Prunus dasyphylla, Prunus ×fruticans, Prunus ×dominii and Prunus ×schurii are tetraploids, Prunus ×fechtneri is pentaploid, and P. domestica and P. insititia are hexaploids. Genome size differences within tetraploid taxa were relatively small (Prunus spinosa: 1.40?±?0.02, P. ×domini: 1.44?±?0.01, P. ×fruticans: 1.48?±?0.02, P. ×schurii: 1.44?±?0.02), but statistically significant. Although further research is needed, it seems that the concept of several taxa as product of hybridization between P. spinosa and cultivated plum species has been supported by our study.  相似文献   

10.
Camellia reticulata is a well-known woody ornamental species endemic to Southwest China. It represents a polyploid complex with diploids, allotetraploids, and allohexaploids. The parentage of the allotetraploids and allohexaploids has been reported by genomic in situ hybridization, but the maternal parents still remain unknown. In this study, sequences of the chloroplast rpl16 intron of 105 cultivars of C. reticulata and 7 congeneric species were used to infer the maternal origin of the allopolyploids. The results showed that (1) the allotetraploids were derived from C. pitardii as the maternal parental species and the diploid C. reticulata as the paternal parental species; (2) the allohexaploid C. reticulata was derived from the allotetraploid C. reticulata as the maternal parent and C. saluenensis as the paternal parent; and (3) the C. reticulata cultivars were derived from hexaploid C. reticulata as the maternal parents. These results indicated that C. pitardii, the allotetraploid and allohexaploid C. reticulata may serve as good potential maternal parents for the cross breeding of Camellia.  相似文献   

11.

Key message

Through high-throughput sequencing, we compared the relative expression levels of miRNA in three full-sib Populus triploid populations with that in their parents and one diploid hybrid population. We found similar numbers of miRNAs differentially expressed between the parents and the four progeny hybrid populations. In addition, unbalanced parental expression level dominance of miRNAs were found in the three allotriploid and interspecific hybrid populations, which may reprogram gene expression networks and contribute to the growth of Populus hybrids. These results indicated that hybridization has a great impact on the miRNA expression variation in the newly synthesized Populus triploid and diploid hybrid populations. However, we also found no significant differences in miRNA expression among one diploid and three triploid hybrid populations, hinting that miRNA abundances do not increase with the genome content. No dosage effect of miRNA expression could lead to dosage-dependent negative effects on target genes and their downstream pathway in polyploids. We speculate that polyploids may gain advantages from the slight decrease in miRNA regulation, suggesting an important molecular mechanism of polyploid advantage.

Abstract

Hybridization with three types of induced 2n gametes transmitted different parental heterozygosities has been proven as an efficient method for Populus triploid production. Several researches have shown that miRNA could be non-additively expressed in allopolyploids. However, it is still unclear whether the non-additively expressed miRNAs result from the effect of hybridization or polyploidization, and whether a dose response to the additional genomic content exists for the expression of miRNA. Toward this end, through high-throughput sequencing, we compared the expression levels of miRNA in three full-sib Populus triploid populations with that in their parents and one interspecific hybrid population. We found similar numbers of miRNAs differentially expressed between the parents and the four progeny hybrid populations. Unbalanced parental expression level dominance of miRNAs were found in the three triploid and diploid hybrid populations, which may reprogram gene expression networks and affect the growth of Populus hybrids. These results indicated that hybridization has a great impact on the miRNA expression variation in the newly synthesized Populus triploid and diploid hybrid populations. However, we also found no significant differences in miRNA expression among the three triploid populations and the diploid hybrid population. No dosage effect of miRNA expression could lead to dosage-dependent negative effects on target genes and their downstream pathway in polyploids. We speculate that polyploids may gain advantages from the decrease in miRNA negative regulation, suggesting an important molecular mechanism of polyploid advantage.
  相似文献   

12.
Success of interspecific hybridization relies mostly on the adequate similarity between the implicated genomes to ensure synapsis, pairing and recombination between appropriate chromosomes during meiosis in allopolyploid species. Allotetraploid Brassica napus (AACC) is a model of natural hybridization between Brassica rapa (AA) and Brassica oleracea (CC), which are originally derived from a common ancestor, but genomic constitution of the same chromosomes probably varied among these species through time after establishment, giving rise to cytogenetic difference in the synthetic hybrids. Herein we investigated meiotic behaviors of A and C chromosomes of synthetic allotriploid Brassica hybrids (ACC) at molecular and cytological levels, which result from the interspecific cross between natural B. napus (AACC) and B.oleracea (CC), and the results showed that meiosis course was significantly aberrant in allotriploid Brassica hybrids, and chromosomes aligned chaotically at metaphase I, chromosome bridges and lags were frequently observed from later metaphase I to anaphase II during meiosis. Simultaneously, we also noticed that meiosis-related genes were abruptly down-regulated in allotriploid Brassica hybrids, which likely accounted for irregular scenario of meiosis observed in these synthetic hybrids. Therefore, these results indicated that inter-genomic exchanges of A and C chromosomes could occur frequently in synthetic Brassica hybrids, and provided an efficient approach for genetic changes of homeologous chromosomes during meiosis in polyploid B.napus breeding program.  相似文献   

13.
Ferns reproduce through small and usually haploid spores. The general paradigm states that whereas species produce good shaped spores, hybrids are sterile and form aborted spores. Apomictic fern species represent an unusual case, and it is believed that they produce an unbalanced spore spectrum. Until now, no comprehensive comparison of sexual and apomictic taxa using extensive spore fitness data has been published. Based on a representative data set of 109 plants from 23 fern taxa, we accomplished the first robust analysis of spore fitness using spore abortion index (SAI), the ratio of aborted to all examined spores. One thousand spores were analyzed for each plant. Focusing mainly on two major European fern taxa (Asplenium, Dryopteris), we compared this trait for different fern reproductive types (sexual/apomicts/hybrids) and ploidy levels (diploid versus polyploid). Our results confirmed the general assumption that shows higher SAI for apomictic taxa (18%) when compared to sexual taxa (3%). Furthermore, hybrids are characterized by having almost all spores aborted (99.8%) with the notable exception of pentaploid Dryopteris × critica (93.1%), the hybrid between sexual and apomictic taxa. We found no significant difference in SAI between sexual taxa of various ploidy levels or between sexual taxa of genera Dryopteris and Asplenium. Additionally, we carried out an optimization of the SAI method, outlying important guidelines for the use of this method in the future.  相似文献   

14.
The island of St Helena in the South Atlantic Ocean has a rich endemic flora, with 10 endemic genera and 45 recognised endemic species. However, populations of most endemic species have undergone dramatic reductions or extinction due to over-exploitation, habitat destruction and competition from invasive species. Consequently, endemic species are likely to have lost genetic variation, in some cases to extreme degrees. Here, the entire extant wild populations and all planted trees in seed orchards, of two critically endangered species in the endemic genus Commidendrum (Asteraceae), C. rotundifolium and C. spurium, were sampled to assess levels of genetic variation and inbreeding. Six new microsatellite loci were developed from next-generation sequence data, and a total of 190 samples were genotyped. Some seed orchard trees contained alleles from both wild C. rotundifolium and C. spurium indicating they could be hybrids and that some backcrossing may have occurred. Some of these trees were more similar to C. rotundifolium than C. spurium both genetically and morphologically. Importantly, allelic variation was detected in the putative hybrids that was not present in wild material. C. rotundifolium is represented by just two individuals one wild and one planted and C. spurium by seven, therefore the seed orchard trees comprise an important part of the total remaining genetic diversity in the genus Commidendrum.  相似文献   

15.
A multivariate morphometric study of the genus Nicoraepoa was carried out to examine patterns of morphological variation among the species and to identify additional characters to allow a clearer delimitation among species. Nicoraepoa is a taxonomically complex genus comprising seven species endemic to South America. Although most of the species are well delimited, two of them, N. andina and N. chonotica, are morphologically similar and very difficult to separate. The morphological variation among species, with overlapping morphological characters, pseudovivipary and possible hybridization make species boundaries unclear. In the present paper, sixty-seven characters were scored for a total of 216 specimens and analyzed using ordination, cluster and discriminant analyses. Based on multivariate results, we recognized species groups and morphological diagnostic characters that allow clearer species delimitation. As a result, N. chonotica has been transferred to N. andina as a subspecies that inhabit southern Patagonia. Other taxa could be recognized and delimited by diagnostic characters: N. erinacea, N. pugionifolia, N. stepparia, N. subenervis subsp. spegazziniana and N. subenervis subsp. subenervis. Moreover, we discuss the possibility that a new species from Bolivia, based on only one specimen, closely related to N. subenervis should be ascribed in Nicoraepoa.  相似文献   

16.
Fluorescence in situ hybridization (FISH) was used to study the distribution of Spelt-1 repetitive DNA sequences on chromosomes of 37 accessions representing eight polyploidy wheat species of the Emmer evolutionary lineage: Triticum dicoccoides Körn, T. dicoccum (Schrank) Schuebel, T. durum Desf., T. polonicum L., T. carthlicum Nevski, T. aethiopicum Jakubz., T. aestivum L., and T. spelta L. Substantial polymorphism in the number, distribution, and the sizes of the Spelt-1 loci was revealed. On the chromosomes of the accessions examined, Spelt-1 tandem repeats were found in seven different positions (per haploid chromosome set). These were “potential hybridization sites”, including the subtelomeric regions of either short or long arms of chromosomes 2A and 6B, the short arm of chromosome 1B, and the long arms of chromosomes 2B and 3B. However, in individual genotypes, only from one to three Spelt-1 loci were revealed. Furthermore, no hybridization with Spelt-1 probe was detected on chromosomes from 12 accessions. Thus, the total number of Spelt-1 sites in karyotypes varied from zero to three, with the average number of 1.16. This was substantially lower than in the species of the Timopheevi section and diploid Aegilops speltoides Tausch, a putative donor of the B genome. The decrease of the content of Spelt-1 sequences in the genomes of the Emmer group wheats in comparison with the species of the Timopheevii group and diploid Ae. speltoides was assumed to result from the repetitive sequences reorganization during polyploidization and the repeat elimination during wheat evolution.  相似文献   

17.
Camellia oleifera is a subtropical evergreen plant. Cultivated C. oleifera is the most important woody oil crop in China. Wild C. oleifera is an essential genetic resource for breeding. The patterns of genetic differentiation among altitudes/latitudes in wild C. oleifera are still unknown. Camellia oleifera may be predominantly hexaploid. The characteristics of polyploidy may lead to considerable biases in estimates of genetic diversity and differentiation. Our study used C. oleifera as a case study for analysing genetic diversity, structure and differentiation in polyploid plants using simple sequence repeats (SSRs). Wild C. oleifera samples were collected at different altitudes on the Jinggang and Lu mountains of China. The ploidy levels were determined with flow cytometry analysis. Eight highly polymorphic SSRs were used to genotype the samples. Genetic diversity and structure were analysed. Various estimates of genetic differentiation were compared. The flow cytometry results indicated that wild C. oleifera samples were all hexaploid at various altitudes of the Jinggang and Lu mountains. High levels of genetic diversity were found on both the Jinggang and Lu mountains. Genetic structure analyses indicated clear genetic differentiation between the Jinggang and Lu mountains and lower genetic differentiation among altitudes within each mountain. Classical genetic differentiation estimates of Fst failed to discriminate genetic differentiation between and within mountains. The Rho statistic showed a moderate level of genetic differentiation between mountains and lower levels of genetic differentiation within each mountain. Our study demonstrates that Rho is the statistic of choice for estimating genetic differentiation in polyploids.  相似文献   

18.
19.
Investigation during the period of 3 years from 2007 to 2010 on the malacofauna of Chilika lake revealed the occurrence of 126 molluscan taxa belonging to 56 families, 18 orders of three classes in the bottom sediment. Of these 61 species belonged to Bivalvia, 64 species belonged to Gastropoda and one species belonged to Polyplacophora. Maximum Bivalvia and Gastropoda taxa were found in the outer channel region of the lake. The dominating species were Crassostrea cuttackensis, Saccostrea cucullata, Brachidontes undulatus, Meretrix meretrix among bivalves and Cerethideopsilla cingulata, Bullia vittata, Nassarious stolatus, Indothias lacera, Natica tigrina, Turritella attenuata were from the gastropods. Occurrence of a large number of marine taxa is most probably associated with the opening of new lagoon during 1st August 2008.  相似文献   

20.
Although the area of Lake Yeniça?a is a potential candidate for RAMSAR convention, several anthropogenic factors compromise its biological diversity. This is mostly due to nutrient-rich water released from both point and nonpoint sources. Thirteen ostracod taxa (Candona neglecta, C. candida, Ilyocypris bradyi, Darwinula stevensoni, Cypridopsis vidua, Physocypria kraepelini, Cypria ophtalmica, Prionocypris zenkeri, Eucypris virens, Herpetocypris reptans, Pseudocandona compressa, Fabaeformiscandona fabaeformis Potamocypris cf. fulva) were found during this study. Potamocypris cf. fulva is a new record for the Turkish freshwater ostracod fauna. The first nine of these species have broad geographic ranges, implying high tolerance levels to different environmental variables. Based on the estimated species optima and tolerance levels, two species exhibited higher effective number of occurrences (C. neglecta, and D. stevensoni, respectively) than the other species. Three species (C. neglecta, D. stevensoni, I. bradyi) did not show significant correlation with any environmental variable we used. Both Canonical correspondence (CCA) and Pearson correlation analyses showed that temperature was the most effective predictor of species occurrence, followed by electrical conductivity and redox potential. In contrast, pH and dissolved oxygen of water were the least effective predictors. Approximately 71% of the correlation between community composition and environmental variables was explained by the first axis of the CCA diagram, which had a relatively low (7.7%) cumulative variance of species. The lower (560 μg/l) and the upper (2030 μg/l) levels of ammonia (NH3) exceeded the limits during winter season. The concentrations of total coliform and Escherichia coli bacteria were measured up to 10 × 107 cfu/ml and 10 × 103 cfu/ml, respectively. Results of physicochemical measurements, microbiological counts, and species data indicate that water quality of Lake Yeniça?a has been rapidly deteriorated by anthropogenic factors that are the main threat for not only the lake’s aquatic diversity but also human health around the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号