首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motilin-immunoreactivity has been localized by two electron immunocytochemical techniques, using gold-labelled protein A or IgG as second layer, in a specific type of endocrine cell scattered in the epithelium of human and canine upper small intestine. The motilin (M) cell is characterized by relatively small (180 nm in man; 200 nm in the dog), solid granules with homogeneous core and closely applied membrane, round in man, round to irregularly-shaped in the dog. Perinuclear microfilaments are prominent in human motilin cells.  相似文献   

2.
Cholecystokinin (CCK) has been localized by the immunogold technique in a type of endocrine cell of the dog duodenum characterized by small (166 +/- 38 nm) secretory granules with fairly dense, homogeneous core separated from its enveloping membrane by a thin clear space. The CCK cell is immunocytochemically distinct and cytologically different from other types of endocrine cells, as the secretin, GIP and motilin cells, already identified in the dog duodenum.  相似文献   

3.
Ghrelin is a new gastric peptide involved in food intake control and growth hormone release. We aimed to assess its cell localisation in man during adult and fetal life and to clarify present interspecies inconsistencies of gastric endocrine cell types. A specific serum generated against amino acids 13-28 of ghrelin was tested on fetal and adult gastric mucosa and compared with ghrelin in situ hybridisation. Immunogold electron microscopy was performed on normal human, rat and dog adult stomach. Ghrelin cells were detected in developing gut, pancreas and lung from gestational week 10 and in adult human, rat and dog gastric mucosa. By immunogold electron microscopy, gastric ghrelin cells showed distinctive morphology and hormone reactivity in respect to histamine enterochromaffin-like, somatostatin D, glucagon A or serotonin enterochromaffin cells. Ghrelin cells were characterised by round, compact, electron-dense secretory granules of P/D(1) type in man (mean diameter 147+/-30 nm), A-like type in the rat (183+/-37 nm) and X type in the dog (273+/-49 nm). It is concluded that, ghrelin is produced by well-defined cell types, which in the past had been labelled differently in various mammals mostly because of the different size of their secretory granule. In man ghrelin cells develop during early fetal life.  相似文献   

4.
Summary Cholecystokinin (CCK) has been localized by the immunogold technique in a type of endocrine cell of the dog duodenum characterized by small (166±38 nm) secretory granules with fairly dense, homogeneous core separated from its enveloping membrane by a thin clear space. The CCK cell is immunocytochemically distinct and cytologically different from other types of endocrine cells, as the secretin, GIP and motilin cells, already identified in the dog duodenum.  相似文献   

5.
Motilin, a 22-amino acid peptide hormone secreted by endocrine cells of the intestinal mucosa, plays an important role in the regulation of gastrointestinal motility. The actions of motilin agonists have been extensively investigated in dogs due to physiological similarities between the dog and human alimentary tracts. The amino acid sequence of the dog motilin receptor, however, was previously unknown. We have cloned a cDNA from dog stomach corresponding to the motilin receptor. The deduced protein shared 71% and 72% sequence identity with the human and rabbit motilin receptors, respectively. Expression of the dog motilin receptor in CHO cells promoted the typical cellular responses to the agonists, motilin and erythromycin. The rank order of potency determined for these agonists was similar to that found for the human motilin receptor, with motilin being more potent than erythromycin. Immunohistochemistry of the dog stomach revealed that the motilin receptor was localized in neuronal cell bodies and fibers. This is the first study detailing the cloning, expression, and functional characterization of the dog motilin receptor. Determination of the full sequence and functional properties of the dog motilin receptor will provide useful information enabling us to interpret previous and future studies of motilin agonists in dogs.  相似文献   

6.
Huang Z  Depoortere I  De Clercq P  Peeters T 《Gene》1999,240(1):217-226
Motilin is involved in the regulation of the fasting motility pattern in man and in dog, but may have a different role in other species. Immunoreactive motilin has been demonstrated in several species, but the sequence is mostly unknown. The aim of this study was to isolate and sequence the cDNA encoding the motilin precursor from several mammalian species and from chicken. Total RNA was isolated from the duodenal mucosa of the chicken, dog, cow and horse. In each case single stranded cDNA was synthesized. Motilin cDNA fragments were amplified by PCR, ligated into a plasmid and cloned. Clones which were positive after screening with an appropriate (32)P-labeled probe were sequenced. The 5'- and 3'-ends were determined by the rapid amplification of cDNA ends (RACE) method. Analysis of the cDNAs revealed an open reading frame coding for 115 (chicken and cow), or 117 (dog and horse) amino acids. It consists of a 25 amino acid signal peptide, motilin itself, and a 68 (chicken and cow) or 70 (dog and horse) amino acid motilin associated peptide (MAP). As in all motilin precursors already sequenced (man, monkey, pig and rabbit), an endoproteinase cleavage site is present at Lys(23)-Lys(24). Comparison of all known sequences shows considerable identity in amino acid and nucleotide sequence of the signal peptide and motilin. However, the MAPs differ not only in length but also, more strongly, in amino acid and nucleotide sequence. Our study demonstrates that the N- and C-terminal regions of the motilin precursor have evolved at different rates, which is evidence for 'mosaic evolution'.  相似文献   

7.
Pharmacological studies indicate that in man and in rabbit, but not in dog, motilin has a direct influence upon gastrointestinal smooth muscle. In accordance with this hypothesis we have presented direct biochemical evidence for the presence of motilin receptors on rabbit smooth muscle tissue. We have now extended our studies to human and canine tissue. Tissue homogenates were studied in binding experiments with iodinated porcine [Leu13]motilin and iodinated canine motilin. It was ascertained that the iodination procedure had little effect on the biological activity of the porcine analogue. In the human antrum specific binding of the iodinated porcine analogue was only found in the smooth muscle layer. It was absent in mucosal or serosal preparations. At 30 degrees C and pH 8.0, binding was maximal after 60 min of incubation, and was reversed by the addition of unlabeled porcine motilin. Binding was enhanced in the presence of calcium and magnesium ions. At a concentration of 10 mM MgCl2, binding was 220% of the binding observed in its absence. Displacement studies with synthetic porcine [Leu13]motilin or synthetic natural porcine motilin indicated a dissociation constant (Kd) of 3.6 +/- 1.6 nM and a maximal binding capacity (Bmax) of 77 +/- 9 fmol per mg protein. Canine motilin displaced iodinated porcine motilin with an apparent Kd of 2.2 +/- 0.9 nM. Compared to antral binding, receptor density decreased aborally and orally, and was absent in jejunum and ileum. In dog specific binding could not be demonstrated in antral and duodenal tissue, neither with labeled porcine nor with labeled canine motilin. However, labeled canine motilin was equipotent to labeled porcine motilin in binding studies with human tissue: the dissociation constant was 0.9 +/- 0.6 nM. The present studies therefore demonstrate the existence of a specific motilin receptor in the antroduodenal region of the human gut. Apparently, such receptors are not present in the canine gut. Our data support the hypothesis that in the human gastrointestinal tract, the gastroduodenal area is motilin's target region.  相似文献   

8.
Xenin is a 25-amino-acid peptide extractable from mammalian tissue. This peptide is biologically active. It stimulates exocrine pancreatic secretion and intestinal motility and inhibits gastric secretion of acid and food intake. Xenin circulates in the human plasma after meals. In this study, the cellular origin of xenin in the gastro-entero-pancreatic system of humans, Rhesus monkeys, and dogs was investigated by immunohistochemistry and immunoelectron microscopy. Sequence-specific antibodies against xenin detected specific endocrine cells in the duodenal and jejunal mucosa of all three species. These xenin-immunoreactive cells were distinct from enterochromaffin, somatostatin, motilin, cholecystokinin, neurotensin, and secretin cells, and comprised 8.8% of the chromogranin A-positive cells in the dog duodenum and 4.6% of the chromogranin A-positive cells in human duodenum. In all three species, co-localization of xenin was found with a subpopulation of gastric inhibitory polypeptide (GIP)-immunoreactive cells. Immunoelectron microscopy in the canine duodenal mucosa demonstrated accumulation of gold particles in round, homogeneous, and osmiophilic secretory granules with a closely adhering membrane of 187 +/- 19 nm diameter (mean +/- SEM). This cell type was found to be identical to the previously described canine GIP cell. Immunocytochemical expression of the peptide xenin in a subpopulation of chromogranin A-positive cells as well as the localization of xenin immunoreactivity in ultrastructurally characterized secretory granules permitted the identification of a novel endocrine cell type as the cellular source of circulating xenin.  相似文献   

9.
Summary In mammals, neurotensin cells occur scattered in the epithelium of the jejunum-ileum. In chicken, neurotensin cells are abundant in the region of the gizzard-duodenal junction (antrum) where they occur intermingled with numerous somatostatin and gastrin cells. The neurotensin cells in chicken, dog and man were identified at the electron microscopic level by immunocytochemistry, using the consecutive semithin/ultrathin section technique. They contain numerous electron dense cytoplasmic granules, predominantly in the basal portion of the cell. It was shown that these granules are the storage site for neurotensin. The neurotensin granules are round, highly electron dense and of about the same size in the different species examined (mean diameter 260–290 nm). in dog and man the granules have a tightly applied surrounding membrane while in the chicken a relatively electron lucent zone separates the electron dense core from the granule membrane. The ultrastructure of the neurotensin granules in chicken is some-what reminiscent of that of the gastrin granules. The mean diameter of the gastrin granules in chicken antrum is 230 nm; for the somatostatin granules the mean diameter is 305 nm.  相似文献   

10.
In mammals, neurotensin cells occur scattered in the epithelium of the jejunum-ileum. In chicken, neurotensin cells are abundant in the region of the gizzard-duodenal junction (antrum) where they occur intermingled with numerous somatostatin and gastrin cells. The neurotensin cells in chicken, dog and man were identified at the electron microscopic level by immunocytochemistry, using the consecutive semithin/ultrathin section technique. They contain numerous electron dense cytoplasmic granules, pre-dominantly in the basal portion of the cell. It was shown that these granules are the storage site for neurotensin. The neurotensin granules are round, highly electron dense and of about the same size in the different species examined (mean diameter 260--290 nm). In dog and man the granules have a tightly applied surrounding membrane while in the chicken a relatively electron lucent zone separates the electron dense core from the granule membrane. The ultrastructure of the neurotensin granules in chicken is somewhat reminiscent of that of the gastrin granules. The mean diameter of the gastrin granules in chicken antrum is 230 nm; for the somatostatin granules the mean diameter is 305 nm.  相似文献   

11.
Motilin--an update   总被引:2,自引:0,他引:2  
J E Fox 《Life sciences》1984,35(7):695-706
Motilin isolated in 1971 from the porcine gastrointestinal tract and localized there to endocrine cells, now appears to have a CNS neural origin by RIA and immunohistochemistry. In most species motilin releases neurotransmitters in the CNS to both increase and decrease neural transmission and in the gastrointestinal tract to increase motor activity. In the fasting animal, motilin initiates premature activity fronts of the migrating motor complex (MMC) in the upper gastrointestinal tract by an atropine or tetrodotoxin-sensitive mechanism. Immunoreactive motilin-release from the gut can be correlated with the passage of these fronts through the upper gut. In the dog, the associated events of this MMC, i.e. motor activity of the duodenum extrinsic and intrinsic neural activity and emptying of biliary and pancreatic secretions into the duodenum, all appear to contribute to the peaks in peripheral plasma immunoreactive motilin concentrations. In man, there appears to be a close association of motilin secretion with biliary and pancreatic secretions being emptied into the duodenum and less evidence for motor activity releasing motilin. Only in the dog is there strong evidence for an absolute requirement of motilin for the consolidation of the motor activity of the upper gut into the MMC. In man, the evidence is less convincing although motilin may facilitate the process and in the pig, motilin appears to have little or no role in MMC generation. No pathological consequences of hypermotilemia have been described although elevated motilin levels have been found to be associated with some diarrheal states, renal failure, and in the first week following abdominal surgery. Motilin thus remains a hormone seeking a physiological function in some species and a pathological role in all species.  相似文献   

12.
The cDNA encoding the human motilin receptor was recently cloned and found to represent a G protein-coupled receptor that is structurally related to the growth hormone secretagogue receptors. Together, these represent a new Class I receptor family. Our aim in the present work is to gain insight into the molecular basis of binding of motilin to its receptor using photoaffinity labeling. To achieve this, we developed a Chinese hamster ovary cell line that overexpressed functional motilin receptor (CHO-MtlR; 175,000 sites per cell, with K(i) = 2.3 +/- 0.4 nm motilin and EC(50) = 0.3 +/- 0.1 nm motilin) and a radioiodinatable peptide analogue of human motilin that incorporated a photolabile p-benzoyl-l-phenylalanine (Bpa) residue into its pharmacophoric domain. This probe, [Bpa(1),Ile(13)]motilin, was a full agonist at the motilin receptor that increased intracellular calcium in a concentration-dependent manner (EC(50) = 1.5 +/- 0.4 nm). This photolabile ligand bound specifically and with high affinity to the motilin receptor (K(i) = 12.4 +/- 1.0 nm), and covalently labeled that molecule within its M(r) = 45,000 deglycosylated core. Cyanogen bromide cleavage demonstrated its covalent attachment to fragments of the receptor having apparent M(r) = 6,000 and M(r) = 31,000. These were demonstrated to represent fragments that included both the first and the large second extracellular loop domains, with the latter representing a unique structural feature of this receptor. The spatial approximation of the pharmacophoric domain of motilin with these receptor domains support their functional importance as well.  相似文献   

13.
Due to motilin's relation to the migrating motor complex (MMC), the physiology of motilin has been mostly studied in man and dog. The cat does not have an MMC pattern, and little is known about cat motilin. Therefore we identified the cat motilin precursor (GenBank accession no. AF127917) and developed a quantitative polymerase chain reaction (PCR) to explore its distribution in the gastrointestinal tract and in the central nervous system (CNS). The precursor is closely related to the dog precursor and consists of an open reading frame of 348bp encoding the signal peptide (25 amino acids), the motilin sequence (22 amino acids) and the motilin associated peptide (69 amino acids). One amino acid of the signal peptide was subject to gene polymorphism. Quantification of motilin messenger RNA (mRNA) was for the first time achieved. It is most abundant in the gastrointestinal tract, with the highest concentration in the duodenum, the lowest in the colon and is not detectable in the corpus. However an important expression was also observed in several regions of the CNS, except the striatum and cerebral cortex. The highest level was in the hypothalamus (although 23-fold lower than in the duodenum), the lowest level in the pons. Moderate levels were found in the thyroid. These data suggest that the physiological role of motilin may extend beyond its effect on gastrointestinal motility.  相似文献   

14.
Close intraarterial injections of motilin to the small intestine of the anaesthetized dog produce prolonged phasic contractions. Tetrodotoxin infused intraarterially blocked field stimulated contractions and abolished the response to motilin as did treatment with a combination of hexamethonium and atropine. Atropine alone increased the dose of motilin required to induce responses. Hexamethonium alone similarly increased the dose of motilin required in the jejunum, but not for the ileum. These results suggest that motilin acts to contract small intestine by stimulation of intrinsic excitatory nerves, some of which are post-ganglionic cholinergic and some of which are not, but are activated by a pathway with a nicotinic synapse. The ED50 for ileal contractions was greater than that for the jejunum and the time to reach maximum contractions longer suggesting a decreased responsiveness of the lower small intestine to motilin as compared to the upper gastro-intestinal tract. These results and the lesser quantity of immunoreactive motilin in the ileum than in the jejunum may explain the lack of relationship of the activity front of the migrating motor complex in the lower small intestine to venous motilin concentrations.  相似文献   

15.
Summary Somatostatin cells are numerous in the pancreas and digestive tract of mammals as well as birds. In the pancreas of chicken, cat and dog they occur in both the exocrine parenchyma and in the islets. In the rat and rabbit, somatostatin cells have a peripheral location in the islets, whereas in the cat, dog and man the cells are usually more randomly distributed. In the stomach of rabbits and pigs, somatostatin cells are more numerous in the oxyntic gland area than in the pyloric gland area, whereas the reverse is true for the cat, dog and man. In the cat, pig and man, somatostatin cells are fairly numerous in the duodenum, whereas in the rat, rabbit and dog they are few in this location. In the remainder of the intestines somatostatin cells are few but regularly observed. Somatostatin cells are numerous in the human fetal pancreas and gut. In the fetal rat, somatostatin cells first appear in the pancreas and duodenum (at about the 16–17th day of gestation) and subsequently in the remainder of the intestine. Somatostatin cells do not appear in the gastric mucosa until after birth. Three weeks after birth, somatostatin cells show the adult frequency of occurrence and pattern of distribution. In the chicken, somatostatin cells are numerous in the proventriculus, absent from the gizzard, abundant in the gizzard-duodenal junction (antrum), infrequent in the duodenum and virtually absent from the remainder of the intestines. No immunoreactive cells can be observed in the thyroid of any species nor in the ultimobranchial gland of the chicken. In the chick embryo, somatostatin cells are first detected in the pancreas and proventriculus (at about the 12th day of incubation). They appear in the remainder of the gut much later, in the duodenum at the 16th day, in the antrum at about the 19th day and still later in the lower small intestine. The ultrastructure of the somatostatin cells was studied in the chicken, rat, cat and man; the cells were identified by the consecutive semithin/ultrathin section technique. The somatostatin cells display the properties of the D cell. There was no difference in granule ultrastructure between somatostatin cells in the gut and the pancreas. The granules, which are the storage site of the peptide, are round, supplied with a tightly fitting membrane and have a moderately electron-dense, fine-granulated core. The mean diameter of the somatostatin granules is smallest in rat (155–170 nm) and largest in the chicken (270–290 nm).  相似文献   

16.
The polypeptide hormone GIP has been localized ultrastructurally by using specific, monoclonal GIP antibodies and an immunogold technique on aldehyde-osmium fixed specimens of dog duodenal mucosa. A single type of cell showing round, homogeneous, fairly osmiophilic granules with closely applied membrane and a mean size of 188 nm +/- 34 SD has been identified as the GIP cell.  相似文献   

17.
The human motilin gene has been isolated and characterized. The gene spans about 9 kilobase pairs (kb) and the 0.7 kb motilin mRNA is encoded by five exons. The 22-amino-acid motilin sequence is encoded by exons 2 and 3. The human motilin gene was mapped to the p21.2----p21.3 region of chromosome 6 by hybridization of the cloned cDNA to DNAs from a panel of reduced human-mouse somatic cell hybrids and by in situ hybridization to human prometaphase chromosomes. RNA blotting using RNA prepared from various regions of the human gastrointestinal tract revealed high levels of motilin mRNA in duodenum and lower levels in the antrum of the stomach; motilin mRNA could not be detected by this procedure in the esophagus, cardia of the stomach, descending colon or gallbladder.  相似文献   

18.
Tsutsui C  Kajihara K  Yanaka T  Sakata I  Itoh Z  Oda S  Sakai T 《Peptides》2009,30(2):318-329
Although many studies have demonstrated the action of motilin on migrating motor complex by using human subjects and relatively large animals, the precise physiological mechanisms of motilin remain obscure. One reason for the lack of progress in this research field is that large animals are generally not suitable for molecular-level study. To overcome this problem, in this study, we focused on the house musk shrew (Suncus murinus, order: Insectivora, suncus named as laboratory strain) as a small model animal, and we present here the results of motilin gene cloning and its availability for motilin study. The motilin gene has a high homology sequence with that of other mammals, including humans. Suncus motilin is predicted to exist as a 117-residue prepropeptide that undergoes proteolytic cleavage to form a 22-amino-acid mature peptide. The results of RT-PCR showed that motilin mRNA is highly expressed in the upper small intestine, and low levels of expression were found in many tissues. Morphological analysis revealed that suncus motilin-producing cells were present in the upper small intestinal mucosal layer but not in the myenteric plexus. Administration of suncus motilin to prepared muscle strips of rabbit duodenum showed almost the same contractile effect as that of human motilin. Moreover, suncus stomach preparations clearly responded to suncus or human motilin stimulation. To our knowledge, this is the first report that physiological active motilin was determined in small laboratory animals, and the results of this study suggest that suncus is a suitable model animal for studying the motilin-ghrelin family.  相似文献   

19.
Y Iwama  F Sasaki 《Acta anatomica》1989,134(3):232-236
Somatotropes, lactotropes and corticotropes of adult male mice were identified with immunohistochemistry in the adenohypophysis fixed by OsO4 alone. Somatotropes were classified into type I somatotropes that contain large (350 nm in diameter) round secretory granules and type II somatotropes that contain small (100-200 nm in diameter) round secretory granules. Most somatotropes were type I somatotropes. Lactotropes were also classified into type I lactotropes that contain irregularly shaped secretory granules and type II lactotropes containing small (100-200 nm in diameter) round secretory granules. Corticotropes are irregular stellate or slender cells with little cytoplasm. They contain round solid secretory granules in various densities along the cell periphery. Most of these are low-density granules (200-300 nm in diameter) and a few are high-density granules (200-250 nm in diameter). These data were compared with the classical data of mouse adenohypophysial cells that were fixed in OsO4 alone and identified only by conventional electron microscopy.  相似文献   

20.
In our search for a cell line expressing endogenous human motilin receptor, we have discovered that theTE671 cell line, a neuron-derived medulloblastoma human line, expresses functional motilin receptors. The cDNA of the receptor was isolated from the cells and its sequence was confirmed to be identical to the previously reported cDNA sequence isolated from human thyroid. The function of the receptor protein was evaluated both for its ability to inhibit the binding of 125I-motilin to a crude membrane preparation of TE671 cells and for activation of the phospholipase C signal transduction pathway by calcium mobilization assay. The precise numbers of motilin receptor RNA molecule in TE671 cell and 24 human tissues were quantitatively determined by real-time PCR. TE671 cell line should be a useful tool for the study of motilin receptor-involved signal transduction in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号