首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Among the bilaterally symmetrical, triploblastic animals (the Bilateria), a conserved set of developmental regulatory genes are known to function in patterning the anterior–posterior (AP) axis. This set includes the well-studied Hox cluster genes, and the recently described genes of the ParaHox cluster, which is believed to be the evolutionary sister of the Hox cluster ( Brooke et al. 1998 ). The conserved role of these axial patterning genes in animals as diverse as frogs and flies is believed to reflect an underlying homology (i.e., all bilaterians derive from a common ancestor which possessed an AP axis and the developmental mechanisms responsible for patterning the axis). However, the origin and early evolution of Hox genes and ParaHox genes remain obscure. Repeated attempts have been made to reconstruct the early evolution of Hox genes by analyzing data from the triphoblastic animals, the Bilateria ( Schubert et al. 1993 ; Zhang and Nei 1996 ). A more precise dating of Hox origins has been elusive due to a lack of sufficient information from outgroup taxa such as the phylum Cnidaria (corals, hydras, jellyfishes, and sea anemones). In combination with outgroup taxa, another potential source of information about Hox origins is outgroup genes (e.g., the genes of the ParaHox cluster). In this article, we present cDNA sequences of two Hox-like genes ( anthox2 and anthox6 ) from the sea anemone, Nematostella vectensis. Phylogenetic analysis indicates that anthox2 (=Cnox2) is homologous to the GSX class of ParaHox genes, and anthox6 is homologous to the anterior class of Hox genes. Therefore, the origin of Hox genes and ParaHox genes occurred prior to the evolutionary split between the Cnidaria and the Bilateria and predated the evolution of the anterior–posterior axis of bilaterian animals. Our analysis also suggests that the central Hox class was invented in the bilaterian lineage, subsequent to their split from the Cnidaria.  相似文献   

2.
Hox patterning of the vertebrate rib cage   总被引:2,自引:0,他引:2  
Unlike the rest of the axial skeleton, which develops solely from somitic mesoderm, patterning of the rib cage is complicated by its derivation from two distinct tissues. The thoracic skeleton is derived from both somitic mesoderm, which forms the vertebral bodies and ribs, and from lateral plate mesoderm, which forms the sternum. By generating mouse mutants in Hox5, Hox6 and Hox9 paralogous group genes, along with a dissection of the Hox10 and Hox11 group mutants, several important conclusions regarding the nature of the ;Hox code' in rib cage and axial skeleton development are revealed. First, axial patterning is consistently coded by the unique and redundant functions of Hox paralogous groups throughout the axial skeleton. Loss of paralogous function leads to anterior homeotic transformations of colinear regions throughout the somite-derived axial skeleton. In the thoracic region, Hox genes pattern the lateral plate-derived sternum in a non-colinear manner, independent from the patterning of the somite-derived vertebrae and vertebral ribs. Finally, between adjacent sets of paralogous mutants, the regions of vertebral phenotypes overlap considerably; however, each paralogous group imparts unique morphologies within these regions. In all cases examined, the next-most posterior Hox paralogous group does not prevent the function of the more-anterior Hox group in axial patterning. Thus, the ;Hox code' in somitic mesoderm is the result of the distinct, graded effects of two or more Hox paralogous groups functioning in any anteroposterior location.  相似文献   

3.
The segmented body plan of vertebrate embryos arises through segmentation of the paraxial mesoderm to form somites. The tight temporal and spatial control underlying this process of somitogenesis is regulated by the segmentation clock and the FGF signaling wavefront. Here, we report the cyclic mRNA expression of Snail 1 and Snail 2 in the mouse and chick presomitic mesoderm (PSM), respectively. Whereas Snail genes' oscillations are independent of NOTCH signaling, we show that they require WNT and FGF signaling. Overexpressing Snail 2 in the chick embryo prevents cyclic Lfng and Meso 1 expression in the PSM and disrupts somite formation. Moreover, cells mis-expressing Snail 2 fail to express Paraxis, remain mesenchymal, and are thereby inhibited from undergoing the epithelialization event that culminates in the formation of the epithelial somite. Thus, Snail genes define a class of cyclic genes that coordinate segmentation and PSM morphogenesis.  相似文献   

4.
A new view of patterning domains in the vertebrate mesoderm   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
7.
8.
Gastrulation in higher vertebrate species classically commences with the generation of mesoderm cells in the primitive streak by epithelio-mesenchymal transformation of epiblast cells. However, the primitive streak also marks, with its longitudinal orientation in the posterior part of the conceptus, the anterior-posterior (or head-tail) axis of the embryo. Results obtained in chick and mouse suggest that signals secreted by the hypoblast (or visceral endoderm), the extraembryonic tissue covering the epiblast ventrally, antagonise the mesoderm induction cascade in the anterior part of the epiblast and thereby restrict streak development to the posterior pole (and possibly initiate head development anteriorly). In this paper we took advantage of the disc-shape morphology of the rabbit gastrula for defining the expression compartments of the signalling molecules Cerberus and Dickkopf at pre-gastrulation and early gastrulation stages in a mammal other than the mouse. The two molecules are expressed in novel expression compartments in a complementary fashion both in the hypoblast and in the emerging primitive streak. In loss-of-function experiments, carried out in a New-type culturing system, hypoblast was removed prior to culture at defined stages before and at the beginning of gastrulation. The epiblast shows a stage-dependent and topographically restricted susceptibility to express Brachyury, a T-box gene pivotal for mesoderm formation, and to transform into (histologically proven) mesoderm. These results confirm for the mammalian embryo that the anterior-posterior axis of the conceptus is formed first as a molecular prepattern in the hypoblast and then irrevocably fixed, under the control of signals secreted from the hypoblast, by epithelio-mesenchymal transformation (primitive streak formation) in the epiblast.Edited by D. Tautz  相似文献   

9.
10.
Homeobox genes and axial patterning.   总被引:196,自引:0,他引:196  
W McGinnis  R Krumlauf 《Cell》1992,68(2):283-302
  相似文献   

11.
12.
《Epigenetics》2013,8(8):537-540
Temporal and spatial control of Hox gene expression is essential for correct patterning of many animals. In both Drosophila and vertebrates, Polycomb and Trithorax group complexes control the maintenance of Hox gene expression in appropriate domains. In vertebrates, dynamic changes in chromatin modifications are also observed during the sequential activation of Hox genes in the embryo, suggesting that progressive epigenetic modifications could regulate collinear gene activation.  相似文献   

13.
Hox genes in time and space during vertebrate body formation   总被引:3,自引:0,他引:3  
Vertebrae display distinct morphological features at different levels of the body axis. Links between collinear Hox gene activation and the progressive mode of body axis elongation have provided a fascinating blueprint of the mechanisms for establishing these morphological identities. In this review, we first discuss the regulation and possible role of collinear Hox gene activation during body formation and then highlight the direct role of Hox genes in controlling cellular movements during gastrulation, therefore contributing to body formation. Additional related research aspects, such as imaging of chromatin regulation, roles of micro RNAs and evolutional findings are also discussed.  相似文献   

14.
Current phylogenies show that paired fins and limbs are unique to jawed vertebrates and their immediate ancestry. Such fins evolved first as a single pair extending from an anterior location, and later stabilized as two pairs at pectoral and pelvic levels. Fin number, identity, and position are therefore key issues in vertebrate developmental evolution. Localization of the AP levels at which developmental signals initiate outgrowth from the body wall may be determined by Hox gene expression patterns along the lateral plate mesoderm. This regionalization appears to be regulated independently of that in the paraxial mesoderm and axial skeleton. When combined with current hypotheses of Hox gene phylogenetic and functional diversity, these data suggest a new model of fin/limb developmental evolution. This coordinates body wall regions of outgrowth with primitive boundaries established in the gut, as well as the fundamental nonequivalence of pectoral and pelvic structures. BioEssays 20 :371–381, 1998. © 1998 John Wiley & Sons Inc.  相似文献   

15.
Classic studies have shown that the presomitic mesoderm is already committed to a specific morphological fate, for example, the ability to generate a rib. Hox gene expression in the paraxial mesoderm has also been shown to be fixed early and not susceptible to modulation by an ectopic environment. This is in contrast to the plasticity of Hox expression in neuroectodermal derivatives. We reexamine here the potential of somites for morphological plasticity by transplanting the cranial (occipital) somites 1-4, that normally produce small contributions to the skull, to the trunk of avian embryos. Surprisingly, the transposed cranial somites are able to form reasonably normal vertebral anlage. In addition, the cranial somitic mesoderm produces intervertebral disks, structures not normally found in the skull. These somites are however unable to generate some elements of the vertebrae, such as the costal process. In contrast to the morphogenetic plasticity of the occipital somites, their characteristic inability to support survival of dorsal root ganglia was not significantly modified by posterior transplantation. Dorsal root ganglia initially developed and then degenerated with the same morphological stages as normally observed. In striking contrast to the plasticity of morphology, we found that all four members of the of the fourth paralogous group of Hox genes that are expressed endogenously at the level of the graft are not upregulated in the caudad-transposed cranial mesoderm. It therefore appears that genes other than those of the Hox family normally expressed at this axial level control the position-specific morphogenesis of ectopic vertebrae formed from cranial somites. In evolutionary terms, the present results imply that occipital somites that were incorporated into the "New Head" retain the ability to develop according to their original morphogenetic fate, into vertebrae.  相似文献   

16.
Amniote kidney tissue is derived from the intermediate mesoderm (IM), a strip of mesoderm that lies between the somites and the lateral plate. While much has been learned concerning the later events which regulate the differentiation of IM into tubules and other types of kidney tissue, much less is known concerning the earlier events which regulate formation of the IM itself. In the current study, the chick pronephros was used as a model system to identify tissues that play a role in patterning the IM and the critical time periods during which such patterning events take place. Explant studies revealed that the prospective pronephric IM is already specified to express kidney genes by stage 6, shortly after its gastrulation through the primitive streak, and earlier than previously reported. Transplant and explant experiments revealed that the lateral plate contains an activity that can repress IM formation in tissues that are already specified to express IM genes. In contrast, Hensen's node can promote formation of IM in the lateral plate. Paraxial tissues (presomitic mesoderm plus neural plate and notochord) were found to influence the morphogenesis of the nephric duct, but did not induce IM tissue to an appreciable extent. Combining lateral plate and paraxial tissue in vivo or in vitro led to induction of IM genes in the paraxial mesoderm but not in the lateral plate mesoderm. Based on these results and those of others, we propose a two-step model for the patterning of the IM. While tissue is still in the primitive streak, the prospective IM is relatively uncommitted. By stage 6, shortly after cells leave the primitive streak, a field of cells is generate which is specified to give rise to IM (Step 1). Subsequently, competing signals from the lateral plate and axial tissues modulate the number of cells that commit to an IM fate (Step 2).  相似文献   

17.
Hox genes, neural crest cells and branchial arch patterning.   总被引:6,自引:0,他引:6  
Proper craniofacial development requires the orchestrated integration of multiple specialized tissue interactions. Recent analyses suggest that craniofacial development is not dependent upon neural crest pre-programming as previously thought but is regulated by a more complex integration of cell and tissue interactions. In the absence of neural crest cells it is still possible to obtain normal arch patterning indicating that neural crest is not responsible for patterning all of arch development. The mesoderm, endoderm and surface ectoderm tissues play a role in the patterning of the branchial arches, and there is now strong evidence that Hoxa2 acts as a selector gene for the pathways that govern second arch structures.  相似文献   

18.
We report a novel developmental mechanism. Anterior-posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early non-organiser mesoderm and the organiser. The timer is characterised by temporally colinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the non-organiser mesoderm) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilised by signals from the Spemann organiser. The non-organiser mesoderm and the Spemann organiser undergo timed interactions during gastrulation which lead to the formation of an anterior-posterior axis and stable Hox gene expression. When separated from each other, neither non-organiser mesoderm nor the Spemann organiser is able to induce anterior-posterior pattern formation of the trunk. We present a model describing that convergence and extension continually bring new cells from the non-organiser mesoderm within the range of organiser signals and thereby create patterned axial structures. In doing so, the age of the non-organiser mesoderm, but not the age of the organiser, defines positional values along the anterior-posterior axis. We postulate that the temporal information from the non-organiser mesoderm is linked to mesodermal Hox expression.  相似文献   

19.
The Hox genes confer positional information to the axial and paraxial tissues as they emerge gradually from the posterior aspect of the vertebrate embryo. Hox genes are sequentially activated in time and space, in a way that reflects their organisation into clusters in the genome. Although this co-linearity of expression of the Hox genes has been conserved during evolution, it is a phenomenon that is still not understood at the molecular level. This review aims to bring together recent findings that have advanced our understanding of the regulation of the Hox genes during mouse embryonic development. In particular, we highlight the integration of these transducers of anteroposterior positional information into the genetic network that drives tissue generation and patterning during axial elongation.  相似文献   

20.
What are the mechanisms that convert cell-fate information into shape changes and movements, thus creating the biological forms that comprise tissues and organs? Tubulogenesis of the Drosophila dorsal eggshell structures provides an excellent system for studying the link between patterning and morphogenesis. Elegant genetic and molecular analyses from over a decade provide a strong foundation for understanding the combinatorial signaling events that specify dorsal anterior cell fates within the follicular epithelium overlying the oocyte. Recent studies reveal the morphogenetic events that alter that flat epithelial sheet into two tubes; these tubes form the mold for synthesizing the dorsal appendages--eggshell structures that facilitate respiration in the developing embryo. This review summarizes the mutant analyses that give insight into these patterning and morphogenetic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号