首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution structure of a 20 amino acid long peptide corresponding to the region 141–160 of the envelope protein Vp1 from foot-and-mouth disease virus (FMDV) serotype A, variant A, has been determined by a combination of NMR experiments and computer calculations. The peptide contains both the immunodominant epitope as well as the sequence (RGD) used by the virus to bind the cell receptor in the initial stages of infection. These two sites have been shown to partially overlap. One hundred and thirty-five NMR distance constraints were used to obtain a set of 11 structures by distance geometry, minimization and molecular dynamics simulations. These structures were divided into two homogeneous families based upon backbone superimposition. The first and most populated family was characterized by a backbone RMS of 1.5±0.4 Å, the second by a backbone RMS of 0.8±0.2 Å. The two families had similar structural features and differed mainly in the backbone angles of G149. In the larger of the two families these angles favoured the formation of a loop comprising residues 147 to 152 and stabilized by a H-bond between the NH of D147 and the CO of A152. In the second family, where this bond was absent, the peptide adopted in this region the shape of an irregular helix. The C-terminal half of the peptide (152–159) was similar in both families and largely helical. Similar structural features were also found within the VRGDS sequence (144–148) which was assigned to a β-turn type IV. The features of the two families of structures were found to be different from those of the recently published X-ray structure of the antigenic loop of a chemically modified form of FMDV. Proposals accounting for these differences are provided which take into account the dual activity of the 141–160 sequence (i.e. antibody binding and cell invasion through receptor binding).  相似文献   

2.
Spatial structures of proteolytic segment A (sA) of bacterioopsin of H. halobium (residues 1-36) solubilized in a mixture of methanol-chloroform (1:1), 0.1 M LiClO4 organic mixture, or in perdeuterated sodium dodecyl sulfate (SDS) micelles, were determined by 2D 1H-NMR techniques. 324 and 400 NOESY cross-peak volumes were measured in NOESY spectra of sA in organic mixture and SDS micelles, respectively. The sA spatial structures were determined by local structure analysis, distance geometry calculation with program DIANA and systematic search for energetically allowed side chain rotamers consistent with NOESY cross-peak volumes. The structures of sA are similar in both milieus and have the right-handed alpha-helical region from Pro8 to Met32 with root mean square deviation (RMSD) of 0.25 A between backbone heavy atoms and fit well with Pro8 to Met32 alpha-helical region in electron cryo-microscopy model of bacteriorhodopsin. The N-terminal region Ala2-Gly6 of sA in organic mixture has a fixed structure of two consecutive gamma-turns as 2 * 2(7)-helix (RMSD of 0.25 A) stabilized by the Thr5 NH...O = C Gln3 and Ile4 NH...O = C Ala2 hydrogen bonds while this region in SDS micelles has disordered structure with RMSD of 1.44 A for backbone heavy atoms. The C-terminal region Gly33-Asp36 of sA is disordered in both milieus. Torsion angles chi 1 of sA were unequivocally determined for 13 (SDS) and 11 (organic mixture) of alpha-helical residues and are identical in both milieus.  相似文献   

3.
Stress and strain in staphylococcal nuclease.   总被引:5,自引:5,他引:0       下载免费PDF全文
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

4.
A 24-amino acid peptide, Humanin (HN), is a novel peptide that protects neuronal cells in vitro and in vivo from Alzheimer's disease-related toxicities. We have shown before that the structures of HN and a 1000-fold more active analog, HNG, with a Ser14Gly mutation are largely disordered. During additional mutational analysis, a shorter 17-amino acid form, AGA-(C8R)HNG17, was accidentally discovered to have a 100-fold higher activity than HNG. Here we have characterized the structural properties of the AGA-(C8R)HNG17 analog by circular dichroism (CD) and sedimentation equilibrium analysis. First, the structure in water was characterized, since these peptides have been dissolved in water prior to biological analysis. The AGA-(C8R)HNG17 peptide exhibited extensive beta-sheet structure in water, completely different from the aqueous HN and HNG structures. The beta-sheet structure was converted to a disordered structure upon dilution into phosphate-buffered saline (PBS) at low peptide concentration (e.g., below 0.2mg/ml), which was similar to the structure of HN and HNG, observed under similar conditions. Sedimentation equilibrium analysis showed that the AGA-(C8R)HNG17 analog was essentially monomeric in PBS, while HNG showed extensive aggregation. Such aggregation of HNG was observed when the peptide was added to the serum-containing cell culture media. Thus, the mutations introduced into the AGA-(C8R)HNG17 analog generated a peptide different from the parent HNG and HN peptides in the self-association properties and hence the solubility, which most likely contributed to the increased biological activity of the AGA-(C8R)HNG17 analog.  相似文献   

5.
F Ni  H A Scheraga  S T Lord 《Biochemistry》1988,27(12):4481-4491
The proton resonances of the following synthetic linear human fibrinogen-like peptides were completely assigned with two-dimensional NMR techniques in solution: Ala(1)-Asp-Ser-Gly-Glu-Gly-Asp(7)-Phe-Leu-Ala-Glu-Gly(12)-Gly(13)-Gly(14)- Val(15)-Arg(16)-Gly-Pro-Arg-Val-Val-Glu-Arg (F10), Ala-Asp-Ser-Gly-Glu-Gly-Asp-Phe-Leu-Ala-Glu-Gly-Gly(13)-Gly(14)-Val-Arg (F11), and Gly-Pro-Arg-Val-Val-Glu-Arg (F12). No predominant structure was found in the chain segment from Ala(1) to Gly(6) for F10 in both H2O and dimethyl sulfoxide. The previous suggestion that there is a hairpin loop involving residues Gly(12) to Val(15) in the A alpha chain of human fibrinogen is supported by the slow backbone NH exchange rates of Gly(14) and Val(15), by an unusually small NH chemical shift of Val(15), and by strong sequential NOE's involving this region in F10. This local chain fold within residues Asp(7) to Val(20) may place the distant Phe residue near the Arg(16)-Gly(17) peptide bond which is cleaved by thrombin.  相似文献   

6.
The crystal structure of an actual HIV-1 protease-substrate complex is presented at 2.0 A resolution (R-value of 19.7 % (R(free) 23.3 %)) between an inactive variant (D25N) of HIV-1 protease and a long substrate peptide, Lys-Ala-Arg-Val-Leu-Ala-Glu-Ala-Met-Ser, which covers a full binding epitope of capsid(CA)-p2, cleavage site. The substrate peptide is asymmetric in both size and charge distribution. To accommodate this asymmetry the two protease monomers adopt different conformations burying a total of 1038 A(2) of surface area at the protease-substrate interface. The specificity for the CA-p2 substrate peptide is mainly hydrophobic, as most of the hydrogen bonds are made with the backbone of the peptide substrate. Two water molecules bridge the two monomers through the loops Gly49-Gly52 (Gly49'-Gly52') and Pro79'-Val82' (Pro79-Val82). When other complexes are compared, the mobility of these loops is correlated with the content of the P1 and P1' sites. Interdependence of the conformational changes allows the protease to exhibit its wide range of substrate specificity.  相似文献   

7.
S Edmondson  N Khan  J Shriver  J Zdunek  A Gr?slund 《Biochemistry》1991,30(47):11271-11279
A model of the structure of the 22 amino acid residue gastrointestinal peptide hormone motilin in 30% hexafluoro-2-propanol has been obtained by using distance constraints obtained from two-dimensional nuclear Overhauser enhancements. A set of initial structures have been generated by using the distance geometry program DIANA, and 10 of these structures have been refined by using restrained molecular dynamics (AMBER). The resulting structures are virtually indistinguishable in terms of constraint violations and energies and display less than 0.5-A root mean square deviations (RMSD) of the backbone atom positions from Tyr7 to Lys20. A comparison of back-calculated and experimental NOE intensities indicates that RMSD's are not the best indicators of the goodness of fit or of the precision with which the structure is defined. The structure was further refined by fitting the experimental NOE data using an iterative full relaxation matrix analysis. The mean error between the observed and calculated backbone NOE intensities for the final refined structure was 0.23 for the full length of the molecule, 0.18 for the region from Glu9 to Lys20, and 0.29 for the region from Phe1 to Gly8. R factors for the same regions were 0.27, 0.19, and 0.43, respectively. All of the NOE-determined structures consistently display an alpha-helix which extends from Glu9 to Lys20. Considerable lack of definition of structure exists at the amino and carboxyl ends of the molecule and also in the vicinity of Thr6-Tyr7-Gly8. A tendency to form a wide turn appears to exist over the sequence Pro3-Ile4-Phe5-Thr6, but the structure in this region is not well defined by the NOE data.  相似文献   

8.
Schmidt AE  Sun MF  Ogawa T  Bajaj SP  Gailani D 《Biochemistry》2008,47(5):1326-1335
In serine proteases, Gly193 (chymotrypsin numbering) is conserved with rare exception. Mutants of blood coagulation proteases have been reported with Glu, Ala, Arg or Val substitutions for Gly193. To further understand the role of Gly193 in protease activity, we replaced it with Ala or Val in coagulation factor XIa (FXIa). For comparison to the reported FXIa Glu193 mutant, we prepared FXIa with Asp (short side chain) or Lys (opposite charge) substitutions. Binding of p-aminobenzamidine (pAB) and diisopropylfluorphosphate (DFP) were impaired 1.6-36-fold and 35-478-fold, respectively, indicating distortion of, or altered accessibility to, the S1 and oxyanion-binding sites. Val or Asp substitutions caused the most impairment. Salt bridge formation between the amino terminus of the mature protease moiety at Ile16 and Asp194, essential for catalysis, was impaired 1.4-4-fold. Mutations reduced catalytic efficiency of tripeptide substrate hydrolysis 6-280-fold, with Val or Asp causing the most impairment. Further studies were directed toward macromolecular interactions with the FXIa mutants. kcat for factor IX activation was reduced 8-fold for Ala and 400-1100-fold for other mutants, while binding of the inhibitors antithrombin and amyloid beta-precursor protein Kunitz domain (APPI) was impaired 13-2300-fold and 22-27000-fold, respectively. The data indicate that beta-branching of the side chain of residue 193 is deleterious for interactions with pAB, DFP and amidolytic substrates, situations where no S2'-P2' interactions are involved. When an S2'-P2' interaction is involved (factor IX, antithrombin, APPI), beta-branching and increased side chain length are detrimental. Molecular models indicate that the mutants have impaired S2' binding sites and that beta-branching causes steric conflicts with the FXIa 140-loop, which could perturb the local tertiary structure of the protease domain. In conclusion, enzyme activity is impaired in FXIa when Gly193 is replaced by a non-Gly residue, and residues with side chains that branch at the beta-carbon have the greatest effect on catalysis and binding of substrates.  相似文献   

9.
Ascidiacyclamide (ASC), cyclo(-Ile1-Oxz2-d-Val3-Thz4-)2 (Oxz=oxazoline and Thz=thiazole) has a C2-symmetric sequence, and the relationships between its conformation and symmetry have been studied. In a previous study, we performed asymmetric modifications in which an Ile residue was replaced by Gly, Leu or Phe to disturb the symmetry [Doi et al. (1999) Biopolymers49, 459-469]. In this study, the modifications were extended. The Ile1 residue was replaced by Gly, Ala, aminoisobutyric acid (Aib), Val, Leu, Phe or d-Ile, and the d-Val3 residue was replaced by Val. The structures of these analogs were analyzed by X-ray diffraction, 1H NMR and CD techniques. X-Ray diffraction analyses revealed that the [Ala1], [Aib1] and [Phe1]ASC analogs are folded, whereas [Val1]ASC has a square form. These structures are the first examples of folded structures for ASC analogs in the crystal state and are similar to the previously reported structures of [Gly1] and [Phe1]ASC in solution. The resonances of amide NH and Thz CH protons linearly shift with temperature changes; in particular, those of [Aib1], [d-Ile1] and [Val3]ASCs exhibited a large temperature dependence. DMSO titration caused nonlinear shifts of proton resonances for all analogs and largely affected [d-Ile1] and [Val3]ASCs. A similar tendency was observed upon the addition of acetone to peptide solutions. Regarding peptide concentration changes, amide NH and Thz CH protons of [Gly1]ASC showed a relatively large dependence. CD spectra of these analogs indicated approximately two patterns in MeCN solution, which were related to the crystal structures. However, all spectra showed a similar positive Cotton effect in TFE solution, except that of [Val3]ASC. In the cytotoxicity test using P388 cells, [Val1]ASC exhibited the strongest activity, whereas the epimers of ASC ([d-Ile1] and [Val3]ASCs), showed fairly moderate activities.  相似文献   

10.
The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9), [Aca(-1),DArg0,Hyp3,Thi5,DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa(-1),DArg0,Hyp3,Thi5,(2-DNal)7,Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-d6 and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8 peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a beta-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N-Bzl)Gly8 in analogue 1 suggests type VI beta-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb beta-turn comprising residues Ser6-Arg9 and the betaI or betaII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I beta-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

11.
Based on the nuclear magnetic resonance assignments of a dimeric protein, Streptomyces subtilisin inhibitor (SSI), microscopic details of secondary structures in solution have been elucidated. The chemical shift index of C(alpha) signals, together with information on the hydrogen exchange rates of the backbone amide protons, were used to identify secondary structures. The locations of these secondary structures were found to be different in some critical points from those determined earlier by X-ray crystallography of the crystal. Notably, the beta3 strand is completely missing and the alpha2 helix is extended toward the C-terminus. Furthermore, hydrogen exchange experiments of individual peptide NH protons under strongly folding conditions revealed mechanisms of global and local structural fluctuation within the dimeric structure. It has been suggested that the global fluctuation of the monomeric unit occurs without affecting the accompanying monomer, in contrast to the equilibrium thermal unfolding, which is cooperative. Higher protection against hydrogen exchange for residues in part of the beta4 strand implies that this region might serve as a folding core.  相似文献   

12.
Tam JP  Lu YA  Yang JL 《Biochemistry》2000,39(24):7159-7169
Cyclic peptide backbone and cystine constraints were used to develop a broadly active salt-insensitive antimicrobial peptide [Gly(6)]ccTP 1a with eight Gly residues in an 18-residue sequence. The importance of rigidity and amphipathicity imparted by the cyclic and cystine constraints was examined in two peptide series based on tachyplesin, a known beta-stranded antimicrobial peptide. The first series, which retained the charge and hydrophobic amino acids of tachyplesin, but contained zero to four covalent constraints, included a cyclic tricystine tachyplesin (ccTP 1). Corresponding [Gly(6)] analogues were prepared in a parallel series with all six bulky hydrophobic amino acids in their sequences replaced with Gly. Circular dichroism measurements showed that ccTP 1 and [Gly(6)]ccTP 1a exhibited well-ordered beta-sheet structures, while the less constrained [Gly(6)] analogues were disordered. Except for linear peptides assayed under high-salt conditions, peptides with increased or decreased conformational constraints retained broad activity spectra with small variations in potency of 2-10-fold compared to that of tachyplesin. In contrast, Gly replacement analogues resulted in large variations in activity spectra and significant decreases in potency that roughly correlated with the decreases in conformational constraints. Except against Escherichia coli, the Gly-rich analogues with two or fewer covalent constraints were largely inactive under high-salt conditions. Remarkably, the most constrained [Gly(6)]ccTP 1a retained a broad activity spectrum against all 10 test microbes in both low- and high-salt assays. Collectively, our results show that [Gly(6)]ccTP 1acould serve as a template for further analogue study to improve potency and specificity through single or multiple replacements of hydrophobic or unnatural amino acids.  相似文献   

13.
14.
The local structure (torsion angles phi, psi and chi 1 of amino acid residues) of insectotoxin I5A (35 residues) of scorpion Buthus eupeus has been determined from cross-peak integral intensities in two-dimensional nuclear Overhauser enhancement (NOESY) spectra and spin coupling constants of vicinal H--NC alpha--H and H--C alpha C beta--H protons. The local structure determination was carried out by fitting complete relaxation matrix of peptide unit protons (protons of a given residue and NH proton of the next residue in the amino acid sequence) with experimental NOESY cross-peak intensities. The obtained intervals of backbone torsional angles phi and psi consistent with NMR data were determined for all but Gly residues. The predominant C alpha--C beta rotamer of the side chain has been unambiguously determined for 42% of the insectotoxin amino acid residues whereas for another 46% residues experimental data are fitted equally well with two rotamers. Stereospecific assignments were obtained for 38% of beta-methylene groups. The determined torsional angles phi, psi and chi 1 correspond to the sterically allowed conformations of the amino acid residues and agree with the insectotoxin secondary structure established earlier by 1H NMR spectroscopy.  相似文献   

15.
[Gly8]beta hEP(1-27)NH2 and [L-Leu8]beta hEP(1-27)NH2, two analogs of human beta-endorphin, were synthesized by both all-stepwise solid phase synthesis and peptide segment coupling. For the peptide segment coupling method, two thiocarboxyl peptides. Msc-[Gly8]beta hEP(1-8)SH and Msc-[L-Leu8]beta hEP(1-8)SH, were synthesized by standard solid phase method on 4-[alpha-(Boc-Gly-S)benzyl]phenoxyacetamidomethy-resin and 4-[alpha-(Boc-L-Leu-S)benzyl]phenoxyacetamidomethy-resin. These two thiocarboxyl peptides were coupled to H-[Lys(Cit)9,19,24]-beta hEP(9-27)NH2. [Gly8]beta hEP(1-27)NH2 and [L-Leu8]beta hEP(1-27)NH2 were obtained after removal of Msc groups and citraconyl groups from products of the segment coupling reaction. The yields of both [Gly8]beta hEP(1-27)NH2 and [L-Leu8]beta hEP(1-27)NH2 in the segment coupling reaction were approximately 18%. Less than 1% of racemization of Leu-8 occurred during coupling of Msc-[L-Leu8]beta hEP(1-8)SH to H-[Lys(Cit)9,19,24]-beta hEP(9-27)NH2. Results of amino acid composition analysis, analysis by reverse phase high pressure liquid chromatography and receptor binding activity assays of the analogs showed that peptide analogs prepared by segment coupling method and those prepared by all-stepwise solid phase synthesis were identical. Results of receptor binding activity assays suggested that the molecular charge properties of beta-endorphin(1-27) and its analogs influenced the receptor binding activity.  相似文献   

16.
We describe an application of the backbone cyclization and cycloscan concept for the design and synthesis of pheromone biosynthesis activating neuropeptide (PBAN) antagonists capable of inhibiting sex pheromone biosynthesis in Heliothis peltigera female moths. Two backbone cyclic (BBC) sub-libraries were designed and synthesized. The structure of the first sub-library ([Arg27]PBAN27-33NH2, termed the Ser sub-library) was based on the active C-terminal hexapeptide sequence (Tyr-Phe-Ser-Pro-Arg-Leu-NH2) of PBAN1-33NH2, which was found to comprise its active core. The second sub-library ([Arg27, D-Phe30]PBAN27-33NH2, termed the D-Phe sub-library) was based on the sequence of the lead antagonist Arg-Tyr-Phe-(D)Phe-Pro-Arg-Leu-NH2. In both sub-libraries the Pro residue was replaced by an Nalpha(omega-amino-alkyl)Gly building unit having various lengths of the alkyl chain. All the cyclic peptides in each sub-library had the same primary sequence and the same location of the ring. The members of each library differed from each other by the bridge size and bridge chemistry. Screening of the two libraries for pheromonotropic antagonists resulted in the disclosure of four compounds that fully inhibited sex pheromone biosynthesis at 1 nmol and were devoid of agonistic activity. All antagonistic peptides originated from the D-Phe sub-library. Substitution of the D-Phe30 amino acid with a Ser resulted in a loss of antagonistic activity. Agonistic activities were exhibited by peptides from both sub-libraries.  相似文献   

17.
The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide (1), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide-receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1-Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible beta-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first beta-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second beta-turn. Furthermore, the presence of a beta-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH-NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I beta-turn structure is also supported by CD spectral analysis. The cIBR peptide (1) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   

18.
Solution structure and backbone dynamics of an omega-conotoxin precursor   总被引:1,自引:0,他引:1  
Nuclear magnetic resonance spectroscopy was used to characterize the solution structure and backbone dynamics of a putative precursor form of omega-conotoxin MVIIA, a 25-amino-acid residue peptide antagonist of voltage-gated Ca(2+) channels. The mature peptide is found in the venom of a fish-hunting marine snail Conus magus and contains an amidated carboxyl terminus that is generated by oxidative cleavage of a Gly residue. The form examined in this study is identical to the mature peptide except for the presence of the unmodified carboxy-terminal Gly. This form, referred to as omega-MVIIA-Gly, has previously been shown to refold and form its disulfides more efficiently than the mature form, suggesting that the presence of the terminal Gly may favor folding in vivo. The nuclear magnetic resonance (NMR) structure determination indicated that the fold of omega-MVIIA-Gly is very similar to that previously determined for the mature form, but revealed that the terminal Gly residue participates in a network of hydrogen bonds involving both backbone and side chain atoms, very likely accounting for the enhanced stability and folding efficiency. (15)N relaxation experiments indicated that the backbone is well ordered on the nanosecond time scale but that residues 9-15 undergo a conformational exchange processes with a time constant of approximately 35 microseconds. Other studies have implicated this segment in the binding of the peptide to its physiological target, and the observed motions may play a role in allowing the peptide to enter the binding site  相似文献   

19.
The three-dimensional structure of a 42-residue fragment containing the N-terminal EGF-like module of blood coagulation factor X was determined by means of 2D NMR spectroscopy and computer simulation. The spectroscopic data consisted of 370 NOE distances and 27 dihedral angle constraints. These were used to generate peptide conformations by molecular dynamics simulation. The simulations used a novel functional form for the constraint potentials and were performed with two time steps to ensure rapid execution. Apart from preliminary runs to aid assignment of NOEs, 60 runs resulted in 13 accepted structures, which have two antiparallel beta sheets, no alpha helices, and five tight turns. There is no hydrophobic cluster. The root mean square deviation for the backbone of the 13 conformations is 0.65 +/- 0.11 A against their mean conformation. About half of the side chains have well-defined structure. The overall conformation is similar to that of murine EGF.  相似文献   

20.
Bovine Factor X can be activated by two alternative pathways. The first, favored at high concentrations of the complex of tissue factor and Factor VII, is initiated by the action of Factor VII on Factor X to cleave an activation peptide from the NH2 terminus of the heavy chain, to produce alpha-Xa. This is then converted autocatalytically to another form of Factor Xa, beta-Xa, by the loss of a 17-residue glycopeptide from the COOH terminus of the heavy chain, in a lipid-dependent reaction. The alternative pathway, favored at lower activator concentrations, is initiated by the action of Factor Xa on Factor X, in the presence of lipid, to release the same COOH-terminal peptide as is produced in the conversion of alpha-Xa to beta-Xa. The intermediate produced by the loss of this peptide from Factor X,I1, can be activated directly to beta-Xa by the tissue factor-Factor VII complex, with the loss of the same NH2-terminal peptide as is produced in the conversion of Factor X to alpha-Xa. The autocatalytic activation of Factor X by Factor Xa described previously occurs to a marked extent only at very low activator concentrations, and has been shown to proceed largely by the loss of the normal NH2-terminal peptide from the heavy chain of I1-Initial experiments show that neither peptide affects the rate of coagulation by either the extrinsic or intrinsic pathways. The amino acid sequences have been determined on both sides of the peptide cleavages, and it has been shown that the cleavage sites are the same, regardless of the pathway of activation. The amino acid sequence and carbohydrate composition of the COOH-terminal peptide have been determined. The carbohydrate moiety is attached via an O-glycosidic linkage at a threonine residue, and contains galactosamine but no glucosamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号